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Prostate cancer (PCa) is a major health care problem because of its high prevalence, health-related costs, and mortality.
Epidemiological studies have suggested an important role of genetics in PCa development. Because of this, an increasing number of
single nucleotide polymorphisms (SNPs) had been suggested to be implicated in the development and progression of PCa. While
individual SNPs are only moderately associated with PCa risk, in combination, they have a stronger, dose-dependent association,
currently explaining 30% of PCa familial risk. This review aims to give a brief overview of studies in which the possible role of genetic
variants was investigated in clinical settings. We will highlight the major research questions in the translation of SNP identification

into clinical practice.

1. Introduction

Prostate cancer (PCa) is a major health care problem because
of its high prevalence, health-related costs, and mortality.
Even though most patients have clinically localized and indo-
lent tumors at diagnosis, worldwide, this disease still holds
second place in the leading causes of cancer deaths [1]. Des-
pite its prevalence, lethality, and socioeconomic burden,
there are still many diagnostic and therapeutic challenges
in the PCa field. This is mainly due to the lack of can-
cer- and/or patient-specific biomarkers, currently limiting
patient-tailored diagnostics/therapeutics in PCa.

Age, race, and family history remain primary risk factors
for the development of PCa. It has been shown that PCa is one
of the most heritable cancers with epidemiological studies
suggesting the role of genetics in PCa development [2, 3].

Due to the latter, there has been an increasing focus on
the role of single nucleotide polymorphisms (SNPs) in the
development and progression of PCa but also on their role
in diagnostics and risk prediction. A SNP is a DNA sequence
variation occurring when a single nucleotide (A, T, C, or G)
in the genome differs from the normally expected nucleotide.

These SNPs are known to underlie differences in our suscep-
tibility to diseases. SNPs need to be determined only once
and are easy to determine, making them interesting bio-
markers. The rising interest in the role of SNPs in PCa
development and progression is illustrated by the number of
studies being published on SNPs in the PCa field.

In 2008, an extensive genome-wide association study
(GWAS) compared SNPs between PCa cases and controls.
Since then, numerous GWAS studies have been conducted
[4-26]. While many SNPs were only moderately associated
with PCa risk, in combination, they had a stronger, dose-
dependent (i.e., cumulative effect of number of SNPs) associ-
ation. A total of 77 susceptibility loci are currently explaining
approximately 30% of the familial risk [6]. With ongoing
GWAS, we could expect that more genetic variants will be
found, explaining more of the PCa familial risk. However,
the question has been raised whether finding more PCa risk-
associated SNPs will have added value over the currently
known ones [27].

Many SNPs are connected to each other through “linkage
disequilibrium,” which is a nonrandom association of alleles
at two or more loci, descendant from a single, ancestral
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chromosome. However, the SNPs detected through GWAS
studies are mostly limited to “index SNPs,” excluding other
SNPs which are in linkage disequilibrium. Clearly, these
index SNPs are not necessarily the SNPs causative for its
associated phenotype (i.e., PCa risk, risk of progression,
etc). Therefore, molecular analyses will be needed to identify
the exact SNP within each linkage domain which is the
causative SNP. SNPs that lie within an open reading frame
can lead to changes in messenger RNA stability or translation
efficiency, as well as changes in structure/activity of the
encoded proteins. However, most SNPs are located outside
of the genes and are suspected to affect gene expression
levels and genome/chromatin organization. Therefore, it is
interesting to determine the role of these SNPs in the clinical
field. This review aims to give a selected overview of studies
on the possible role of genetic variants in clinical practice. We
will highlight diagnostic and therapeutic obstacles which are
currently major issues in clinical practice.

2. Evidence Synthesis

2.1. Early Detection. To detect PCa in its early stages, cur-
rently, clinicians are limited to serum PSA level measure-
ments as a marker, which lacks sensitivity and specificity.
Therefore, PSA screening (defined as mass screening of
asymptomatic men) has been heavily debated. Two prospec-
tive studies (The Prostate, Lung, Colorectal, and Ovarian
(PLCO) Cancer Screening Trial and The European Ran-
domized Study of Screening for Prostate Cancer (ERSPC))
have contributed greatly to this discussion. The PLCO study
concluded that PCa-related mortality did not significantly
differ between patients being screened or not [3]. The ERSPC
study inferred that, based on PSA-based PCa detection, 1410
men would need to be screened and 48 additional cases of
PCa would need to be treated to prevent one death from PCa,
resulting in a high rate of over diagnosis [28].

In reaction to these recent results, the US Preventive
Services Task Force has radically recommended against
PSA-based screening [29]. However, they ignored the 50%
reduction in PCa-specific mortality since the introduction
of PSA [28, 30]. Moreover, without PSA testing, most men
would only be diagnosed when they become symptomatic,
when the disease is often too far advanced to cure. There-
fore, the current EAU guidelines recommend opportunis-
tic screening to the well-informed man [31]. Furthermore,
there is an urgent need for the development of novel
biomarkers.

2.1.1. Opportunistic Screening. Despite the EAU guidelines’
recommendation on opportunistic PSA screening, the ques-
tion remains which patients would benefit the most?
Rephrased, we could ask ourselves which men are at an
elevated risk of PCa? Since epidemiological studies have
suggested a role of genetics in PCa development, it seems
tempting to speculate that genetic variations could be of inter-
est in predicting patients’ risk of PCa in clinical practice [3].
Using this, clinicians could determine which patients would
benefit from PSA screening or in which patient group they
should have a low threshold of performing prostate biopsies.
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Currently, these risk associations, detected by GWAS studies,
are of limited clinical utility because the risk prediction is
based on comparing groups of people. This allows for patient
stratification into “risk groups,” having an x-fold greater PCa
risk relative to the population average. However, for the
clinician, it is of greater interest to be able to calculate a pati-
ent’s absolute risk to develop PCa at a certain given point
based on an individual’s information.

Evaluating the efficiency of detecting PCa using a model
based on family history, age, and genetic variation, Zheng
et al. suggested comparable efficiency in detecting PCa when
compared to the predictive power of PSA level cutoft of
4.1ng/mL (see Table1 for an overview of all SNPs cited in
this paper) [32]. At first sight, this would seem irrelevant,
since the efficiency of PSA testing itself is low. However, the
economic burden of genetic testing could potentially be much
lower, since this should only be determined once, whereas
PSA levels fluctuate over time and often require multiple
testing. The combined predictive performance of PSA plus
genetic testing on PCa diagnostics unfortunately did not
improve diagnostics once age, PSA level, and family history
were known [32, 33].

Indeed, it was argued that SNPs are not good at discrim-
inating cases from controls but might be of better use in
identifying men at high risk of PCa [34]. In light of this, Xu
et al. developed a prediction model of absolute risk for PCa
at a specific age based on the sum of 14 SNPs and family
history [35]. Using this model, one could identify a small
subset (0.5-1%) of individuals at very high risk (41% and 52%
absolute risk in a US and Swedish population) of developing
PCa between 55 and 74 years of age. Sun et al. studied the
performance of three sets of PCa risk SNPs in predicting
PCa, showing that they are efficient at discriminating men
who have a considerably elevated risk for PCa (a two- and
threefold increase when compared to the population median
risk) [36].

These risk predictions seem to have the highest impact
in young patients with a family history of PCa [37, 38]. This
seems logical, since one is born with a certain inheritable
subset of SNPs, which do not change throughout one’s life.
Therefore, it could be expected that their effects would
present in the earlier stages of life. Macinnis et al. developed a
risk prediction algorithm for familial PCa, using 26 common
variants, predicting the cumulative PCa risk depending on
family history (from incidental PCa to highly burdened PCa
families) and the number of SNPs (expressed in percentile of
a SNP profile) [38].

Generalized, the future role of SNP genotyping in PCa
screening seems to lie in detecting men at high risk of (aggres-
sive) disease. Men with a higher likelihood of (aggressive)
PCa may choose to begin PCa screening at an earlier age
and/or more frequently. They may also pursue preventative
measures, including diet/lifestyle intervention and chemo-
prevention.

It has been estimated that, when compared to age-specific
screening, personalized screening would result in 16% fewer
men being eligible for screening at a cost of 3% fewer screen-
detectable cases [39]. Importantly, SNPs can be determined
with high accuracy, at low cost and at any age, which make
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them attractive candidates to predict an individual’s risk for
PCa.

2.1.2. SNPs in Interpreting (Novel) Biomarkers Levels. SNP
genotyping can result in a risk prediction, that is, estimating
the likelihood of developing PCa. Currently, they have no
role as true diagnostic markers. However, as Klein et al. have
already stated, there might be other clinical uses for SNPs
[40]. Hypothetically, they could be used in combination with
PSA levels, increasing its predictive role [41, 42].

Furthermore, a profound knowledge on SNPs influencing
novel biomarker levels would be of great interest, since this
could play a crucial role in the interpretation of novel bio-
markers. Fundamental research has already identified mul-
tiple SNPs playing a role in expression and/or function of
hK2, f-MSP, TMPRSS2, and so forth [43-45], which could
potentially have an important impact on their interpretation.

Recent evidence has suggested that PSA levels are subject
to genetic variation as well, explaining 40-45% of variability
in PSA levels in the general population [46]. This variability
plays an important role in the low sensitivity and specificity
of PSA testing, because of which there is no generalizable
threshold at which men should undergo prostate biopsies.

Attempting to explain this variability, Gudmundsson et al.
detected six loci associated with PSA levels, of which four
had a combined relative effect on PSA level variation [47].
Other groups have validated this work. One group suggested
that genetic correction could influence the risk of PCa per
unit increased/decreased PSA [48]. Another group suggested
that genetic correction could alter the number of men with
an abnormal PSA (based on general biopsy thresholds),
preventing up to 15 to 20% of prostatic biopsies, in this way
reducing complications and costs and improving quality of
life [49].

With the exponentially increasing interest and develop-
ment of novel biomarkers in PCa, we should keep in mind
that SNPs can clearly alter biomarker levels, which is crucial
for correct interpretation. If these SNPs are not taken into
account, we could foresee similar obstacles as we are seeing
now with PSA testing.

2.2. Localized Disease. In treating localized PCa, defined
as NOMO disease [31], there are multiple viable treatment
options, each with its indications and contraindications.
Based on clinical stage of the disease, age, and comorbidities,
clinicians decide to enroll a patient in an active surveillance
program or to start active treatment.

2.2.1. Active Surveillance. Active surveillance (defined as
close monitoring of PSA levels combined with periodic ima-
ging and repeat biopsies) is currently the golden standard
for treating PCa with the lowest risk of cancer progression
(cT1-2a, PSA <10 ng/mL, biopsy Gleason score <6 (at least 10
cores), <2 positive biopsies, minimal biopsy core involvement
(< 50% cancer per biopsy)).

Although active surveillance has shown to be a viable
option with excellent survival rates, reported conversion rates
to active treatment range from 14% to 41%. This delayed
treatment, however, has no effect on survival rates [50].

BioMed Research International

Biomarker research in the “active surveillance group” should
therefore mainly focus on detecting high-risk disease with
high specificity, avoiding under- and overtreatment and
making prevention and early intervention possible. This topic
has already been discussed in the paragraph “early detection”
(see Section 2.1).

2.2.2. Active Therapy. As it has become clear that, in patients
with low-risk disease, active therapy can be delayed based on
active surveillance protocols, it is clear as well that therapy
is required in patients with intermediate and especially
in patients with high-risk disease, as defined by the EAU
guidelines.

In light of this, there are two large retrospective studies,
determining 15-year mortality rates in men with PCa treated
with noncurative intent. Firstly, Rider et al. found that PCa
mortality is low in all men diagnosed with localized low-
and intermediate-risk PCa. However, death rates are much
higher in all men with localized high-risk disease with a 31%
mortality rate [51]. Similar results were published by Akre
et al., who have shown that in men with locally advanced
PCa with a Gleason score of 7-10, where the PCa is managed
with noncurative intent, PCa-specific mortality rates range
between 41 and 64% [52].

Reported incidence rates of high-risk PCa vary between
17% and 31%, depending on how the disease was defined
[53]. After primary treatment, patients with high-risk PCa
have a higher risk of disease recurrence and progression,
requiring multimodality treatment [31]. Currently, the two
most established treatment options with curative intent are
surgery and radiotherapy, each with its obstacles.

Radical Prostatectomy. In treating patients with intermediate-
and high-risk PCa, radical prostatectomy can be curative
for some patients, whilst others need a multidisciplinary
approach. For clinicians, it is therefore of great interest to be
able to define a patient’s risk for persistence or relapse of dis-
ease before they start treatment. Based on these predictions,
clinicians could decide to start with or withhold from adju-
vant therapy, leading to a more personalized medicine.

At this moment, these predictions are based on nomo-
grams, integrating preoperative clinical parameters, optimiz-
ing their prognostic value [54-56]. However, current clinical
parameters still lack sufficient accuracy. Therefore, there is
an enormous interest in developing novel biomarkers to
optimize pretreatment risk stratification [57]. Regarding this,
SNPs are especially interesting, since their use avoids PCa
heterogeneity in a single specimen, limiting its pathological
parameter accuracy [58, 59]. Again, SNPs are not age-depe-
ndent and only need to be determined once, reducing patient
burden and costs.

Multiple groups have identified SNPs that might be
associated with higher rates of biochemical recurrence and/or
shorter periods of biochemical-recurrence-free survival after
radical prostatectomy. These polymorphisms are located in
genes involved in steroid hormone biotransformation [60-
62], immune response [63], Wnt [64] and IGF1 [65] signaling
pathways, and other genes associated with oncogenesis [66-
68]. However, conflicting results have already been reported
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by Bachman et al., who found that the AA genotype of
the 938 BCL2 promotor polymorphism was an independent
prognostic marker of relapse-free and overall survival in a
Caucasian patient group [69]. This contrasted with results
published by Hirata et al., who found the CC variant of the
same promotor to be predictive for biochemical recurrence
in a Japanese population [70].

Despite the numerous investigations on the role of SNPs
in predicting biochemical recurrence after radical prosta-
tectomy, only a few have been developed into a clinically
applicable model, integrating clinicopathological data and
genetic information [71, 72].

Radiotherapy. External beam radiotherapy (EBRT) is a sec-
ond treatment option with curative intent for localized PCa.
Currently, there is no solid evidence suggesting superiority of
surgery or radiotherapy over the other. With the development
of new techniques (IMRT, tomotherapy, and so forth) with
escalating radiation doses, there has been an increase in
patients being treated with EBRT for localized PCa.

Still, toxicities in neighboring normal tissues remain
the major limiting factor for delivering optimal tumoricidal
doses [73]. Normal-tissue radiation sensitivity mainly depe-
nds on treatment-related factors, which are defined as the
total irradiation dose, the fractionated regimen, the total
treatment time, and the irradiated volume. However, even
for similar or identical treatment protocols, the extent of
side effects shows substantial variation. This interindividual
variation can be explained by patient-related factors [74].

Since patients with higher rates of side effects show no
specific phenotypic trait, this suggests that subclinical genetic
variations could explain these interindividual differences.
Therefore, there has been an increasing interest in identifying
the role of genetic variation and SNPs on treatment efficacy
and normal-tissue radiosensitivity, termed “radiogenomics.”
Detecting these genetic variations could lead to the identifi-
cation of subgroups of patients at risk for developing severe
radiation-induced toxicity [75].

Based on a mechanistic understanding of the radiation
pathogenesis, there has been a major interest in under-
standing the role of genetic variation in genes involved in
DNA damage sensing (e.g., ATM), fibrogenesis (e.g., TGFBI),
oxidative stress (e.g., SODI1), and major DNA repair path-
ways (e.g., XRCCl, XRCC3, ERCC2, and MLHI), showing
conflicting results [73, 76-83]. Comparable studies have been
performed in patients treated with brachytherapy [84-88].

These results are of great interest, since long-term gen-
itourinary, sexual, and gastrointestinal quality of life are
major issues guiding decision making with respect to cura-
tive management of PCa. In 2012, Barnett et al. aimed to
prospectively validate SNPs which were at that time reported
to be associated with radiation toxicity in a population of 637
patients treated with radical prostate radiotherapy. Despite
previous evidence, none of the 92 investigated SNPs were
associated with late normal tissue toxicity [89].

2.3. Metastatic Prostate Cancer. Since androgens have a pivo-
tal role in the development of PCa, the androgen receptor
is the main target of systemic therapy for PCa. Androgen
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deprivation therapy (ADT) is the mainstay of treatment for
patients with metastatic PCa, of which chemical or surgical
castration is the first-line treatment. Because of comparable
efficacy between chemical and surgical castration, the latter
generally has been replaced by chemical castration [90-92].

2.3.1. Genetic Polymorphisms and ADT. Despite the effi-
ciency of hormonal therapy in metastatic disease, eventually
every patient will relapse, developing castration-resistant PCa
(CRPC) [93]. Clinicians use well-studied clinicopathologic
parameters (PSA kinetics and Gleason Score and so forth)
to predict which patients will not respond well to ADT
and which patients have poor prognosis [94-96]. Still, these
parameters are insufficient for prediction, which is suggested
by the recommendation of the EAU guidelines that LHRH
agonists should be continued, even in a castration-resistant
state [31]. In light of this, genetic markers could be an
attractive way to improve risk stratification, predicting which
patients will respond less to ADT and have poor prognosis,
warranting closer follow-up.

Ross et al. underlined the importance of pharmacoge-
nomics on an individuals’ response to ADT [97]. They asso-
ciated three SNPs located in/close to CYP19A1 (encodes for
aromatase, a key enzyme that converts testosterone to estro-
gen in men), HSD3BI (associated with PCa susceptibility)
[98], and HSD17B4 (overexpression associated with higher
Gleason grade) [99]. These SNPs were significantly associated
with time to progression, having an additive effect when
combined.

Later on, SNPs in multiple other loci have shown to be
correlated with earlier relapse in patients treated with ADT.
Currently known loci of interest are situated in the EGF
gene [100] (known to activate several prooncogenic signaling
pathways), in two androgen transporter genes (SLCO2B1 and
SLCO1B3) [101] and in the TGFSR2 gene. The latter codes for
areceptor involved in TGFf3 signaling pathway, playing a role
in carcinogenesis and tumor progression [102]. In contrast
to these, some SNPs associated with time to progression
under ADT, are located in genes of which the function is still
unknown [103].

Moreover, a Taiwanese group developed a DNA library
of 601 men with “advanced prostate cancer” treated with
ADT, in which they detected 5 SNPs that were correlated
with progression and 14 SNPs correlated with PCa-specific
mortality under ADT [104-107]. Bao et al. detected four SNPs
within miRNAs and miRNA target sites that were associated
with disease progression [104]. Furthermore, Huang et al.
systematically investigated 55 and 49 common SNPs in
androgen- and estrogen-receptor-binding sites, after which
they withheld one SNP (located in BNC2) which is correlated
with progression and 5 SNPs (located in ARRDC3, FLT1,
SKAP1, BNC2, and TACC2), which are correlated with PCa-
specific mortality [105, 106]. Finally, Huang et al. associated
a SNP in the BMP5 and IRS2 gene with survival [107]. The
latter encodes a member of a family of intracellular signaling
adaptor proteins that coordinate numerous biologically key
extracellular signals within the cell, including insulin-like
growth factor 1 (IGF1), of which the genotype seems to be
correlated with survival in metastatic PCa as well [108]. This
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only shows how complex and interwoven the clinical effects
of genetic variation can be.

Although these results are very interesting, it should be
noted that the investigated patient group is very hetero-
geneous. In this population with “advanced PCa,” tumor
characteristics show that 33% of patients have a Gleason score
ranging from 2 to 6 and 31.7% of patients have T1/T2 tumors.
Furthermore, the setting in which ADT was given was very
heterogeneous, ranging from ADT in neoadjuvant setting to
ADT for biochemical failure after radical prostatectomy. This
heterogeneity limits the interpretation of genetic variation in
clinical situations such as these.

Hypothetically, there are multiple potential clinical ben-
efits of SNP genotyping with respect to ADT therapy. Firstly,
it could play a prognostic role in identifying patients at high
risk of therapeutic failure. This could help identify a subset of
patients who may benefit from a more aggressive initial treat-
ment strategy than ADT alone, including combinations with
novel drugs [103]. Secondly, polymorphisms with functional
implications on enzyme activity could be targeted with novel
therapeutics, improving ADT efficacy [97].

2.3.2. Genetic Polymorphisms in the Castrate-Resistant PCa.
In the castrate-resistant setting, taxane-based chemotherapy
(docetaxel) has been the only treatment option for many
years, based on two multicenter phase III randomized clinical
trials, showing a moderate increase in overall survival [109,
110]. Over the last few years, numerous novel therapeutics
have been developed in this setting. However, equally many
questions regarding the optimal treatment regimen remain.
Clinical evidence showing superiority to one treatment
option over the other is severely lacking, keeping clinicians
in the dark on the optimal treatment.

When treatment with docetaxel is started, there is a high
variability in the clinical response [111]. Therefore, it would be
of great interest to be able to predict this response rate before
treatment is started. Based on this, the clinician could decide
to withhold from docetaxel as first-line treatment and choose
another treatment option.

Genetic variation in the CYP1BI gene has shown to pre-
dict outcome in CRPC patients receiving first-line docetaxel.
Pastina et al. showed that patients, carrying the CYP1B1 4326
GG genotype, had significantly shorter overall survival rates
when compared to patients carrying CYP1BI 4326 GC or
CC. Even after correcting for other risk factors (e.g., demo-
graphics, pathological, and biochemical characteristics), this
genotype remained an independent predictive parameter of
risk of death. This suggests that the 4326GG genotype might
be a good pharmacogenetic marker of lower prevalence of
response to docetaxel in CRPC patients [112]. It is suggested
that its role probably lies in the effect it has on the levels of
4-hydroxyestradiol, which is the major CYP1BI metabolite.
The metabolite interferes with the chemotherapy-induced
microtubule stabilization and structurally alters docetaxel
[113]. Another gene of interest is the ABCBI1 gene, which
is responsible for a large portion of the systemic efflux of
docetaxel. Within this gene, a combination of ABCBI 1236,
2677, and 3435 genotypes seems to be correlated with survival
in CRPC patients receiving docetaxel and time to developing
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neuropathy in patients receiving a combination of docetaxel
and thalidomide. The latter is probably due to cumulative
effects on toxicity [114].

With the growing number of new treatment options,
these results are very interesting for future clinical use.
Using these, clinicians could individualize treatment regi-
mens based on a patient’s genotype. Similarly, the role of SNPs
in predicting therapeutic efficacy of novel therapeutic agents
like abiraterone and enzalutamide awaits to be assessed.

3. Conclusions

Since the definition of the human genome, the basis for
genetic variations that can lead to individual risks for diseases
has become more and more clear. Genome-wide association
studies (GWAS) have defined groups of SNPs which partially
predict increased risk for PCa. As suggested in this review,
SNPs have a great potential in predicting patients’ risk for
PCa and/or therapy response, which could have an important
impact in every day clinic.

Although many authors have suggested that genetic
information can improve risk prediction and therefore be
useful in clinical practice, there are several studies showing
contradicting results, limiting their current clinical use. These
contradicting results could be explained by multiple reasons.
First, studies performed on small, heterogeneous populations
might result in high rates of false positive and negative
data. Secondly, most conducted studies are based on SNPs
which have been correlated with PCa in GWAS studies. Since
PCa phenotypes are probably determined by a spectrum
of genetic variation (ranging from highly penetrant to low
penetrant variations), with possible interdependencies of
SNPs, GWAS studies are probably not sufficient to develop
a full understanding of these variations in PCa.

Throughout this review, it has become clear that some
challenges still remain for translational research on the role
of SNPs in PCa. Firstly, clinical studies on SNPs should be
performed in well-powered studies, which could give more
conclusive results. Secondly, the important challenge for
further basic research is to identify the causative SNPs within
each linkage equilibrium. Hopefully, these SNPs will not
only function as predictors but also give clues to important
pathways in PCa development, which could be therapeutic
targets.

It will only be after the enrichment of GWAS data by
detailed SNP mapping and functional SNP testing that the
most relevant SNPs can be analyzed in clinical research. In
the future, we expect them to become critical to interpret
individualized PCa risk, interindividual biomarker variation,
and therapeutic response.
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