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AChE enzymatic inhibition is a core focus of pharmacological intervention in Alzheimer’s disease (AD). Yet, AChE has also
been ascribed non-hydrolytic functions, which seem related to its appearance in various isoforms. Neuronal AChE presents as
a tailed form (AChE-T) predominantly found on the neuronal synapse, and a facultatively expressed readthough form
(AChE-R), which exerts short to medium-term protective effects. Notably, this latter form is also found in the periphery. While
these non-hydrolytic functions of AChE are most controversially discussed, there is evidence for them being additional targets
of AChE inhibitors. This review aims to provide clarification as to the role of these AChE splice variants and their interplay with
other cholinergic parameters and their being targets of AChE inhibition: AChE-R is particularly involved in the mediation of
(anti-)apoptotic events in cholinergic cells, involving adaptation of various cholinergic parameters and a time-dependent link
to the expression of neuroprotective factors. The AChE-T C-terminus is central to AChE activity regulation, while isolated
AChE-T C-terminal fragments mediate toxic effects via the α7 nicotinic acetylcholine receptor. There is direct evidence for
roles of AChE-T and AChE-R in neurodegeneration and neuroprotection, with these roles involving AChE as a key modulator
of the cholinergic system: in vivo data further encourages the use of AChE inhibitors in the treatment of neurodegenerative
conditions such as AD since effects on both enzymatic activity and the enzyme’s non-hydrolytic functions can be postulated.
It also suggests that novel AChE inhibitors should enhance protective AChE-R, while avoiding the concomitant up-regulation
of AChE-T.

Abbreviations
aa, amino acid; Aβ, amyloid β; AChE-R, readthrough AChE; AChE-T, tailed AChE; AChE-Tt, hydrolytically cleaved
AChE-T; AD, Alzheimer’s disease; APP, amyloid precursor protein; ARP, C-terminal fragment of AChE-R; DLB, dementia
with Lewy bodies; HACU, high-affinity choline uptake; mAChR, muscarinic ACh receptor; nAChR, nicotinic ACh
receptor; PAS, peripheral anionic site; PDD, Parkinson’s disease dementia; PRiMA, proline-rich membrane anchor; T14
and T30, C-terminal fragments of AChE-T of 14 and 30 aa length respectively

AChE: from gene to structure and
neuronal splice variants

AChE is responsible for the termination of cholinergic trans-
mission, that is, the enzymatic breakdown of ACh (Radic

et al., 1997). It is known as one of the fastest enzymes of our
body (Nair et al., 1994), degrading, as a tetramer, about
25 000 molecules of ACh per second. The AChE gene is
located on chromosome 7 and spans seven kilobases. It con-
tains six exons, three of which (E2, E3 and E4) encode for the
core peptide that is common to all enzyme variants and
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harbours the information for the enzyme’s activity. The
AChE pre-mRNA is susceptible to alternative splicing (Taylor
and Radic, 1994), which leads to three post-transcriptional
species that, however, all derive from the same gene (Marsh
et al., 1984; Aziz-Aloya et al., 1993; Grisaru et al., 1999). The
C-terminal domains of these different splice variants deter-
mine the post-translational processing and, thus, location
(both within the organism and the single cell) as well as role
of the enzyme (Massoulie et al., 1998; Massoulie, 2002; Camp
et al., 2010; Hicks et al., 2011). Further AChE variants origi-
nate from different promoter use and, thus, N-terminal
alterations (Meshorer and Soreq, 2006; Toiber et al., 2008;
2009), but these forms are less extensively characterized.

Two splice variants are particularly relevant to neuronal
tissue. Specifically, the synaptic form of AChE is the one
predominantly expressed in the CNS and muscle tissue
(Massoulie and Millard, 2009). It is formed by splicing of
exons 4 to 6, yielding a E1-E2-E3-E4-E6 transcript. The trans-
lation of this mRNA leads to the C-terminal extension of the
common core by a peptide containing a cysteine, which
favours dimerization; in view of this ‘tailed’ extension, this
variant is also denominated tailed AChE (AChE-T; Liang et al.,
2009). This C-terminal extension leads to AChE-T post-
translational modifications involving, in nervous tissue, the
link between a proline-rich membrane anchor (PRiMA) and a
WAT domain on the very AChE-T C-terminus (Inestrosa and
Perelman, 1989; Xie et al., 2010; Chen et al., 2011). This
membrane-tethered form of AChE presents the bulk of AChE
activity in neuronal tissue.

The other AChE splice variant relevant to neuronal events
is the readthrough form of AChE (AChE-R), which obtains its
name from the continuous transcription through intron I4,
which yields the E1-E2-E3-E4-I4-E5 transcript. The extension
of its C-terminus over the common core is shorter and lacks
cysteine (Li et al., 1991; Camp et al., 2010). Hence, AChE-R is
destined to remain monomeric, with its consequential solu-
bility and swift distribution in tissue being closely linked to
its apparent, though highly debated role in stress-related con-
ditions (Soreq and Seidman, 2001; Massoulie et al., 2008): as
both in vitro and in vivo work shows, powerful inductors for
AChE-R are stress, for example, forced swim stress, continu-
ous use as well as toxic concentrations of AChE inhibitors or
inflammation (Kaufer et al., 1998; Nijholt et al., 2004; Dori
et al., 2007; Evron et al., 2007), with stress-inducible changes
in AChE gene expression being mediated by histone deacety-
lase (Sailaja et al., 2012). Figure 1 offers a scheme of these
different AChE splice variants and their C-terminal peptides.

Among the splicing factors involved in the alteration of
the AChE expression pattern are SC35 (Meshorer et al., 2005)

and hnRNPA1 (Berson et al., 2012), with the latter having
recently been demonstrated to assemble into self-seeding
fibrils, revealing prion-like activities in an array of neurode-
generative conditions (Kim et al., 2013). This observation
adds to deliberations on the striking mechanistic common-
alities among neurodegenerative disorders, including, for
example, alternative splicing and ubiquitination (Fotuhi
et al., 2009; Ferraiuolo et al., 2011; Robberecht and Philips,
2013).

Given that cholinergic neurotransmitter levels drastically
decrease in conditions like Alzheimer’s disease (AD; Arendt
et al., 1992; Mufson et al., 2008), AChE is usually discussed in
relation to enzyme inhibition since this strategy can tempo-
rarily increase ACh levels. In fact, since the FDA approval of
tacrine (1993) and donepezil (1997) as the first AChE inhibi-
tors for the treatment of AD, the efficacy and suitability of
these drugs have been considered in countless reviews (a
PubMed research for ‘acetylcholinesterase inhibitors’ yields
nearly 3000 hits in the ‘review’ category), and several more
agents have reached the market since, among them rivastig-
mine and galantamine.

The discussion regarding cholinergic deficits as being cen-
trally involved in the pathogenesis of neurodegenerative con-
ditions such as AD (Francis et al., 1999; Mufson et al., 2008;
Schliebs and Arendt, 2011) particularly focuses on the loss of
cholinergic neurons and the ensuing decrease of neurotrans-
mitter levels and the enzymatic machinery responsible for its
synthesis, that is, ChAT and high-affinity choline uptake
(HACU), taking also into account alterations of glutamater-
igic signalling (Francis et al., 2012). In the light of the more
recently discussed non-hydrolytic functions of AChE, this
review specifically focusses on the role of AChE inhibitors in
the context of AChE alternative splicing. Moreover, in dis-
cussing the role of AChE splice variant expression in condi-
tions of acute and chronic neurodegeneration, the review
broaches the issue of the impact of AChE inhibitors on AChE
alternative splicing, deliberates on the potential limited use-
fulness of AChE inhibitors and hopes to instigate a discussion
on concepts for future drug development.

Non-hydrolytic functions of AChE: first
clues for the use of AChE inhibitors

The enzyme’s complex structural polymorphism supports the
theory that the different AChE molecular forms play distinct
physiological roles not only in the cholinergic system: AChE
has been detected in adult non-cholinergic neurons, for
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Figure 1
AChE splice variants and their C-terminal peptides. The figure shows the AChE gene (top; omitting the promoter region), AChE splice variant
transcripts (bottom left) and the transcripts from which the translated C-terminal moieties that contain the AChE peptides are derived. E, exon;
I, intron.
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example, substantia nigra and cerebellar cells (Greenfield
et al., 1983), as well as hematopoietic, osteogenic and even
various neoplastic cells (Zakut et al., 1992; Karpel et al., 1994;
Small et al., 1996; Grisaru et al., 2001; Soreq and Seidman,
2001; Deutsch et al., 2002). In addition, AChE is known for
its widespread occurence during early development
(Vogel-Hopker et al., 2012). Further roles may be inferred
from the non-neuronal functions of ACh itself in sustaining
barrier functions (Yoshida et al., 2006; Kurzen et al., 2007;
Kummer et al., 2008). In addition, non-neuronal roles of ACh
in conditions like inflammation (Fujii and Kawashima, 2001;
Pavlov and Tracey, 2005; del Rey and Besedovsky, 2008) may
give further clues as to non-enzymatic roles of AChE. This is
particularly true since neuronal, stress-induced increase in
interleukin-1 seems to mediate stress-related increased AChE
expression (Li et al., 2000b).

In fact, various AChE inhibitors are successfully used to
support the recovery in elderly, cognitively impaired stroke
patients (Oldenbeuving et al., 2008; Whyte et al., 2008; Hong
et al., 2012). For example, donepezil was tested in a phase II
trial as an adjuvant therapy to standard medical care of stroke
patients (Barrett et al., 2011) and supported cognitive
improvement in a pilot study (Chang et al., 2011). In this
context, the degree of recovery from stroke has been corre-
lated to stroke-induced effects on the immune system that
can lead to infections (Dirnagl, 2012). Such events involve a
mechanism described as the inflammatory reflex (Tracey,
2002; Huston and Tracey, 2011). Since vagally released ACh is
able to suppress the release of inflammatory cytokines, the
positive effect of AChE inhibitor treatment in post-stroke
patients may well extend to the effects of non-neuronal ACh.

In addition, non-hydrolytic functions of AChE are sug-
gested by the spatio-temporally regulated expression of AChE
in early embryogenesis, embryonic neurite extension and
synaptogenesis (Fitzpatrick-McElligott and Stent, 1981; Layer,
1990): the mutually exclusive expression patterns of AChE
and its enzymatically less specific sister molecule butyrylcho-
linesterase, BuChE, (and the pre-synaptogenetic role of
AChE) have been described as early as 1983 (Layer, 1983).
AChE is transiently expressed in the developing nervous
system, in particular, during periods of neuronal prolifera-
tion, migration and axonal outgrowth (Layer and Sporns,
1987; Layer, 1990, 1991). Exogenous, purified AChE pro-
motes and regulates axonal and neurite growth from chick
nerve cells in culture. This function is not the result of the
enzymatic activity per se since this function was not attenu-
ated by treating the cell culture with various active site
inhibitors, which depressed enzymatic AChE activity (Layer
et al., 1993). In line with these findings, others showed that
neurite outgrowth is retarded following AChE inhibitor treat-
ment (Dupree and Bigbee, 1994) and that a secondary,
peripheral anionic site (PAS) on the AChE molecule achieves
this adhesive function (Small et al., 1995).

A breadth of studies carried out in various cellular systems
continued to corroborate these findings throughout the
1990s (Koenigsberger et al., 1997; Grifman et al., 1998; Bigbee
et al., 2000). Yet, observations for an AChE knockout mouse
seemingly casted major doubt on these insights: transgenic
mice not carrying any AChE allele were alive, even though
they required a liquid diet in view of muscle weakness (Xie
et al., 1999). This mouse model establishes central cholinergic

pathways and uses BuChE to hydrolyse the enormous quan-
tities of ACh present in the cerebral extracellular space (Li
et al., 2000a; Mesulam et al., 2002; Hartmann et al., 2007). At
the same time, however, this mouse model revealed severely
disturbed retinal development and neuritogenesis (Bytyqi
et al., 2004), thus, further suggesting a mandatory role of
AChE in development. What is more, AChE shares – as
reviewed previously (Soreq and Seidman, 2001) – high
homology with the extracellular domain sequence of, firstly,
gliotactin, a transmembrane protein transiently expressed on
peripheral glia that is required for the formation of the
peripheral blood-nerve barrier (Auld et al., 1995); secondly,
neurotactin, which is known for its interneuronal interac-
tions (de la Escalera et al., 1990); and, thirdly, neuroligin, a
further non-catalytic transmembrane protein with its extra-
cellular sequence being composed of a catalytically inactive
esterase domain homologous to AChE. Such evidence further
underlines a likely role of AChE in development. It even
suggests – as put forward earlier (Layer, 1995) – that the
function of AChE in neurodegeneration may equally be
attributed to ‘non-classical’ functions of the enzyme. These
very functions are likely affected by AChE inhibition, with
this issue being explored in the following sections.

AChE and amyloid: enzymatic activity
in a new light

Nibaldo Inestrosa’s work contributed significantly to our
understanding of AChE as being involved in amyloid fibre
assembly (Inestrosa et al., 1996), which continues to be con-
sidered – and discussed as – one of the core hallmarks of the
condition (Hardy et al., 1986; Hardy and Higgins, 1992;
Hardy and Selkoe, 2002; Armstrong, 2011; de la Torre, 2011;
Benilova et al., 2012; Reitz, 2012). In particular, amyloid beta
(Aβ) aggregation is promoted by AChE forming a complex
with growing fibrils (Alvarez et al., 1997); furthermore, these
stable complexes change the biochemical properties of the
enzyme and increase the neurotoxicity of the Aβ fibrils
(Alvarez et al., 1998); thirdly, AChE promotes peptide aggre-
gation by a mechanism not involving the hydrolysis of the
amyloid precursor protein (APP; Campos et al., 1998); and
finally, the neurotoxicity of AChE Aβ peptide aggregates is
dependent on the type of Aβ and the AChE concentration
present in the complexes (Munoz and Inestrosa, 1999). These
authors further showed, most notably and in reference to the
above discussion on the role of the enzyme’s PAS, that pro-
pidium, an AChE PAS ligand, could (in contrast to edropho-
nium, an active site inhibitor) prevent amyloid fibre
assembly.

As such, one should assume that specific AChE inhibitors
may prevent further aggregation of Aβ fibrils. In fact,
researchers encourage future work in the area of AChE inhibi-
tor drug synthesis to move towards inhibitors that reduce the
deposition of amyloid (Pohanka, 2012). Such suggestions
receive further support from the fact that a co-localization of
AChE and Aβ was also reported in autopsy studies of AD
patients’ brains: these findings suggest that AChE activity is
intimately associated with the process of amyloid formation
and accumulation in senile plaques in vivo (Ulrich et al., 1990;
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Moran et al., 1994). The source of esterase activity of senile
plaques has been ascribed to glia cells by Mesulam and his
co-workers (Wright et al., 1993). Yet, they also demonstrated
that BuChE was as much involved in these processes as AChE
itself: firstly, AChE and BuChE activities with pH preferences
and inhibitor selectivities identical to those of plaque-bound
cholinesterases are found in the astrocytes and oligodendro-
cytes of control and AD brains; secondly, these glial-type
cholinesterases are selectively inhibited by indolamines and
protease inhibitors; and, thirdly, in control and AD brains,
AChE-positive glia are distributed throughout the cortical
layers and subcortical white matter. What is more, Sultan
Darvesh and colleagues strongly emphasize the expression of
BuChE in brain structures involved in cognition (Darvesh
et al., 2001), and claim a central role of BuChE, alongside
AChE, in the occurrence, symptoms and progression of
dementia (Ballard et al., 2005), also in the light of the asso-
ciation of BuChE with Aβ plaques (Darvesh, 2013). These
findings are not easily reconciled with Inestrosa’s insights
that BuChE, which lacks the PAS, does not affect amyloid
formation (Inestrosa et al., 1996). Indeed, they support work
advocating the use of BuChE inhibitors in the treatment of
AD (Giacobini, 2001; Giacobini, 2003), especially since these
compounds seem to impact on the enzyme’s splice variant
expression and consequential attenuation of amyloidogen-
esis (Greig et al., 2005; Podoly et al., 2009). Effects of AChE
inhibitors on gene expression are discussed in detail further
below.

Nevertheless, these discrepancies may well be owed to the
fact that a good part of the above work was carried out in
isolated test tube conditions, which can hardly account for
the individual patient’s complex physiology or cerebral
pathomorphology. As recently reviewed by Inestrosa himself,
BuChE is able to extend the nucleation phase of Aβ polym-
erization, reducing the rate of fibril formation, instead stabi-
lizing soluble Aβ assemblies (Inestrosa et al., 2008). Whether
BuChE affects Aβ oligomerization remains unclear. Still, the
hypothesis persists that senile plaques may be formed from
the terminals of AChE containing neurons. As such, AChE
PAS inhibitors may be preferable to purely competitive
enzyme inhibitors. Novel AChE inhibitors are targeted
against this site (Silman and Sussman, 2005), and their use is,
additionally, supported by evidence suggesting that they are
involved in modulating the APP metabolism (Racchi et al.,
2004; Zimmermann et al., 2005a; 2005b; Garcia-Palomero
et al., 2008).

AChE-T, its C-terminal peptides and
neurodegeneration: AChE inhibitors
with new functions

With respect to the non-hydrolytic roles of AChE in the
context of AD-related amyloid burden, further hypotheses
have been put forward for the role of AChE. In view of the
non-hydrolytic actions of AChE in development, its known
involvement in AD pathology and its functional parallels to
APP – both are secreted from neurons, have trophic action
and their levels decrease in AD (Greenfield and Vaux, 2002) –
molecular similarities between the two proteins were investi-

gated. At the same time, a role for two AChE C-terminal
peptides (14 and 30 amino acids (aa) in length and, thus,
denominated T14 and T30, respectively) in neurodegenera-
tion were hypothesized (Greenfield et al., 2008). AChE-T as
well as T14/T30 exhibit, depending on dose and exposure
time, trophic or toxic actions. These were seen in hippocam-
pal neurons as well as organotypic slices, and could be related
to opening, specifically and selectively, the L-type Ca2+

channel (Day and Greenfield, 2002; 2003; Bon and
Greenfield, 2003; Emmett and Greenfield, 2004; Greenfield
et al., 2004; Zbarsky et al., 2004).

In order to further corroborate their hypothesis,
Greenfield and colleagues explored the possibility of there
existing a form (and role) of AChE-T, in development and
degeneration, having undergone cleavage as suggested by the
metabolism of the homologous APP sequence. Such an
approach was encouraged by the identification of a trun-
cated, 543 to 547 aa long form of AChE-T in development
(Saxena et al., 2003). This form is supposedly the result of
proteolytic cleavage (Camp et al., 2010) – a likely assumption,
given that a similar mechanism has been detected for BuChE
(Blong et al., 1997). Cleaving the T30 peptide – which by
itself is, as referenced above, implicated in both developmen-
tal and neurodegenerative processes in vitro – off the enzyme’s
C-terminus would yield a truncated enzyme (AChE-Tt)
devoid of a dimerization favouring cysteine in its remaining
C-terminus. Hence, this AChE-Tt would remain monomeric.
Such an AChE-T C-terminal shedding seemed then further
likely, when considering that the form of AChE relevant in
neurodegeneration and development has been identified as
being monomeric (Arendt et al., 1992; Inestrosa et al., 1994),
and that it has lost its characteristic of substrate inhibition
(Arendt et al., 1992; Moreno et al., 1996). In this context,
work on a genetically engineered form of truncated AChE-T
(Bourne et al., 1999) aimed at uncovering a mechanistic link
between the supposedly cleaved, residual AChE-Tt enzyme
and the free floating peptides in neurodegeneration
(Zimmermann et al., 2008; 2009).

While criticism regarding this work continues to focus on
the still lacking in vivo evidence of the AChE-T C-terminal
peptide(s) (Massoulie et al., 2008), progress has been made
regarding evidence for their potential site of action: experi-
ments using a range of nicotinic ACh receptor (nAChR)
blockers in various model systems provided indirect proof
that T14 binds selectively to an allosteric site on the
α7-nAChR [abbreviations for receptors follow the British
Journal of Phamacology’s Guide to Receptors and Channels
(Alexander et al., 2011)], thus, modulating Ca2+ influx, which
is involved in short-term plasticity and chronic, long-term
trophic and toxic effects (Day and Greenfield, 2002; 2003;
Emmett and Greenfield, 2004; Greenfield et al., 2004). These
actions were sensitive to α7-nAChR blockade in the nanomo-
lar range. Notably, the α7-nAChR is co-expressed along with
AChE in the same transient period and within the same brain
regions during developmental (Taylor et al., 1994; Broide
et al., 1996; Torrao et al., 2000) and degenerative processes
(Dineley et al., 2001; Fodero et al., 2004). Moreover, it can
bind Aβ (Wang et al., 2000; Dineley et al., 2002; Lain et al.,
2005; Dineley, 2007), with this finding, however, having been
challenged in cell culture work (Small et al., 2007). All the
same, the receptor has been shown to be involved in neuro-
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nal development (Liu et al., 2007) as well as neurodegenera-
tive pathogenesis (Dineley et al., 2001; Nagele et al., 2002;
Duda, 2004) and oncogenesis (Schuller, 2009). As regards
degenerative processes, the role of both AChE – specifically
AChE-T – and the α7-nAChR have been widely discussed
(Sternfeld et al., 2000; O’Neill et al., 2002; Jin et al., 2004; Rees
et al., 2005; Holzgrabe et al., 2007; Schliebs and Arendt,
2011). Recent work now conclusively reveals that the two
AChE C-terminal peptides T14 and, particularly, T30 are
involved in binding interactions with the α7-nAChR, modu-
lating its mRNA as well as protein expression (Bond et al.,
2009).

Always considering that the above results have been
obtained in different in vitro, even test tube model systems,
they may, taken together, offer a possible scenario for mecha-
nisms active under developmental/apoptotic conditions
(Figure 2): AChE-T is cleaved through proteolysis, as has been
suggested previously (Saxena et al., 2003), and the C-terminal
peptide, T30, is freed ( ). The resulting, AChE-Tt remains
enzymatically active ( , Zimmermann et al., 2008). T30, in
turn, manipulates α7-nAChR expression ( , Bond et al.,
2009), and trophic-toxic actions are triggered by means
of Ca2+ influx ( ), depending on the T30 dose (Greenfield
et al., 2004). AChE-Tt activity is further enhanced by T30
( ; Zimmermann et al., 2008), on which breakdown of
α7-nAChR-stimulating ACh is contingent ( ). Such a possi-
ble scenario would be in agreement with the selective sensi-
tivity of cholinergic neurons to a dysregulation of Ca2+ levels
(Toiber and Soreq, 2005; Zundorf and Reiser, 2011). Addition-
ally, it would fit to the mandatory role of the α7-nAChR in
learning and memory (Thomsen et al., 2010), with neuropro-
tective effects being mediated via the downstream PI3K/pAkt
pathway (Akaike et al., 2010).

In view of the seminal role of AChE-T and α7-nAChR in
degenerative processes, the in vivo identification of T30 and,
to a lesser extent, T14 is eagerly awaited. Still, AChE-T itself
has been described to exert toxic effects. For example, specific
AChE-T overexpression is linked to programmed cell death
(Greenberg et al., 2010), and mice transgenic for human

AChE-T carry progressive accumulation of clustered, heat
shock protein 70 immunopositive neuronal fragments as well
as a high incidence of reactive astrocytes (Sternfeld et al.,
2000), and show accelerated stress-related neuropathology
including loss of dendritic arborization and spines (Cohen
et al., 2002; Meshorer and Soreq, 2006). Likewise, N-extended
forms of AChE-T lead to apoptosis (Toiber et al., 2008; 2009),
possibly as it is involved in apoptosome formation (Park
et al., 2004). While these findings already suggest that AChE
inhibitor treatment should avoid leading to an increase in the
expression of AChE-T, I will address this question further
below, in conjunction with deliberations on changes in
AChE-R expression, with these being explored in the follow-
ing paragraph.

AChE-R, stress-related conditions
and neuroprotection: AChE and
cholinergic plasticity

In comparison to AChE-T, AChE-R was shown to exert short-
to medium-term beneficial effects under acute stress (Kaufer
et al., 1998): mice overexpressing AChE-R display normal
neuromuscular function and their brains are relatively pro-
tected from stress associated pathological hallmarks that
would otherwise cause age-dependent neurodeterioration
(Berson et al., 2008). Similarly, the C-terminal peptide per-
taining to AChE-R, denominated C-terminal fragment of
AChE-R (ARP), has been shown to promote neuronal devel-
opment and plasticity (Dori and Soreq, 2006a). In addition,
extensive experimental work could demonstrate a role for
AChE-R in peripheral tissue as a marker of stress-related con-
ditions. For example, modified testicular expression of
AChE-R predicts male infertility (Mor et al., 2001), while sera
of mothers, who just had given birth, reveal increased
AChE-R levels post partum (Pick et al., 2004). Moreover,
AChE-R is expressed in hematopoietic progenitors, and ARP
promotes hematopoietic progenitor proliferation (Grisaru
et al., 2001), while stress-induced cholinergic signalling pro-
motes inflammation-associated thrombopoiesis (Pick et al.,
2006).

However, Jean Massoulié and colleagues could not iden-
tify this form of AChE following heat shock, organophos-
phate AChE inhibition or stress – neither in cell culture nor in
vivo (Perrier et al., 2005); in addition, immobilization stress of
rodents did not lead to detectable levels of AChE-R in their
hands (Perrier et al., 2006). However, their in vivo work
focused on 24 and 48 h, then 7 and 14 days post-stress, while
their in vitro test was ended immediately after stress. In com-
parison, Soreq and co-workers reported peaks of AChE activ-
ity changes 1 and 2 h post-stress in hippocampal and cortical
tissue respectively (Kaufer et al., 1998). Their findings are
supported by recent work exploring the role of alternative
splicing of AChE under conditions of oxidative stress (Härtl
et al., 2011) and other apoptotic stimuli, namely, stauro-
sporine (Li et al., 2012a) and Aβ (Li et al., 2012b). These
studies were carried out in a model of cholinergic cells
(Pahlman et al., 1984; 1995), which enabled an analysis of
conditions that closely matched those in the cell type par-
ticularly lost in neurodegeneration of the Alzheimer’s type.

AChE-T

α7-nAChR

T30
AChE-Tt

1
2

4

5

3

ACh

Ca   influx2+

Apoptosis

Figure 2
The interrelation between AChE-T and the α7-nAChR, mediated by
T30. For numbers, see text; , induction of or leading to; ,
blocking or inhibiting; , either inducing or inhibiting, depending
on concentration.
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The most important findings of this cell culture-focused work
were that, firstly, AChE-R levels rise significantly following
exposure to mild to moderate oxidative stress (Härtl et al.,
2011) or pathophysiological amounts of amyloid (Li et al.,
2012b), and that, secondly, AChE-R is released into the cell
media in large amounts (Härtl et al., 2011), which is in agree-
ment with its solubility as a monomer.

In these models, controlled apoptotic events are observed,
which seem connected to the expression of AChE-R and a
time-dependently linked, sharp increase in Bcl-2 (Härtl et al.,
2011; Li et al., 2012b). Moreover, AChE-R has been observed
in the context of mitochondrial hyperactivity (Mor et al.,
2008) and described as interacting with the receptor for acti-
vated C-kinase 1, RACK1 and PKC (Dori and Soreq, 2006a).
Increased mitochondrial activity provides additional ACh
precursor acetyl-coenzyme A. As a consequence, ACh levels
rise, as also suggested by the increased choline turnover itself
(Kuhar and Murrin, 1978; Jope, 1999) as well as the observed
increase in ChAT activity (Li et al., 2012b). Likewise, the
known interaction between RACK1 and PKC, promoted by
AChE-R, may well drive choline transporter as well as ChAT
activity, as they are dependent on their phosphorylation
status (Dobransky et al., 2004; Gates et al., 2004; Dobransky
and Rylett, 2005; Kim et al., 2006). ACh, in turn, likely exerts
protective effects via muscarinic ACh receptors (mAChRs)
and PKC activation (Fisher, 2007; Tiong et al., 2010).

Notably, high concentrations of Aβ destroy the balance of
the cholinergic players up-regulated following the exposure
to low Aβ concentrations, with AChE-R being up-regulated
only transiently (Li et al., 2012b). As such, slowly increasing
Aβ levels, as is the case in AD, may cause cholinergic adapta-
tion, likely associated with AChE-R expression. Long-term
accumulation of Aβ peptides, in contrast, will overwhelm the
adaptive capacity of cholinergic neurons, leading to their
death. This hypothesis is in agreement with the analysis of
human hippocampal tissue samples that revealed a drastic
decrease in functional AChE-R (Berson et al., 2008), suggest-
ing that a high dose of Aβ, applied over an extended period of
time, impairs this neuroprotective AChE-R. This biphasic
phenomenon is further confirmed by work using the phos-
phorylation inhibitor staurosporine (Li et al., 2012a), which
shows that reduced AChE activity may result only under
conditions when regulatory effects involving cholinergic
adaptation and AChE-R up-regulation, are exhausted, that is,
once the system has tipped towards cellular necrosis.

These findings suggest that the selective increase of
AChE-R levels may well be desirable in neurodegenerative
conditions (Meshorer and Soreq, 2006), especially since
chronic AChE-R overexpression has been shown to enhance
cognitive performance in vitro (Sklan et al., 2006) and in vivo
(Farchi et al., 2007). Interestingly, treatment with AChE
inhibitors presented with an eightfold increase over control
levels in AChE mRNA and a concomitant decrease in the
mRNAs encoding for ChAT and the vesicular ACh transporter
(Kaufer et al., 1999). Stress-related changes in brain micro-
RNA expression, and microRNA-183 in particular, were
shown to regulate AChE splicing and cholinergic neurotrans-
mission (Meerson et al., 2010). Therefore, future work should
address as to whether and how AChE inhibitors do impact on
brain microRNA expression, and whether likely effects differ
among the various drugs.

There is evidence of a shift towards AChE-R splicing fol-
lowing muscarinic modulation (Salmon et al., 2005), and
recent studies could detect long-lasting AChE splice variant
variations in AD patients treated with AChE inhibitors
(Darreh-Shori et al., 2004). In particular, donepezil has been
associated with decreased levels of AChE-R as compared with
AChE-T, whereas rivastigmine, a pseudo-irreversible cho-
linesterase inhibitor, increases the AChE-R/AChE-T ratio.
Even though the clinical effects of these observations still
need to be established fully, several authors suggest – in the
light of the beneficial effects of AChE-R outlined above – that
the synthesis and design of new drugs should aim for the
specific up-regulation of AChE-R, but not AChE-T (Greenberg
et al., 2010; Pohanka, 2012). In addition, circadian changes in
the expression of AChE-T (Erb et al., 2001) and AChE-R
(Shaltiel et al., 2013) should be taken into account for thera-
peutic considerations.

More generally, AChE inhibitors also find application in
other types of dementia. For example, rivastigmine showed
modest but significant benefits in the treatment of cognitive
and neuropsychiatric symptoms in Parkinson’s disease
dementia (PDD) and dementia with Lewy bodies (DLB;
Bullock and Cameron, 2002), and also donepezil showed
positive effects (Mori et al., 2012). Indeed, it is noteworthy
that AChE alternative splicing has been implicated in PD
and Parkinsonism (Benmoyal-Segal et al., 2012), with AChE-R
confering resistance to dopaminergic cell death in a
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model
(Ben Shaul et al., 2006). Likewise, the efficacy of targeting
specific AChE splice variants as suitable for the therapy of
chronic cholinergic malfunctioning has been highlighted for
the case of myasthenia gravis: Monarsen, a 20-base antisense
oligodeoxynucleotide directed against the human AChE gene
is effective in improving muscle action potential in a myas-
thenia gravis rodent model and showed, in part, dramatic
effects in patients afflicted by myasthenia gravis (Dori and
Soreq, 2006b; Sussman et al., 2008), where AChE-R serum
accumulation is noted (Brenner et al., 2003).

Animal models of modulated AChE
activity: evidence for non-enzymatic
AChE inhibitors?

Cholinergic activity increases following stress – in various
cellular systems (Melo et al., 2003; Tyagi et al., 2010), in vivo
(Dumont et al., 2006; Saxena et al., 2008) and in clinical
studies (Correa et al., 2008) alike. At the same time, ACh itself
has been shown to exert neuroprotective effects via mAChRs
(Liu et al., 2011) and consequential PKC activation (Fisher,
2007; Tiong et al., 2010). In this paragraph, I would like to
turn to questions as to the enzymatic impact of AChE inhibi-
tors. In particular, I want to address whether the limited
success obtained with pro-cholinergic therapeutics in condi-
tions such as AD may be linked to their not sufficiently
explored non-enzymatic effects.

In view of the drastic loss of cholinergic neurons and the
consequential depression of ACh levels in conditions of neu-
rodegeneration (Schliebs and Arendt, 2011), the therapeutic
approach of choice remains the inhibition of AChE activity
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so as to keep neurotransmitter levels high for as long as
possible (Mufson et al., 2008). Yet, both in vivo and clinical
studies reveal that AChE inhibitor achieved enzyme inhibi-
tion rates are far from complete and probably remain below
50% (Giovannini et al., 1998). At the same time, advanced
stages of AD present with significantly reduced levels of AChE
(Perry et al., 1978; Shinotoh et al., 2000). As such, it is of note
that ACh neurotransmitter levels in a genetically engineered
mouse model displaying single AChE allele deletion (Xie
et al., 1999) are scarcely altered when comparing with levels
measured in the wild-type counterpart (Mohr et al., 2012).
This data sheds further doubt on an enzyme-related effect of
clinically used AChE inhibitor concentrations, especially
since it was recently demonstrated that 5 to 10 mg·day−1

donepezil administered to AD patients led to only 20–25% of
AChE inhibition (Bohnen et al., 2005). These findings may
well explain the low efficacy of these drugs, even though
individual patients report positive effects (Zimmermann,
2011). Similarly, in vivo studies detected no more than 27 to
39% reduction of enzyme activity in rats after treatment with
donepezil (1 or 1.5 mg·kg−1) (Scali et al., 2002; Cerbai et al.,
2007).

Notably, these models cope with reduced enzymatic func-
tion by means of cholinergic compensation. In particular,
HACU and, thus, choline turnover are significantly increased
(Mohr et al., 2012), suggesting an increased ACh firing rate
(Jope, 1999). This finding, notably, parallels data from AD
brain rapid autopsy (Bissette et al., 1996) and AChE nullizy-
gous mice (Hartmann et al., 2007). It is then noteworthy that
AChE inhibitors are more effective in enhancing ACh levels
in these heterozygous mice, on a background of already low
basal AChE activity (Mohr et al., 2012), which encourages the
use of these drugs for the treatment of advanced cholinergic
dysfunction of the AD type (Passmore et al., 2005; Roman
et al., 2005). What is more, there is evidence that donepezil
alleviates disturbances in energy metabolism (Zhou et al.,
2001), which is significantly affected in AD (Hirono et al.,
2004). In confirmation of such evidence, donepezil increased
glucose levels in the AChE heterozygous mice more strongly,
and also transiently pushed up choline levels (Mohr et al.,
2012), hence, up-regulating the availability of both precur-
sors of ACh, an effect that may contribute to the increase of
ACh levels.

Therefore, it is not far fetched to assume that donepezil
can influence cholinergic transmission independently of
AChE catalytic inhibition. Yet, as an impact on AChE gene
expression has to be taken into account as well as aspects of
enzyme maturation and turnover, that is, protein levels as
compared with actual enzyme activity (Rotundo and
Fambrough, 1980; Shaked et al., 2009), enzymatic and non-
enzymatic effects cannot easily be distinguished. All the
same, such non-catalytic effects may well be mediated by an
AChE-R increase, as suggested by the discussed in vitro work
(Li et al., 2012b). In this context, it should be emphasized
that a significant relative increase in AChE-R will have little
impact on ACh breakdown in absolute terms, since AChE-R
baseline levels are close to zero. As such, the in vivo study
on AChE heterozygous mice suggests that treatment of
AD-related cognitive impairment involves AChE inhibition
in early to moderate stages, likely involving non-cholinergic
in addition to directly enzyme activity-related effects.

Consequentially, AChE activity per se might not be the
only target of the AChE inhibitor-related treatment of cho-
linergic degenerative processes in AD, nor an exclusive indi-
cator of cholinergic degeneration and cell death. Yet, how can
we reconcile these findings with the evidence of the role of
AChE-T C-terminal fragments in triggering neurodegenera-
tive processes? Again, genetically engineered mouse models
might give clues. AChE-T is the predominant form of AChE
in the CNS, and it is tethered to the neuronal plasma mem-
brane by the small transmembrane protein PRiMA (Perrier
et al., 2002; 2003), which interacts with the WAT domain of
the AChE-T C-terminus. Earlier work in a PRiMA knockout
mouse had shown that the membrane anchor is necessary
for targeting and stabilizing nascent AChE in neurons
(Dobbertin et al., 2009). But at the same time, these mice had
a phenotype similar to their wild-type counterpart in terms of
weight, body temperature and ventilation (Boudinot et al.,
2009), thus, further challenging the role of AChE activity in
neurodegenerative processes.

Recent work on this mutant reveals a thorough adapta-
tion of the PRiMA knockout mouse to the genetically induced
excess of cholinergic neurotransmitter (Farar et al., 2012).
These high levels significantly surpass the EC50 of mAChRs,
but not that of most nAChRs, which may explain the cho-
linergic adaptation of mAChRs – both in terms of their
density and functionality – as was also observed in the case of
AChE knockout mice (Li et al., 2003; Volpicelli-Daley et al.,
2003a,b). In comparison, a corresponding adaptation of
nAChRs is scarcely seen (Volpicelli-Daley et al., 2003a). As
such, the question arises as to whether pharmacological inter-
vention targeting the disposition of AChE at the neuronal
surface could support cholinergic neurotransmission under
circumstances where AChE activity needs to be hampered.

This question becomes even more focussed when study-
ing a genetically engineered mouse model presenting dele-
tion of the AChE-T exon 6, which carries the WAT domain: it
similarly lacks functional AChE in the synaptic membrane
(Dobbertin et al., 2009; Camp et al., 2010), but reveals a sig-
nificant phenotype (Camp et al., 2010), even though the
originally intended effect of preventing AChE from anchor-
ing to the synaptic membrane by means of interaction with
PRiMA corresponds to that achieved in the PRiMA knockout
mouse. These findings further suggest the mandatory role of
the AChE-T C-terminus in supporting the enzyme’s function
and the organism’s physiological development. That these
mice show a significantly reduced number of nAChRs (Girard
et al., 2006) only further highlights the intricate relationship
between AChE-T and the nAChR.

Summary, conclusion and outlook:
AChE in neurodegeneration, AChE
inhibitors in neuroprotection

Various hypotheses have been put forward and controver-
sially discussed in relation to the pathogenesis of AD (Hardy
et al., 1986; Hardy and Higgins, 1992; Francis et al., 1999;
Hardy and Selkoe, 2002; Armstrong, 2011; Reitz, 2012; Takata
and Kitamura, 2012). At the same time, recent deliberations
suggest that atrophy in the cortex and hippocampus, which
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continue to be considered the best determinant of cognitive
decline with aging (deToledo-Morrell et al., 2007; Pihlajamaki
et al., 2009; Schliebs and Arendt, 2011; Li et al., 2012c),
results from a combination of AD pathology, inflammation,
Lewy bodies and vascular lesions (Fotuhi et al., 2009). Like-
wise, altered alternative splicing seems intricately involved in
pathogenetic mechanisms of neurodegenerative conditions
(Ferraiuolo et al., 2011; Gagliardi et al., 2012; Mills and Janitz,
2012). Against this background – and in the light of the
insights collected here, there seems to be an urgent need to
understand, firstly, whether and how strongly cholinergic cell
death features in a broad range of neurodegenerative condi-
tions, not least since cholinergic impairment is most convinc-
ingly related to cognitive decline (Pinto et al., 2011), and,
secondly, whether and to what extent we can see a converg-
ing cholinergic picture in neurodegeneration. Conditions
have to be determined, under which AChE variants trigger
apoptotic processes or exert protective functions, with the
pharmacologist’s final aim being to further the activation of
the protective variant.

Figure 3 summarises the findings discussed here and sug-
gests both enzymatic and non-enzymatic roles for AChE inhi-
bition: while stress-induced AChE activity ( ) depresses ACh
levels ( ), neurotransmitter stores are replenished by stress-
mediated induction of HACU and ChAT ( ), as well as via
AChE-R ( and ) and, linked, mitochondrial hyperactivity.
Neuroprotective ACh effects are mediated by both the
α7-nAChR ( ) and mAChRs ( ). In the event of prolonged
or enhanced stress, AChE-R-relayed synthesis of ACh via PKC
and RACK1 ( ) is exhausted (its half-life is significantly
shorter than that of AChE-T) so that protective ACh signal-
ling ( and ) is not achieved any more. Apoptosis (or, in
the case of high concentrations of toxic agents or prolonged
exposure times, necrosis) sets in ( ). Regardless of the
ongoing debate about the actual in vivo existence of AChE-T
C-terminal peptides as well as a form of AChE-Tt, the scenario
set out could be complemented by data on AChE-T

C-terminal fragments (see also Figure 1): a stress-related rise
in AChE-T leads, following proteolysis, to increased levels of
T30. The peptide induces and interacts with the α7-nAChR,
which, in turn, mediates protective effects. In the event of
excessively rising AChE-T levels and, hence, activity, blocking
of the α7-nAChR is brought about.

This schematic presentation is an attempt to put the indi-
vidual findings collected in this review article into a coherent
picture of cholinergic mechanisms. Yet, it does not want to
suggest a representation of a general action network of
AChE-R and AChE-T in all stress-related conditions. Never-
theless, several targets of AChE inhibitors should be consid-
ered in the light of the insights assembled here: AChE
inhibition will reduce, in the early stages of the cellular
demise, AChE activity, consequentially leading to ACh levels
remaining high. Likewise, inhibition of AChE activity
(AChE-T and AChE-Tt) reduces choline levels, which are also
discussed as being implicated in α7-nAChR activation
(Alkondon et al., 1997). Further effects may derive from
altered AChE-R gene expression following the exposure to
AChE inhibitors.

In view of the non-enzymatic mechanisms put forward
for the mode of action of AChE inhibitors, it is necessary to
understand whether and how they impact on the cholinergic
and AChE variant scenario active in conditions such as PDD
and DLB. This understanding will support the development
of directly related therapeutic strategies that take into
account AChE as a key modulator of the cholinergic system,
both on an enzymatic and a non-hydrolytic level.
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