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Transition metal catalyzed asymmetric hydrogenation of enamides[1] is a powerful method
to prepare chiral amines, which are important building blocks in organic synthesis.[2] With
the development of many effective chiral ligands,[1] a variety of prochiral enamides such as
1,[3] 2,[3a,c,d,e,g] 3,[4] and 4,[5] have been hydrogenated in excellent enantioselectivities
(Figure 1). However, asymmetric hydrogenation of 5 was rarely studied. To our knowledge,
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the only result was reported to give moderate enantioselectivity (50% ee) for the
hydrogenation of 5a (Ar = Ph) with a Rh/DIPAMP complex.[6] In this paper, we prepared a
series of enamides of both (Z)-5 and (E)-5 and tested them in Rh-catalyzed asymmetric
hydrogenation with several chiral ligands. Excellent ee’s (up to 99% ee) have been achieved
for those (Z)-configured enamide with Rh/TangPhos catalytic system.

A number of methods for the preparation of enamides have been reported, including
rearrangement reactions,[6, 7] reduction of nitro alkenes[8] or ketoximes,[9] acylation of
imines,[10] and direct condensation of ketone and amide.[11] Recently, a Merck group has
developed an efficient Pd-catalyzed amidation reaction leading to a diverse array of
enamides.[12] Under optimized condition, good selectivity for (Z)-enamide such as 6 was
achieved (Scheme 1). To gain quick access to the desired substrates 5a-5i, we chose the
direct condensation method due to its operational simplicity. As shown in Table 1, both
isomers of 5 can be separated from the concentrated reaction mixture via flash column
chromatography; in most cases, more of (Z)-enamide was obtained than the corresponding
(E)-isomer. Although the moderate yields remain to be optimized, we found the present
method is well suited for quick synthesis of both (Z)-5 and (E)-5 from inexpensive starting
materials at laboratory scale. In addition, a diaryl enamide 5i was prepared in acceptable
yield (entry 9, Table 1), which complements Pd-catalyzed amidation for this bulky
substrate.[12b]

With the synthesis of a set of enamides 5, we compared Rh-catalyzed asymmetric
hydrogenation of (Z)-5a and (E)-5a with four widely used chiral ligands, including
TangPhos (L1),[13a] DuanPhos (L2),[13b] Et-DuPhos (L3),[13c] and Binapine (L4).[13d]

Notably, under the same reaction condition each ligand showed a striking difference in
enantio-differentiating ability toward the two isomers (Table 2). For (Z)-5a, excellent ee’s
were obtained by the use of all ligands except L4, with TangPhos giving the best result.
Change of solvent had little effect on enantioselectivity. In contrast, much lower ee’s were
observed for (E)-configured 5a in EtOAc, albeit with the same sense of product chirality as
from (Z)-5a. Change of solvent gave no improvement of enantioselectivity. Therefore,
unlike asymmetric hydrogenation of isomeric mixture of β-substituted α-aryl enamides
2,[3a,c,d,e,g] the configuration of double bond in 5 has a dramatic influence on
enantioselectivity.[14] To achieve excellent enantioselectivity with current ligands, (Z)-
configured substrates need to be used.

We further tested other substrates (Z)-5b-5i with Rh/TangPhos catalytic system under the
optimized condition. As shown in Table 3, all substrates gave excellent ee’s. Substitution
pattern on the phenyl ring generally has no appreciable effect on enantioselectivity (entries
2–4). Even hindered enamides (Z)-5h and (Z)-5i were hydrogenated with excellent results
(entries 8, 9). At reduced catalyst loading (TON = 1000), (Z)-5a was still converted to 8a
with almost unchanged ee (entry 10). Hence current hydrogenation route is a practical way
for the preparation of various amines in this category (Figure 2).[15] For example,
deacylation of the chiral product 8a leads directly to (S)-Amphetamine 9, which is a useful
stimulant with strong biological and physiological effects.[16] Further modification will
result in Selegiline 10 for the treatment of Alzheimer’s disease.[17] Asymmetric
hydrogenation of (Z)-5c will also provide a practical access to important chiral drugs such as
Formoterol 11[18] and Tamsulosin 12.[19]

In this communication, we showed that β-aryl isopropylamines, an important class of chiral
compounds with valuable pharmaceutical applications, can be prepared via highly efficient
asymmetric hydrogenation. Excellent enantioselecitivity was obtained for (Z)-enamides,
which were easily prepared via acid-catalyzed condensation of β-aryl ketone with acetamide.
Alternatively, these substrates can be synthesized via Pd-catalyed amidation that exhibits

Chen et al. Page 2

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2014 March 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



better preference for the formation of (Z)-configured substrates.[12] Expansion of this
methodology to other structurally relevant enamides is currently in progress and will be
reported in a due course.

Experimental Section
General procedure for the substrate preparation: A toluene solution (50 mL) of 7 (25 mmol),
acetamide (125 mmol), and the catalyst TsOH (2.5 mmol) was charged in a Dean-Stark
apparatus and refluxed for 24 h. After cooled to room temperature, the solvent was
evaporated and the concentrated mixture was passed through a flash chromatography
column filled with silica gel (eluent: EtOAc/hexane). The product of (Z)- and (E)-
configuration was collected as colorless oil or white powder.

General procedure for the hydrogenation: a stock solution was made by mixing
[Rh(COD)2]BF4 with TangPhos at a 1:1.1 molar ratio in EtOAc at room temperature for 10
min in a nitrogen-filled glovebox. Then a specified amount of catalyst solution (0.5 mL,
0.001 mmol) was transferred by syringe into the vials charged with different substrates (0.1
mmol for each) in EtOAc (2.5 mL). All the vials were placed in a steel autoclave into which
hydrogen gas (30 bar) was charged. After stirring at room temperature for 20 h, the
hydrogen was released slowly and the solution was concentrated and subjected to a short
column of silica gel to remove the metal complex. The purified solution was analyzed by
chiral GC to determine the ee value.
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Figure 1.
Prochiral enamide substrates for asymmetric hydrogenation.
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Figure 2.
Chiral drugs bearing β-aryl isopropylamine fragment.
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Scheme 1.
Pd-catalyzed amidation for the synthesis of (Z)-enamide 6.[12]
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