Skip to main content
. 2014 Mar 11;9(3):e91528. doi: 10.1371/journal.pone.0091528

Table 8. Spatial regression models established in the JRW.

Water quality parameters Spatial Regression models R2 Sig.
NH4 +-Na y = 0.710+0.650*factor2+0.264*factor3–0.236*factor4 (LAMBDA = −0.561) 0.793 **
SRPa y = 0.233+0.128*factor2+0.033*factor3(LAMBDA = −0.395) 0.747 *
CODMn a y = 8.194+0.654*factor1+1.504*factor2+0.597*factor3 (LAMBDA = −0.452) 0.763 **
NO3 Na y = 2.043+0.774*factor1+0.828*factor3 (LAMBDA = 0.709) 0.846 **
Cl−b y = 14.456+3.878*factor2+4.058*factor3–0.799*WY 0.797 **
Na+a y = 8.195+1.229*factor1+1.182*factor2+2.155*factor3–0.567*WY 0.664 **
Mg2+a y = 2.511–0.883*factor1+1.561*factor2–0.804*factor4(LAMBDA = −0.716) 0.568 *
K+b y = 7.207+2.032*factor2+1.772*factor3–0.380*factor4–0.656*WY 0.869 *

Note: Factor1, 2, 3, and 4 corresponds to the four components identified and presented in Fig. 6.

a denotes the results of spatial error models, b denotes the results of spatial lag models.

WY: weighted mean of the dependent variable for adjacent sub-basins.

*indicates significant at p<0.05.

**indicates significant at p<0.01.