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ABSTRACT

The identification of transcription factor binding
motifs is important for the study of gene transcrip-
tional regulation. The chromatin immunopre-
cipitation (ChIP), followed by massive parallel
sequencing (ChIP-seq) experiments, provides an un-
precedented opportunity to discover binding motifs.
Computational methods have been developed to
identify motifs from ChIP-seq data, while at the
same time encountering several problems. For
example, existing methods are often not scalable
to the large number of sequences obtained from
ChIP-seq peak regions. Some methods heavily rely
on well-annotated motifs even though the number of
known motifs is limited. To simplify the problem, de
novo motif discovery methods often neglect
underrepresented motifs in ChIP-seq peak regions.
To address these issues, we developed a novel
approach called SIOMICS to de novo discover
motifs from ChIP-seq data. Tested on 13 ChIP-seq
data sets, SIOMICS identified motifs of many known
and new cofactors. Tested on 13 simulated random
data sets, SIOMICS discovered no motif in any
data set. Compared with two recently developed
methods for motif discovery, SIOMICS shows ad-
vantages in terms of speed, the number of known
cofactor motifs predicted in experimental data sets
and the number of false motifs predicted in ran-
dom data sets. The SIOMICS software is freely avail-
able at http://eecs.ucf.edu/�xiaoman/SIOMICS/
SIOMICS.html.

INTRODUCTION

Systematic discovery of transcription factor binding sites
(TFBSs) and binding motifs is crucial for the study of gene
transcriptional regulation (1). TFBSs are 6–14-bp-long

DNA segments that can be bound by transcription
factors (TFs) (2–4). A TF usually binds to similar
TFBSs. The pattern of the TFBSs bound by a TF is
called a motif, commonly represented as a position
weight matrix or a consensus sequence (5). The binding
of TFBSs by TFs can activate or repress the transcription
of genes near the TFBSs, and can thus modulate gene
expression (6). In eukaryotes, it is often the TFBSs of
multiple TFs in a short DNA region that determine the
temporal spatial expression pattern of a gene (6). The
short DNA regions of several hundred base pairs
long that contain TFBSs of multiple TFs are called cis-
regulatory modules (CRMs). Correspondingly, we define
a motif module as a group of TFs, with their TFBSs
co-occurring in significantly many CRMs. In other
words, a motif module has the TFBSs of all its motifs
co-occurring in at least a given number of sequences and
has a P-value of motif co-occurring smaller than a given
threshold. Because the possibility that a short DNA region
is a CRM of a motif module is much smaller than the
possibility that a short DNA segment is a TFBS of a
motif, the identification of TFBSs and motifs through
the identification of CRMs and motif modules is likely
less error-prone than that through the identification of
TFBSs of individual TFs (2,7,8).
The chromatin immunoprecipitation (ChIP) followed

by massive parallel sequencing (ChIP-seq) experiments
provides a great opportunity for computational identifica-
tion of TFBSs and motifs (1,9). ChIP-seq experiments can
define DNA regions that are enriched with TF binding
for a TF under a specific condition on the genome scale.
These DNA regions are often called ChIP-seq peak
regions. ChIP-seq peak regions, which are, on average,
several hundred base pairs long, can be identified from
ChIP-seq experiments through peak-calling algorithms
(10,11). Depending on the TF used for the ChIP-seq ex-
periments, there could be several hundreds to thousands
of peak regions defined in one ChIP-seq experiment.
Effective computational methods are necessary to system-
atically discover motifs and TFBSs of the TF and those of
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its cofactors. Here and in the rest of the paper, a cofactor
is a TF that regulates its target genes with the TF used to
do the ChIP-seq experiment.
Several computational methods identify motifs in top

ChIP-seq peak regions (12,13). Such type of approach is
likely to miss many potential motifs because TFBSs of
cofactors may only occur in some ChIP-seq peaks (14).
A few methods attempt to identify TFBSs and motifs in
all peak regions, by using known motifs to scan (extended)
ChIP-seq peak regions to identify significantly co-
occurring motifs (15,16). This type of approach has
achieved success in identifying motifs of certain cofactors
(15). Because current knowledge of known motifs is still
limited, these methods may miss TFBSs and motifs of
many cofactors. There are also methods for de novo dis-
covery of TFBSs and motifs in all peak regions from a
ChIP-seq experiment (14,17–19). Almost all of these types
of methods consider individual motifs separately. Note
that TFBSs of some cofactors may only occur in a small
number of peaks (14,20). Motifs of these cofactors may
thus be underrepresented in all peak regions from a ChIP-
seq experiment (statistically insignificant individually), as
shown in the following analyses. The currently available
de novo motif discovery methods may thus miss
motifs and TFBSs of many cofactors, especially these
underrepresented motifs and TFBSs.
Here we developed a novel computational approach

SIOMICS (systematic identification of motifs in Chip-
seq data) for de novo discovery of motifs and TFBSs
from all peak regions of a ChIP-seq experiment. Instead
of considering individual motifs separately, SIOMICS
simultaneously considers motif modules, i.e. combinations
of any number of motifs that co-occur in at least a prede-
fined number of peak regions and have P-value of statis-
tical significance smaller than a given threshold. In this
way, an individually underrepresented motif may be
overrepresented in all peak regions when this motif and
its cofactor motifs are considered as a group, and may
thus be identified by SIOMICS. Tested on 13 ChIP-seq
data sets, SIOMICS identified many known motifs, new
motifs and their TFBSs. Tested on 13 simulated random
data sets that were obtained by permuting the experimen-
tal sequence data, SIOMICS did not predict any motif.
Compared with two recent methods, Dreme (14) and
Peak-motifs (18), SIOMICS identified more known
cofactor motifs in ChIP-seq data sets and the same or
fewer motifs in random data sets, and had a comparable
or better time efficiency.

MATERIALS AND METHODS

ChIP-seq experimental data and simulated data

We obtained ChIP-seq data for 13 TFs from Chen et al.
(21), which were widely used as the benchmark data sets
for evaluating motif identification methods (14,18). We
first downloaded the mapped reads from GSE11431 in
the Gene Expression Omnibus database (22). We then
defined ChIP-seq peaks for each data set using the peak-
calling software Model-based Analysis of ChIP-Seq
(MACS) (11). Finally, we obtained the repeat-masked

DNA sequences for the defined peak regions of each TF
using the University of California, Santa Cruz genome
browser (23). During this step, to enable TFBSs of more
cofactors to be considered, we extended the peaks equally
on the two sides of each peak region such that each
extended peak region is at least 800-bp long. With these
experimental sequence data sets, we obtained 13 simulated
data sets by permuting nucleotide positions in every
obtained sequence in each data set. In brief, for a given
sequence, say it is n-bp long, we randomly generated a
permutation of (1, 2, 3, . . . , n), say (a1, a2, . . . , an). We
then moved the ith nucleotide in this sequence to the
aith position of the new sequence, for i from 1 to n. In
this way, we obtained a new sequence. We repeated this
process for every sequence in each data set, using an in-
dependent permutation each time, to generate a random
data set.

Generation of motif candidates

SIOMICS identifies motifs by simultaneously considering
multiple motifs corresponding to a TF and its cofactors.
Because the majority of motifs are unknown (4),
SIOMICS first obtains motif candidates and then con-
siders the co-occurrence of the motif candidates to
define final putative motifs. To generate motif candidates,
SIOMICS uses k-mers (k-bp-long DNA segments) in
input sequences in a ChIP-seq data set. Here, k=8 was
used in the following analyses because an 8-mer can
already account for an essential portion of a motif that
is commonly 6–14-bp long (4). For each k-mer occurring
in input sequences, SIOMICS defines it as a k-mer motif
candidate by assuming all k-mers in input sequences that
are different from this k-mer at most at one position as its
TFBSs. SIOMICS then ranks motif candidates in a ChIP-
seq data set by the following score schema used previously
(24), from the one with the largest score to the one with
the smallest score:

Score ¼
logðxmÞ

k

"Xk
i¼1

XT
j¼A

pij log pij

�
1

xm

X
all its TFBSs

logðp0ðsÞ Þ

#
:

Here xm is the number of TFBSs of a motif candidate, pij
is the frequency of the nucleotide j at position i of the
motif candidate and p0ðsÞ is the probability of generating
TFBSs based on background nucleotide frequencies.
Other score schemas (25,26) have also been tested and
do not change the results significantly, which may be
due to the fact that final motifs are obtained based on
the significance of motif modules instead of that of the
individual motifs. Because many motif candidates may
be highly similar to each other, SIOMICS removes redun-
dant candidates with lower ranks such that the consensus
sequence of a remaining candidate is different from that of
other remaining candidates at least at two positions. All
remaining motif candidates are used in the following to
identify putative motifs.
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Putative motif identification by SIOMICS

With the motif candidates, SIOMICS modifies a frequent
pattern mining approach (3,15) to discover motifs through
the identification of motif modules. The basic idea is to
represent motif candidates as nodes in a tree such that
more frequent candidates are represented at top level
(close to the root) and each branch represents the co-
occurrence of a group of candidates in one or multiple
sequences. Next, an idea similar to the conditional prob-
ability is applied to discover groups of co-occurring motif
candidates that contain a specific candidate and have their
TFBSs co-occurring in at least s input sequences (3,15).
We called s the support of a group of motif candidates.
Finally, a Poisson clumping heuristic strategy (27,28) is im-
plemented to measure the significance of each obtained
group of co-occurring motif candidates and output motif
modules. The basic idea of this significance calculation is
to approximate the occurrence of each motif candidate in
sequences by an independent Poisson process and measure
how likely we will observe a group of candidates co-
occurring in x input sequences, where x� s (28). So a
motif module predicted by SIOMICS is a group of motif
candidates with their TFBSs co-occurring in at least
s input sequences and with the multiple comparison-
corrected P-value of co-occurrence smaller than a signifi-
cance cutoff. The motif candidates in these predicted motif
modules are output as the final putative motifs.

Because of the large number of input sequences, the
number of motif candidates obtained above can be
large. To deal with the potential large number of motif
candidates above and minimize the time cost, SIOMICS
applies the following strategy to discover motifs
(Figure 1). In brief, with a user-specified maximal
number of motifs to be identified, say m, first, SIOMICS
considers the top m motif candidates to discover motif
modules. Assume there are m1 distinct motif candidates
included in the predicted motif modules. SIOMICS
outputs these m1 candidates as putative motifs. Next,
SIOMICS iteratively identifies other candidates that
form motif modules with the identified putative motifs,
by considering different groups of m motif candidates
each time. Each group of m candidates always includes
all putative motifs discovered so far. Finally, if m
putative motifs are predicted or no new putative motifs
are identified after a certain number of iterations, say r
iterations, SIOMICS reports all predicted putative motifs,
motif modules and TFBSs and stop. See the following
algorithm for details.

Algorithm: iterative identification of motifs
Input: ChIP-seq sequences, ranked motif candidates, m, r, s
Output: motifs, motif modules and TFBSs.
Procedure:
1. (Initialization) set iteration=0.
2a. (Prediction phase)

Discover motifs and motif modules with the top m
motif candidates by the above frequent pattern
mining approach, with the support s. Output the m1

motifs included in the predicted motif modules.

2b. Iteration++.
3. (Updating phase)

If (m1<m) and (iteration <r)

Choose a new set of top m motif candidates that
includes the m1-predicted motifs in the predic-
tion phase and the next (m-m1) ranked top
motif candidates that have not been considered
with the m1-predicted motifs. Go back to 2a.

Else

Output predicted motifs, motif modules, TFBSs
from the current prediction phase.

Cofactors of 13 TF

We obtained known cofactors of the 13 TFs in two ways.
One was to extract all cofactors mentioned in (14), which
used the 13 TFs and their cofactors. The other was to
obtain all interacting TFs for each of the 13 TFs from
the BioGRID database (29), and then confirm each TF
by literature search, if they were predicted as a cofactor by
any of the three software: SIOMICS, Dreme and Peak-
motifs (Supplementary Table S1).

Comparisons of predicted motifs with known motifs

For the predicted motifs, we compared them with known
motifs in two public databases, TRANSFAC V11.3 (4)
and JASPAR 2010 (30). We applied the STAMP tool
(31) with two E-value cutoffs used in previous studies
(7,8), 1E-4 and 1E-5, for the comparisons of predicted
motifs with known motifs.

RESULTS

SIOMICS identifies known and new motifs in each
ChIP-seq data set

We applied SIOMICS with the default parameters to iden-
tify motifs in the 13 ChIP-seq data sets and 13 random
data sets. The command used is as follows: python
SIOMICS.py -i seq_fasta -o output_directory -w 8 -m
100 -s 1%*n -r 20 -c 0.01, which means to discover at
most 100 motifs of length 8 contained in motif modules
that occur in at least 1% of the n peak regions, with the
motif module P-value cutoff of 0.01 and the iteration
number of 20 to stop. Here, n is the total number of
input sequences, and the parameter s specifies the
required minimum number of sequences containing
putative TFBSs of all motifs in a motif module. That is,
each predicted motif module has TFBSs of all its motifs
co-occur in at least s input sequences. SIOMICS identified
>21 known and new motifs in each ChIP-seq data set. In
addition, SIOMICS predicted no motif in any random
data set, representing a high specificity (Table 1).
SIOMICS identified many known motifs in each ChIP-

seq data set. Compared with the known motifs in the
TRANSFAC and JASPAR databases (4,30), in each
data set, >76.0% of the predicted motifs are similar to
known motifs, demonstrating that the predicted motifs
by SIOMICS are likely to be biologically meaningful
instead of arbitrary 8-mer patterns (Table 1). On
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average, in each data set, >62.9% of motifs corresponding
to the known cofactors of the TF under consideration are
predicted by SIOMICS. Take the Nanog data set as an
example. SIOMICS identified the Nanog motif in this data
set, which occurs in 5.8% of peak regions. In addition,
SIOMICS identified six motifs for TFs Sox2, Oct4, Zic3,

Klf4, Elf5 and Tead1, all of which are known to cooperate
with Nanog to regulate their target genes (Supplementary
Table S1). Note that the Zic3 and Elf5 TFBSs occur only
in 4.5% and 5.2% of peaks, respectively, and are individu-
ally not statistically significant enough to be identified
if we take the multiple comparisons into account.

Figure 1. The procedure in SIOMICS.

Table 1. Predicted motifs by SIOMICS in 13 ChIP-seq data sets and 13 random data sets

Data set Number
of peaks

Number of
predicted
motifs

Number of
predicted
motif modules

Percentage motifs
similar to known
motifs (Evalue< 1E-5)

Percentage motifs
similar to known
motifs (Evalue< 1E-4)

Percentage motifs
not in original 100

Number of
motifs
predicted in
random data
sets

Sox2 7761 99 889 78/99=78.8% 96/99=97.0% 51/99=51.5% 0
E2f1 20 670 99 2510 79/99=79.8% 94/99=94.9% 55/99=55.6% 0
Stat3 5347 91 1256 72/91=79.1% 85/91=93.4% 39/91=42.9% 0
Nanog 17 834 99 1131 76/99=76.8% 96/99=97.0% 58/99=58.6% 0
Oct4 6915 73 719 64/73=87.7% 69/73=94.5% 42/73=45.2% 0
c-Myc 6462 96 1901 74/96=77.1% 94/96=97.9% 77/96=80.2% 0
Klf4 18 144 99 2052 83/99=83.8% 96/99=97.0% 52/99=52.5% 0
Ctcf 49 114 99 784 78/99=78.8% 94/99=94.9% 38/99=38.4% 0
Zfx 17 201 98 1945 75/98=76.5% 93/98=94.9% 76/98=77.6% 0
Tcfcp2l1 45 885 71 782 55/71=77.5% 68/71=95.8% 41/71=57.8% 0
Esrrb 49 127 43 308 35/43=81.4% 41/43=95.3% 30/43=69.8% 0
n-Myc 10 987 94 1766 72/94=76.6% 91/94=96.8% 80/94=85.1% 0
Smad1 2185 21 33 21/21=100% 21/21=100% 16/21=76.2% 0
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Because SIOMICS considers multiple motifs simultan-
eously, it identifies these individually insignificant motifs.
For this data set, SIOMICS identified motifs of seven out
of eight known cofactors, demonstrating the success of
the systematic discovery motifs in ChIP-seq data by
SIOMICS. The only motif missed by SIOMICS is the
Essrb motif, which is similar to one of the predicted
motifs in this data set, did not satisfy the required
STAMP E-value cutoff when comparing similarity of the
predicted motifs with known motifs.

In addition to motifs corresponding to known cofac-
tors, SIOMICS also identified motifs of potential new co-
factors. For instance, SIOMICS identified a motif TTTTA
AAA in three data sets (Sox2, E2f1 and Nanog). In each
data set, this motif forms a motif module with the same
two motifs GAAAGAAA and CAAAACAA, corres-
ponding to the TFs Hsf (STAMP E-value: 5.3E-06) and
Fox (STAMP E-value 2.5E-05), respectively. Hsf has been
shown to interact with Fox (32), and Fox has the function
‘regulation of RNA splicing’ (33). Consistently, we found
that the closest genes to the peak regions containing TFBS
of all motifs in this motif module (potential target genes of
this motif module) significantly share the same gene
ontology term: regulation of RNA splicing (corrected
P-value: 0.0052). Thus, it is likely that the unknown TF
corresponding to this new motif may play an important
role in regulation of RNA splicing together with Hsf
and Fox.

To show that SIOMICS can identify motifs that may be
underrepresented in all peak regions, we checked the per-
centage of predicted motifs that were not from the original
top 100 motif candidates. As mentioned above, motif can-
didates were ranked according to their individual statis-
tical significance, from the most significant ones to the
least significant ones. We found that on average >60%
of predicted motifs were from candidates that were
ranked higher than 100, implying that many individually
insignificant motifs may play important functional roles
(Table 1). It also indicates that considering individual
motifs separately in motif discovery may miss many func-
tional motifs. For instance, in the Oct4 data set, SIOMICS

identified a motif M67 with motif consensus TCCACCC
C, which is insignificant by itself (corrected P=1).
However, this motif M67 is similar to the motif of the
TF Zic2 (NACCACCC, STAMP E-value 1.7E-6), and
Zic2 is a known cofactor of Oct4 (34).

SIOMICS identifies meaningful motif modules in each
ChIP-seq data set

SIOMICS discovered a large number of motif modules in
each ChIP-seq data set and no motif module in any
random data set (Table 1). The number of motifs is
from 2 to 4 in a motif module, with the average of 2.15
motifs per motif module. We investigated the functions of
the predicted motif modules and found that at least 51.5%
(65.2% on average) of motif modules in a data set are
partially supported by at least one source of functional
evidence.
First, we focused on the predicted motifs that are

similar to known motifs to see whether TFs corresponding
to their similar known motifs interact. We collected
648 491 known interacting TF pairs from the BioGRID
database (29). For each data set, we then examined
whether motifs of these interacting TF pairs are signifi-
cantly enriched in the predicted motif modules. We
found that the corrected P-value of known interacting
TF pair enrichment in the predicted motif modules in all
13 data sets is smaller than 1E-10 (Table 2, columns 2 and
3), suggesting TFs corresponding to motifs in the same
motif module do interact with each other.
Next, we investigated whether a motif module was pre-

dicted in multiple data sets. Because the majority of peak
regions in the 13 data sets do not overlap with each other,
the repeated prediction of a motif module in different data
sets implies the functionality of this motif module. For
each data set, we found a large number of predicted
motif modules were shared in at least two data sets
(Table 2). We provided an example of a motif module
consisting of an unknown motif together with the motifs
of the interacting TFs Hsf and Fox above. Here is another
example. The motif module composed of three motifs, CC
TTCCTG, CAAAACAA and CTGCTGGG, was found

Table 2. Predicted motif modules are supported

Data set Motif modules
contain at least a pair
of interacting TF pairs
from BioGRID

P-value of
Enrichment
of TF pairs
from BioGRID

Shared motif modules
across data sets

Motif modules with
preferred motif order
(corrected P-value< 0.05)

Motif modules supported
by at least one type of
evidence

Sox2 343/889=38.6% 0 261/889=29.4% 208/889=23.4% 582/889=65.6%
E2f1 1373/2510=54.7% 0 408/2510=16.3% 1452/2510=57.8% 2039/2510=81.2%
Stat3 469/1256=37.3% 0 289/1256=23.0% 244/1256=19.4% 755/1256=60%
Nanog 348/1131=30.8% 0 273/1131=24.13% 428/1131=37.8% 712/1131=62.3%
Oct4 254/719=35.3% 2.2E-271 110/719=15.3% 179/719=24.9% 406/719=56.6%
c-Myc 715/1901=37.6% 0 331/1901=17.4% 506/1901=26.6% 1166/1901=61.3%
Klf4 955/2052=46.5% 0 357/2052=17.4% 1044/2052=50.8% 1517/2052=73.4%
Ctcf 299/784=38.2% 0 181/784=23.1% 402/784=51.3% 584/784=74.5%
Zfx 535/1945=27.5% 0 321/1945=16.5% 762/1945=39.2% 1207/1945=62.1%
Tcfcp2l1 169/782=21.6% 8.8E-136 154/782=19.7% 345/782=44.1% 495/782=63.3%
Esrrb 105/308=34.1% 3.2E-106 51/308=16.6% 125/308=40.6% 204/308=66.2%
n-Myc 807/1766=45.7% 0 311/1766=17.6% 723/1766=40.1% 1249/1766=70.1%
Smad1 11/33=33.3% 4.8E-12 9/33=27.3% 3/33=9.1% 17/33=51.5%
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in the Stat3 and E2f1 data sets, which are similar to the
Stat3 motif (STAMP E-value 4.7E-8), the Sox2 motif
(STAMP E-value 4.2E-6) and the Ctcf motif (STAMP
E-value 2.2E-4), respectively. The interaction between
Stat3 and Sox2 was reported previously (35). Sox2 was
also shown to be co-working with Ctcf (36). In addition
to the interactions of Stat3, Sox2 and Ctcf, the three TFs
also share similar functions. For instance, Stat3 has the
function related to system development (37). So does Sox2
(38). By analyzing the closest genes to peak regions con-
taining TFBSs of all motifs in this motif module, we found
that these genes significantly share the function ‘system
development’ (multiple comparison corrected P=0.03).
The functions of the TFs in this motif module are thus
consistent with the functions of these closest genes. All
these observations on the TF interactions, the TF func-
tional similarity and the function consistency of the TFs
and the closest genes support the functionality of this
motif module.
Finally, we examined the relative order of the TFBSs of

a pair of motifs in every predicted motif module. The ra-
tionale is that if a motif pair has its TFBSs in certain
preferred order in peak regions, TFs corresponding to
this motif pair likely interact and the motif module may
thus be biologically meaningful. Similar to our previous
study (3), for a given motif pair in a motif module, we
counted in how many peaks the preferred order occurs
and then assessed the significance by a binomial test. We
found that at least 9.1% of motif modules (or 35.8% on
average) have TFBSs of at least a pair of motifs with
preferred order of occurrence in ChIP-seq peak regions
in each data set, after multiple comparison correction to
define the preferred motif orders (Table 2). For instance,
in the aforementioned example about the interacting TFs
Hsf and Fox, we find that TFBSs of Hsf prefer to bind to
the downstream of TFBSs of the Fox motif (corrected
P-value 2.47E-12). The two TFs have been shown to
interact (32).

Comparison with Dreme and Peak-motifs

We compared SIOMICS with Dreme and Peak-motifs on
the 13 ChIP-seq data sets and 13 random data sets. We
used the above default parameters for SIOMICS to output
at most 100 motifs. For Dreme and Peak-motifs, we
used the following commands to output at most 100
motifs as well: python dreme.py -P <input_seq> -m 100
-o <output directory>; peaks-motifs -i <input_seq>
-prefix peak_motifs -nmotifs 100 -outdir <output direc-
tory>. SIOMICS showed advantages over the two
methods in terms of speed and the number of predicted
motifs in experimental and random data sets.
We first compared the sensitivity of SIOMICS with that

of Dreme and Peak-motifs based on known cofactors of
each TF (Table 3). In 11 of the 13 ChIP-seq data sets,
SIOMICS did better than, or at least the same as,
Dreme. Only in the Klf4 and Esrrb data sets, Dreme pre-
dicted motifs of more known cofactors. Similarly, in 12 of
the 13 data sets, SIOMICS did at least the same as Peak-
motifs. Only in the Esrrb data set, Peak-motifs predicted
motifs of more known cofactors. To see whether

SIOMICS can identify motifs of more cofactors in the
Klf4 and Esrrb data sets, we applied SIOMICS to
predict motif modules that occur in at least 0.5% of the
peak regions instead of the default 1% of the peak regions:
SIOMICS identified 2 and 3 motifs of more cofactors in
the Klf4 and Esrrb data sets, respectively. For instance,
SIOMICS did not identify Stat3, Sox2 and Ewsr1 in the
Esrrb data set at the default 1% cutoff, but identified these
motifs when the cutoff 0.5% was used.

We next compared SIOMICS with Dreme and Peak-
motifs based on shared motifs predicted by the three
methods. This is because we currently have limited know-
ledge of cofactors of a TF, and thus the above comparison
of known cofactors may be limited. In addition, if a motif
is predicted by at least two of the three independent
methods, this motif may be a true motif. To determine
whether two predicted motifs by two methods are
similar, we required their STAMP comparison E-value
be smaller than 1E-5, a more stringent cutoff used in
previous studies (7,8). We found that for every data set,
SIOMICS predicted much more shared motifs than both
Dreme and Peak-motifs (Supplementary Table S2).
Because Dreme and Peak-motifs discover one motif at
one time, this comparison implies the advantage of con-
sidering multiple motifs simultaneously instead of individ-
ual motifs separately.

We then compared the specificity of the three methods
on 13 random data sets (Supplementary Table S3).
Because these random data sets were obtained by
permuting ChIP-seq peak sequences, they represent se-
quences with no biological meaning and thus are
expected to contain no motif. SIOMICS and Dreme pre-
dicted no motif in any of these data sets. The fact that no
motif was predicted by SIOMICS indicates the small false-
positive rate can be achieved by simultaneously consider-
ing multiple motifs. Although Dreme considers individual
motifs separately, it compares the occurrence of a pattern
in a ChIP-seq sequence data set and that in the corres-
ponding permuted data set (14), which also reduces the
false-positive rate here. We also found that, on average,
Peak-motifs identified 8.62 motifs in a random data set
(Supplementary Table S3). We observed that the five
data sets with the largest sizes have the larger number of
predicted positives by Peak-motifs, which, at least par-
tially, suggests better false-positive control strategies in
large data sets by SIOMICS and Dreme.

Finally, we compared the speed of the three methods
to discover motifs in the 13 ChIP-seq data sets
(Supplementary Table S4). All comparisons were done
on the same computer with the following configuration:
Intel � CoreTM 2 Duo CPU E7500 @ 2.93GHz and 4G
RAM. We found that Peak-motif is �1.43 times faster
than SIOMICS, which is 15 times faster than Dreme
(median). In addition, when the data set size is small,
such as several thousand sequences, the speed difference
of SIOMICS and Peak-motifs is large (around three
times); when the data set size is large, the speed difference
of the two methods is small (around one time). On the
contrary, when the data set size is large, the difference
of the speed of SIOMICS and that of Dreme is large
(>15 times); when the data set size is small, the speed
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difference of SIOMICS and Dreme is small (around five
times for 5347 peaks). These observations demonstrate the
efficiency of SIOMICS in dealing with large data sets
(Figure 2). It also implies that when the number of
peaks in a ChIP-seq experiment is large, SIOMICS will
not only predict motifs of more cofactors than the other
two methods, but also have the time efficiency advantage
compared with the two methods.

DISCUSSION

We developed a novel approach SIOMICS to systematic-
ally discover motifs and TFBSs from ChIP-seq data.
Different from available methods, SIOMICS does not
depend on limited information of known motifs and sim-
ultaneously considers multiple motifs. Tested on experi-
mental and simulated data, we show that SIOMICS
identifies motifs of more known cofactors and identifies
more shared motifs in the experimental data. At the same
time, SIOMICS has a low false-positive rate when tested
in the simulated data. In addition, we show SIOMICS is
as fast as other methods, especially when the ChIP-seq
data sets are large. Thus, SIOMICS is a useful alternative
method for motif discovery.
We applied SIOMICS on the extended 800-bp-long

sequence around the central ChIP-seq peak regions. This
is because the central peak regions may not always contain
the TFBSs of a cofactor. For instance, for the E2f1 data
set, if we only considered the central peak regions defined
by the MACS software (11), we could have missed the
motif of the E2f1 cofactor, Tbp. In the extended E2f1
ChIP-seq peak sequences, SIOMICS identified Tbp
as the cofactor of E2f1 (STAMP E-value 1.77E-07).
A critical question is how long we should extend the
peak regions. Our experience suggests extension of the
central peaks such that each peak is at least 800-bp long
is a good choice. In fact, it has been shown that the
majority CRMs are shorter than 800 bp (2,3).
In addition to Dreme and Peak-motifs, we also

compared SIOMICS with CPModule (16) and
CisModule (39). CPModule discovers motif modules
using known motifs. Note that one reason that
SIOMICS was developed is that the number of known
motifs is limited. Even with the same set of known
motifs as input, SIOMICS predicted more known
cofactor motifs within a shorter time in most of the 13
ChIP-seq data sets (Supplementary file S5). CisModule,
a classical de novo CRM discovery method, was not de-
veloped for the ChIP-seq data analysis. Thus, we
compared it with SIOMICS on sequences from the top
100 peak regions in each ChIP-seq data set. We found
that SIOMICS identified more cofactor motifs and was
much faster than CisModule (Supplementary File S6).
Users can tune several parameters in the SIOMICS

software to optimize the results. The first one is the
motif length w. We recommend use w=8. The second
parameter is the support parameter s, which is the
minimum number of sequences a motif module needs to
occur. We used 1% of the number of input sequences in a
data set as the default s, for the speed of the tool.T

a
b
le

3
.
C
o
m
p
a
ri
so
n
o
f
th
re
e
m
et
h
o
d
s
o
n
p
re
d
ic
ti
o
n
o
f
k
n
o
w
n
co
fa
ct
o
r
m
o
ti
fs

T
F

K
n
o
w
n
m
o
ti
fs

fo
u
n
d
(p
ri
m
a
ry

a
n
d
co
fa
ct
o
rs
)
E
-v
a
lu
e
cu
to
ff

E
-4

S
IO

M
IC

S
D
R
E
M
E

P
ea
k
-m

o
ti
fs

S
o
x
2

8
/9

(S
o
x
2
,K

lf
4
,
S
ta
t3
,
Z
ic
3
,
H
o
x
a
5
,
T
cf
3
,
T
ea
d
1
,O

ct
4
)

8
/9

(S
o
x
2
,
O
ct
4
,
K
lf
4
,
S
ta
t3
,E
sr
rb
,
Z
ic
3
,
T
cf
3
,
T
ea
d
1
)

4
/9

(S
o
x
2
,O

ct
4
,
K
lf
4
,
E
sr
rb
)

E
2
f1

7
/1
0
(E
2
f1
,S
ta
t3
,
K
lf
4
,
F
o
x
,
S
p
1
,
N
fk
b
1
,
T
b
p
)

6
/1
0
(E
2
f1
,S
ta
t3
,
M
y
c,

K
lf
4
,
C
re
b
,
S
p
1
)

3
/1
0
(K

lf
4
,
C
re
b
,
S
p
1
)

S
ta
t3

6
/8

(S
ta
t3
,K

lf
4
,
S
o
x
2
,
M
y
c,

S
p
1
,
Ir
f)

6
/8

(S
ta
t3
,K

lf
4
,
E
sr
rb
,
S
o
x
2
,
M
y
c,
S
p
1
)

6
/8

(S
ta
t3
,K

lf
4
,
S
o
x
2
,
E
sr
rb
,
M
y
c,

S
p
1
)

N
a
n
o
g

7
/8

(N
a
n
o
g
,S
o
x
2
,O

ct
4
,
Z
ic
3
,
K
lf
4
,
E
lf
5
,
T
ea
d
1
)

4
/8

(N
a
n
o
g
,S
o
x
2
,
K
lf
4
,
E
sr
rb
)

4
/8

(S
o
x
2
,
O
ct
4
,
K
lf
4
,
E
sr
rb
)

O
ct
4

8
/1
0
(O

ct
4
,S
o
x
2
,
K
lf
4
,
S
o
x
1
0
,
E
w
sr
1
,
N
a
n
o
g
,
Z
ic
2
,
E
sr
rb
)

7
/1
0
(O

ct
4
,S
o
x
2
,
K
lf
4
,
E
sr
rb
,
S
o
x
1
0
,
E
w
sr
1
,
N
a
n
o
g
)

5
/1
0
(O

ct
4
,K

lf
4
,C
re
b
,
E
sr
rb
,
S
o
x
1
0
)

c-
M
y
c

3
/4

(S
ta
t3
,
E
g
r1
,
S
p
1
)

3
/4

(c
-M

y
c,
S
ta
t3
,
S
p
1
)

3
/4

(c
-M

y
c,
E
g
r1
,
S
p
1
)

K
lf
4

4
/1
0
(K

lf
4
,S
ta
t3
,
S
o
x
2
,
S
p
1
)

6
/1
0
(K

lf
4
,S
ta
t3
,E
sr
rb
,
S
o
x
2
,
S
p
1
,
M
y
c)

3
/1
0
(K

lf
4
,S
ta
t3
,
S
p
1
)

C
tc
f

5
/6

(C
tc
f,
S
ta
t3
,G

a
b
p
a
,
Y
y
1
,
S
m
a
d
3
)

4
/6

(C
tc
f,
S
ta
t3
,G

a
b
p
a
,
S
m
a
d
3
)

2
/6

(C
tc
f,
M
y
c)

Z
fx

2
/4

(Z
fx
,S
ta
t3
)

2
/4

(Z
fx
,S
ta
t3
)

2
/4

(Z
fx
,S
ta
t3
)

T
cf
cp
2
l1

7
/1
2
(T
cf
cp
2
l1
,S
ta
t3
,K

lf
4
,
so
x
2
,
E
sr
rb
,
F
o
x
,
S
p
1
)

6
/1
2
(T
cf
cp
2
l1
,S
ta
t3
,
K
lf
4
,
E
sr
rb
,
F
o
x
,
S
p
1
)

5
/1
2
(K

lf
4
,
E
sr
rb
,
E
g
r1
,
F
o
x
,
S
p
1
)

E
sr
rb

4
/1
0
(E
sr
rb
,K

lf
4
,
R
x
ra
,
S
p
1
)

8
/1
0
(E
sr
rb
,K

lf
4
,
S
o
x
2
,
S
ta
t3
,
M
y
c,

R
x
ra
,
E
w
sr
1
,
S
p
1
)

5
/1
0
(E
sr
rb
,K

lf
4
,
S
ta
t3
,
R
x
ra
,
S
p
1
)

n
-M

y
c

2
/5

(S
ta
t3
,C
re
b
)

2
/5

(n
-M

y
c,
S
ta
t3
)

1
/5

(n
-M

y
c)

S
m
a
d
1

5
/9

(S
o
x
2
,
O
ct
4
,
E
sr
rb
,
K
lf
4
,
S
ta
t3
)

4
/9

(S
o
x
2
,
E
sr
rb
,
K
lf
4
,
S
ta
t3
)

4
/9

(S
o
x
2
,E
sr
rb
,
Z
ic
3
,
K
lf
4
)

PAGE 7 OF 9 Nucleic Acids Research, 2014, Vol. 42, No. 5 e35

5 
is 
shown
false 
shown 
thus 
 base pairs long
 base pairs
base pairs
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1288/-/DC1
W
thus 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1288/-/DC1
f
the 


The smaller the s is, the more motifs and motif modules
may be predicted. Note that if the number of the input
sequences is small (<100), we recommend setting s to be at
least 2. The third parameter is the number of motif can-
didates considered in an iteration of motif module discov-
ery, the parameter m. Users can increase m if �100 motifs
are predicted, as what was shown in several data sets such
as the Sox2 and E2f1 data sets (Table 1). We kept m=100
for the convenience of the comparisons with other
methods. We also tried m=150 for several data sets
and obtained more motifs of known cofactors. For
instance, in the Klf4 data set, we identified the motif
of an additional Klf4 cofactor Tp53 (STAMP E-value
1.7E-05) (40), which was not discovered with m=100.
With the input parameters, SIOMICS will output at

most m motifs. We believe these motifs are meaningful
because of the high sensitivity suggested in Table 3 and
the high specificity implied by the fact of no prediction in
random data sets. We sorted the predicted motifs from the
most reliable ones to the least reliable ones in the output
motif files (with a suffix name.otifs). We recommend users
take the P-values of motif modules containing a motif and
the number of motif modules containing this motif into
account when assessing its biological meaning.
In summary, we developed a novel method for de novo

systematic discovery of motifs in ChIP-seq data. This
method is shown to predict motifs of more known cofac-
tors than available methods and has comparable speed as
the fastest method, especially on large data sets. The tool
implementing the developed method, SIOMICS, is freely
available at http://www.cs.ucf.edu/�xiaoman/SIOMICS/
SIOMICS.html.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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