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ABSTRACT

Replication Protein A (RPA) is a heterotrimeric
protein complex that binds single-stranded DNA.
In plants, multiple genes encode the three RPA
subunits (RPA1, RPA2 and RPA3), including five
RPA1-like genes in Arabidopsis. Phylogenetic
analysis suggests two distinct groups composed
of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B,
RPA1D (BD group). ACE-group members are tran-
scriptionally induced by ionizing radiation, while
BD-group members show higher basal transcription
and are not induced by ionizing radiation. Analysis
of rpa1 T-DNA insertion mutants demonstrates that
although each mutant line is likely null, all mutant
lines are viable and display normal vegetative
growth. The rpa1c and rpa1e single mutants
however display hypersensitivity to ionizing radi-
ation, and combination of rpa1c and rpa1e results
in additive hypersensitivity to a variety of DNA
damaging agents. Combination of the partially
sterile rpa1a with rpa1c results in complete sterility,
incomplete synapsis and meiotic chromosome
fragmentation, suggesting an early role for
RPA1C in promoting homologous recombination.
Combination of either rpa1c and/or rpa1e with atr
revealed additive hypersensitivity phenotypes con-
sistent with each functioning in unique repair
pathways. In contrast, rpa1b rpa1d double mutant
plants display slow growth and developmental
defects under non-damaging conditions. We show
these defects in the rpa1b rpa1d mutant are likely
the result of defective DNA replication leading to
reduction in cell division.

INTRODUCTION

Replication Protein A (RPA) is a eukaryotic, single-
stranded DNA (ssDNA)-binding protein composed of
three associated subunits, RPA1 (�70 kDa), RPA2
(�32 kDa) and RPA3 (�14 kDa). The primary biochem-
ical function of the heterotrimeric RPA complex (referred
to hereafter as RPA) is to protect and preserve ssDNA
from nucleolytic degradation and hairpin formation,
similar to SSB (single-stranded binding protein) in pro-
karyotes (1,2). Consistent with this function, RPA plays
essential roles in almost all DNA metabolic pathways
including S-phase genome replication, DNA recombin-
ation and DNA excision repair.

Importantly, RPA plays a key role in the activation
and maintenance of cellular responses to DNA damage.
Downstream cellular responses to detected DNA damage
include regulation of cell-cycle transitions (checkpoints),
induction of DNA repair, changes in gene transcription
and in some cases apoptosis (programmed cell death).
These responses are ultimately mediated through the
two closely related protein kinases, ATM (Ataxia
Telangiectasia mutated) and ATR (ATM and Rad3-
related) (3–5). While ATM is activated primarily by
double-strand breaks, ATR is activated by a wide
variety of lesions that result in stalled replication forks,
such as DNA breaks, UV photoproducts and DNA
crosslinks. These stalled replication forks, as well as
DNA excision activities involved in repairing the lesions,
induce functional uncoupling (physical disassociation) of
helicase and polymerase activities resulting in the persist-
ence of abnormally long stretches of ssDNA (6–8). Studies
in yeasts and animal cells suggest that RPA-coating
of these ssDNA stretches act as a molecular signal to
activate ATR-dependent downstream phosphorylation,
primarily through an associated protein called ATRIP
(9–11). An ATRIP ortholog has recently been described
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in plants, and mutants in ATRIP display a nearly identical
phenotype to atr mutants when challenged with replica-
tion blocking agents (12,13). This suggests plants encode a
similar system of RPA-dependent activation of ATR in
the DNA-damage response.

Interestingly, RPA itself is a target of phosphorylation
by ATM, ATR, and the related kinase DNA-PK (found
only in animals) in response to DNA damage. During
the unperturbed cell cycle, RPA activity is regulated
through cyclin-dependent kinase phosphorylation of the
RPA2 subunit during DNA replication and mitosis, and
dephosphorylation as cells progress into G1 (14,15).
Cyclin-dependent kinase phosphorylation can ‘prime’
RPA2 for additional phosphorylation by ATR, ATM
and DNA-PK in response to DNA damage (1). These
phosphorylation changes to RPA2 can have effects
on RPA activity during DNA repair and replication
(16–21). For example, RPA hyper-phosphorylation
mimetic mutants, engineered with multiple negative
amino acids at known phosphorylation sites within
RPA32 are unable to interact with replication centers
(20). Thus, models have been proposed whereby phos-
phorylation of RPA2 by ATR/ATM/DNA-PK acts as a
switch to modulate active DNA replication if DNA
damage persists within the cell.

Although plant and animal DNA metabolism and
DNA-repair responses are highly conserved in most
aspects, RPA regulation in plants appears surprisingly dif-
ferent. In contrast to the single RPA1, RPA2 and RPA3
subunits found in yeasts and mammals [excluding humans
where there are two RPA2-like genes (22)], plants encode
multiple RPA1, RPA2 and RPA3 subunits. Rice contains
three RPA1 paralogs, three RPA2 paralogs and one
RPA3 homolog (23,24). Interaction studies suggest the
subunits form at least three heterotrimeric complexes
(25). Although studies in pea suggest that an RPA32
subunit is phosphorylated at certain developmental
stages (26), in vitro studies in rice indicate that rice
RPA2-1 (RPA32-1) is not hyper-phosphorylated in
response to DNA damage, and protein levels of RPA2-1
decrease following DNA damage (27)

In Arabidopsis, we find (see below) five paralogs of
RPA1, two of RPA2 and two of RPA3, consistent with
earlier genomic analyses (24,25,28). A previous study of
the T-DNA insertion mutants rpa1a and rpa1b suggested
that rpa1a is lethal while rpa1b displays hypersensitivity to
DNA-damaging agents (25). However, a recent study of a
viable (T-DNA insertion) rpa1a mutant suggests that
RPA1A is required for class I crossovers in meiosis, but
does not appear to play a significant role in (SPO11-
dependent) meiotic double-strand break repair (28). In
addition, an Arabidopsis mutant in the RPA2A subunit
(termed ROR1 for Repressor of Silencing 1), suggests a
role for RPA2A in transcriptional gene silencing and
meristem maintenance (29).

Employing T-DNA insertion mutants of all five of
the Arabidopsis RPA1 subunit genes, we present here
evidence that the RPA1 gene family has diverged into
two functionally distinct groups. One group appears re-
sponsible for promoting genomic replication, and another
group appears responsible for promoting DNA repair and

recombination. Furthermore, we show that within the
repair/recombination group individual RPA1 subunits
display unique functions in response to DNA damage.
Based on these results, we hypothesize that the functional
differences found within the RPA1 gene family in
Arabidopsis represents a unique mechanism of RPA regu-
lation common to plants.

MATERIALS AND METHODS

Plant materials and growth

All Salk T-DNA insertion mutants were obtained from the
Arabidopsis Biological Resource Center (ABRC). The Salk
ID for each mutant is as follows: rpa1a, Salk_017580
(25,28); rpa1b, Salk_088429 (25); rpa1c, Salk_085556;
rpa1d, Salk_140762; rpa1e, Salk_120368; atr-2,
Salk_032841 (30); atm-2, Salk_006953 (31). Lines homozy-
gous for the T-DNA insert were isolated by PCR using
gene-specific and T-DNA-specific primers (http://signal.
salk.edu/tdnaprimers.2.html). The sequences of the gene-
specific primers are as follows: Salk_017580 (F), 50-CTTA
GTTTTCTAGTGATCTCTG-30, Salk_017580 (R), 50-GA
ATCTCCCCTCCATCATAGTC-30; Salk_088429 (F), 50-G
TACATACGTGAATCA-30, Salk_088429 (R), 50-AAGTG
TTTTGAAGTAC-30; Salk_085556 (F), 50-GAGAACAAC
AGCACCACTGATGTA-30, Salk_085556 (R), 50-GTGTC
TCTAGTTCCTGAGGTTCCA-30; and Salk_140762 (F),
50-TCTCACGGCTTTTAGTTTTCAC-30, Salk_140762
(R), 50-AGATCTCTTCTATCATAGAGTC-30. Salk_120
368 (F), 50-TTGGTATTGTGTCATCTATCA-30. Salk_
120368 (R), 50-CAACCTTACGGATGATATCTTC-30.
Salk_006953 (F), 50-GGTTGGGCAGTTCCAAAG
ATGA-30, Salk_006953 (R), 50-TCTCTCCTTGTTTCAA
GCTCTG-30. Salk_032841 (F), 50-CAAGGGTTCCGAT
GTTCAAAGTG-30. Salk_032841 (R), 50-CAATCAGCA
GGAAAAGACAATCA-30. All characterized lines
segregated as a single Mendelian locus, and are recessive.
PCR-genotyping information for rpa1c-2 (SALK_139567),
rpa1d-2 (SALK_149669) and rpa1e-2 (SALK_077939) are
available upon request.
The wild-type control Arabidopsis (Arabidopsis

thaliana) accession was Columbia (Col-0). For plate ex-
periments, seeds were surface sterilized by soaking in a
solution of 10% bleach for five minutes and then rinsing
three times with double-distilled sterile water. Seeds were
sown on nutrient phytoagar plates containing 1X MS salts
(PlantMedia, Dublin, Ohio, USA) pH 5.7, 0.05 g/L MES
and 1.0% (w/v) phytoagar (PlantMedia, Dublin, Ohio,
USA). Seeds were stratified at 4�C for 2 days in the
dark before being placed vertically in a growth chamber
under cool-white lamps filtered through Mylar (Golden
State Plastics, Sacramento, CA, USA) at an intensity of
100–150mmol/m2/sec at 22�C, and a photoperiod of 16 h
light/8 h dark. For soil experiments, seeds were stratified,
sown and germinated on 1X MS phytoagar plates in the
same condition as described above and on the fifth
day transferred to soil growing medium (SUNGRO
Horticulture, Seba Beach, Canada) in pots. Plants were
irrigated once in 3 days with a solution of water and
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Miracle-Gro� plant fertilizer, 0.45 g/Liter (Scotts Miracle-
Gro products inc., Marysville, OH, USA).
For DNA damage sensitivity assays, 40–50 surface-

sterilized wild-type and mutant seeds were sown on plates
containing 1X MS phytoagar media with or without
DNA-damaging agents: hydroxyurea (HU), camptothecin
(CPT), mitomycin-C (MMC) (all from SIGMA, St. Louis,
MO, USA) and aphidicolin (APH) [USBiological,
Swampscott, MA, USA or A.G. Scientific Inc.,
San Diego, CA, USA]. For gamma-radiation assays,
Arabidopsis seeds and plants were irradiated using a
Cs137 source (Massachusetts Institute of Technology,
Cambridge, MA, USA), dose rate �60 radiations/minute.
Sterilized seeds were imbibed in water at 4�C for 2 days,
irradiated and then immediately placed on 1X MS
phytoagar plates for germination in the growth chamber.
For irradiation of seedlings, plate grown 5-day-old seed-
lings were irradiated and then immediately returned to the
growth chamber. For UV-B treatment 1X MS phytoagar
plate grown 5-day-old seedlings were irradiated with UV
lamps (Spectronics, Estbury, NY, USA) filtered through
cellulose acetate (SABIC Polymershapes, Devens, MA,
USA) to eliminate UV-C for different time periods and
then returned to the growth chamber. Three replicate
plates were used per treatment, and for root-length meas-
urement plates were first photographed (9–11 days after
germination) with a digital camera (Kodak, China) and
measured using ImageJ software (32).
For relative root-growth comparisons of the rpa1b

rpa1d double mutant, plants were prepared and grown
as described above for 4 days and transferred to new
1X MS phytoagar plates with or without 22.5 nM CPT
or 2 mg/ml MMC. For UV-B treatment, 4-day-old plants
were transferred to new 1X MS phytoagar plates and
treated with 0.5 J/sec/m2 UV-B for 24 h or left untreated.
To calculate the relative percent growth reduction of the
treated plants compared to the untreated plants we used
the formula:"

ðmean untreatedÞ � ðmean treatedÞ

mean untreated

#
� 100 %ð Þ:

Histochemical staining

PcyclinB1;1:GUS promoter/reporter staining was performed
as described previously (33,34) with minor modifications.
The GUS reporter gene produces b-glucuronidase enzyme
and enzymatically converts 5-bromo-4-chloro-3-indolyl
glucuronide (X-Gluc) into a visible blue stain in plant
tissues. Seedlings were placed in 50mm NaPO4, pH 7.2,
0.5mm K3Fe(CN)6, 0.5mm K4Fe(CN)6 and 2mm X-Gluc
(Gold Biotechnology, St. Louis, MO, USA) and then
incubated at 37�C overnight. Tissues were then washed
in 70% EtOH for 1 h and then directly imaged under
microscope.

Microscopy

GUS stained root tips were imaged with a digital camera
mounted inverted light microscope (Olympus CKX41).

For Propidium Iodide (PI) staining, wild-type and
mutant plants were grown on 1X MS phytoagar plates
for 7 days and then stained with 5 mg/ml PI (Calbiochem,
La Jolla, CA, USA) for 2min. Seedling were then
mounted with water on a slide and imaged with a Zeiss
LSM 510 confocal laser-scanning microscope using the
HeNe 543 nm excitation and 475–560 nm emission lines.
For DNA-replication assays, wild-type and mutant plants
were grown on 1X MS phytoagar plate for 5 days and
then incubated in 10 mM 5-Ethynyl-20-deoxyuridine
(EdU), (Invitrogen, Carlsbad, CA, USA) in half-strength
MS liquid medium for 30min. Seedlings were then fixed
for 30min in 4% (w/v) formaldehyde solution in phos-
phate buffered saline (PBS) with 0.1% Triton X-100.
Following 3� 10min PBS washes, seedlings were
directly incubated for 30min at room temperature (RT)
in EdU detection cocktail (Invitrogen, Click-iT EdU
Alexa Fluor 488 HCS assay) followed by a 10-min rinse.
Seedlings were then mounted with Vectashield (Vector
Laboratories, Burlingame, CA, USA) on a slide and
imaged with a Zeiss LSM 510 confocal laser-scanning
microscope using the Argon laser 488-nm excitation and
478–553 nm emission lines. To visualize epidermal-cell
outlines, the middle region of the third true leaves were
dissected from 2-week-old seedlings and mounted with
100% ethanol. The abaxial sides of the leaves were
viewed with the Zeiss LSM 510 microscope using
transmitted light. Meiotic chromosome spreads were
prepared as described (35). Slides were mounted with
DAPI (2.5 mg/ml) in Vectashield. Chromosomes were
visualized using a fluorescence microscope (OLYMPUS
BH-2). Images were then captured using Qimaging
(Micropublisher 3.3) camera and processed with
Qcapture software.

Phylogenetic analysis

Phylogenetic analysis of the RPA1 protein sequences was
performed with the MEGA 4 software package (36).
Amino acid sequences were aligned using ClustalW
(default parameters) within the MEGA software
package, and adjusted manually. The resulting neighbor-
joining distance tree was further evaluated employing 1000
bootstrap replicates.

Accession numbers

Sequence data from this article can be found in
the Arabidopsis Genome Initiative or GenBank/EMBL
databases under the following accession numbers: RPA1A
(AT2g06510),RPA1B (AT5g08020),RPA1C (AT5g45400),
RPA1D (AT5g61000), RPA1E (AT4g19130), ATR
(AT5G40820) and ATM (AT3G48190).

RESULTS

The RPA1 gene family is composed of two distinct groups

In light of the multitude of RPA functions in yeasts and
animals, we wanted to investigate similar functional roles
for RPA in Arabidopsis. Searching the Arabidopsis
thaliana genome (TAIR10), we identified two putative
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14kD small-subunit genes (RPA3A, At3g52630; RPA3B,
At4g18590), two 32-kD middle-subunit genes (RPA2A/
RPA2-1/ROR1, At2g24490; RPA2B, At3g02920) and
five 70-kD large-subunit genes (RPA1A, At2g06510;
RPA1B, At5g08020; RPA1C, At5g45400; RPA1D,
At5g61000; RPA1E, At4g19130), consistent with
previous studies in Arabidopsis (24,25,29). Since the
large (70 kD) subunit family contained the most gene
members and each appeared significantly distinct based
on their amino acid sequences (all members display
>19% non-identity), we hypothesized that individual
members of this gene family likely represents more
specialized functional subunits. Phylogenetic analysis of
the large subunit protein sequences (Figure 1) shows two
evolutionary distinct groups among plants, one group
containing the Arabidopsis RPA1A, RPA1C and
RPA1E (ACE group) and another group containing
RPA1B and RPA1D (BD group). The branching pattern
of the ACE group within the tree suggests that plant
RPA1A is distinct from the RPA1C subgroup (that
includes Arabidopsis RPA1E), the latter of which likely
became more specialized sometime during the divergence
of monocots and dicots. The BD group displays a similar
pattern with Arabidopsis RPA1B and RPA1D diverging
later in plant evolution from a common ancestor that also
gave rise to rice RPA1B.

Comparing differences in transcriptional regulation
among the RPA1 family, we find that the Arabidopsis
thaliana BD group has a higher basal level of transcription
in young seedlings (Supplementary Figure S1) versus the
ACE group. Interestingly, all members of the ACE group
in Arabidopsis thaliana display strong transcriptional up-
regulation in response to ionizing radiation in young seed-
lings, and this regulation is dependent upon functional
ATM (33). In contrast, neither RPA1B nor RPA1D
display significant changes in this analysis. These data
along with the phylogenetic analysis described above
suggest distinct functional divergence between these two
groups.

Arabidopsis RPA1C and RPA1E have unique roles in
response to DNA damage

To genetically define individual roles of the five RPA1
family members in DNA metabolism, we first identified
homozygous T-DNA insertion lines of each respective
subunit gene. Two of the homozygous lines used in this
study, rpa1a (SALK_017580) and rpa1b (SALK_088429)
have previously been characterized (25,28,37). For
RPA1C, RPA1D and RPA1E we identified two T-DNA
alleles for each gene (rpa1c, SALK_085556 and
SALK_139567; rpa1d, SALK_140762 and SALK_149669;
rpa1e, SALK_120368 and SALK_077939). Initial charac-
terization of these alleles proved no differences during
normal growth conditions or in response to DNA
damaging agents (e.g. ionizing radiation, CPT and replica-
tion blocking agents). We chose individual lines
SALK_085556, SALK_140762 and SALK_120368 for sub-
sequent characterization and mutant combination con-
struction since in each case the location of the T-DNA is
within an exon (Supplementary Figure S2), designated
herafter as rpa1c, rpa1d and rpa1e, respectively. Reverse
transcription (RT)-PCR of these lines (rpa1c, rpa1d,
rpa1e) revealed undetectable transcript downstream of
their respective T-DNA insertion sites (Supplementary
Figure S2), and in the case of rpa1e, there is also no
detectible transcript upstream of the T-DNA. RT-PCR
analysis of the rpa1a and rpa1b lines (SALK_017580 and
SALK_088429) revealed results similar to rpa1c and rpa1d
(upstream detected, downstream undetected), similar to
previous studies (25,28). In addition, protein expression of
RPA1B was absent in the rpa1b mutant employing a rice
RPA1b antibody (25). We therefore suggest that these most
likely represent null mutant lines, although we cannot un-
equivocally rule out the possibility of some functioning
partial transcripts. Interestingly, all of the single mutant
lines were viable and did not display obvious developmen-
tal deficiencies or alterations under standard growth condi-
tions. One exception, however, is reduced fertility (seed
set per silique) in the rpa1a mutant, as previously
described (28).
To test the role(s) of RPA1 family members in response

to DNA damage resulting from agents that block replica-
tion, we employed a root-growth assay to measure hyper-
sensitivity to various replication-blocking agents. In this
assay, we simply measure primary root growth following
germination on, or transfer to media containing the par-
ticular agent (an example experiment is shown in
Supplementary Figure S3 and this particular experiment
is further described below and in the next section). As
shown in Figure 2A and B, none of the single rpa1
mutants (rap1a, rpa1b, rpa1c, rpa1d and rpa1e) displayed
hypersensitivity (reduction in root growth compared to
WT) to the replication-blocking agents HU or APH. HU
blocks replication progression by inhibiting ribonucleotide
reductase (RNR) leading to reduced dNTP pools, while
APH directly inhibits replicative DNA polymerases (e.g.
pol delta and epsilon). Since both of these agents do not
directly damage DNA, we also tested MMC (an agent that
produces inter-strand DNA crosslinks) and UV-B light
(produces intra-strand DNA crosslinks between adjacent

Figure 1. Neighbor-joining distance tree of RPA1-like protein se-
quences. All known sequences for rice and Arabidopsis are shown.
Numbers above each branch indicate bootstrap values (percentage) of
1000 replicates. Scale bar represents the expected number of amino acid
substitutions per site.
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base pairs, such as cyclobutane pyrimidine dimers), which
damage DNA directly and produce replication-blocking
lesions. Similarly, none of the five single mutants displayed
significant hypersensitivity to UV-B light or MMC
(Figure 2C and D).
However, in response to ionizing radiation (g-radi-

ation), both the rpa1c and rpa1e single mutants display
a hypersensitivity response. As shown in Figure 2E,
rpa1c and rpa1e root growth is reduced �60% in compari-
son to the WT control group at 10 days post irradiation of
seeds, while rpa1a, rpa1b and rpa1d show no significant
difference in comparison to WT. For comparison, we
included in this analysis the extremely hypersensitive
mutant atm (33,38).
Since g-radiation induces a variety of DNA-damage

lesions that primarily include double-strand breaks, but
also DNA base damage, we further tested the double-
strand break inducing agent CPT. CPT blocks the re-
ligation step of DNA Topoisomerase I, and ultimately
produces a double-strand break in the presence of DNA

replication. As is shown in Figure 2F and Supplementary
Figure S3A, both the atm mutant and rpa1c mutant
display strong hypersensitivity to CPT. Unlike g-radiation
however, the rpa1e mutant did not display significant
hypersensitivity. Taken together, these results suggest
that RPA1C plays a leading role (among other RPA1
family members) in the repair of double-strand breaks,
and that RPA1E may play a role in repair of auxiliary
damage specific to ionizing radiation, such as base damage
or recruitment of DNA-end-processing complexes, for
example. Because CPT specifically produces DSBs in the
presence of ongoing DNA replication, it is possible that
RPA1E is specific for DSB repair in cell-cycle stages
outside of S-phase (e.g. G1 phase).

RPA1C, RPA1E and ATR act in parallel in response to
double-strand breaks

Since the rpa1c and rpa1e single mutants display hyper-
sensitivity to DNA damage, we first wanted to test the
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Figure 2. Hypersensitivity analysis of rpa1 single mutants. Root-length measurements of (A) plants grown in the absence or presence of 0.5mM
hydroxyurea (HU); (B) plants grown in the absence or presence of 3.0 mg/mL APH (USBiological, Swampscott, MA, USA); (C) plants grown for 5
days, treated with 0.4 J/s/m2 UV-B for 24 h or left untreated and grown for an additional 5 days; (D) plants grown in the absence or presence of
0.5 mg/mL MMC; (E) seeds gamma-irradiated (0 or 200Gy) and grown for 10 days; (F) plants grown in the absence or presence of 15 nM CPT. Data
are mean±SE (n> 30). To analyze statistical difference with in each treatment group F-test (ANOVA) and LSD were carried out at P� 0.05. Bars
with different letters indicate significant differences.
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genetic interactions of RPA1C and RPA1E with ATR, a
central player in the DNA-damage response and that is (at
least in part) activated by RPA in animal models. To this
end, we constructed rpa1c atr and rpa1e atr double mutant
lines. Under standard growth conditions, neither of these
double mutants displayed obvious abnormal development
of the shoot (including flower development and fertility)
or root length (Figure 3, untreated all panels). However,
in response to g-radiation or CPT, the rpa1c atr
double mutant displays an additive hypersensitivity
phenotype (reduction of root growth) over either of the
single mutants (Figure 3A and B and Supplementary
Figure S3B). This suggests that RPA1C and ATR act in
parallel during the response to double-strand breaks, since
a consistent trend is seen in response to both CPT and
ionizing radiation.

The rpa1e atr double mutant however displayed hyper-
sensitivity to CPT and g-radiation similar to the atr single
mutant (Figure 3A and B). At lower doses of CPT and
g-radiation we see comparable root lengths of both atr
and rpa1e atr and these differences are not significant.
Only at higher doses do we see a significant difference
between the atr and rpa1e atr mutant lines, but this dif-
ference is minimal in response to CPT. Since the double
mutant is no more hypersensitive than the atr mutant, this
initially suggests that either RPA1E functions within an
ATR-dependent pathway, or functions within an ATR-
independent pathway while exhibiting genetic redundancy
with RPA1C. If the latter is the case, we might expect to
see a ‘supra-additive’ effect whereby elimination of both
RPA1C and RPA1E creates a phenotype that is above and
beyond addition of phenotypes.
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Figure 3. Hypersensitivity analysis of rpa1c, rpa1e and atr mutant combinations. Root-length measurements of (A) 5-day-old seedlings were gamma-
irradiated (0, 50 or 100Gy) and grown for 5 days; (B) plants grown in the absence or presence of 15 nM CPT; (C) plants grown for 5 days, treated
with 0.4 J/s/m2 UV-B for 24 h, 120 h or left untreated, and grown for an additional 5 days; (D) plants grown in the absence or presence of 0.25mg/mL
MMC; (E) plants grown in the absence or presence of 0.25mM, 0.5mM hydroxyurea (HU); (F) plants grown in the absence or presence of
3.0 mg/mL APH (A.G. Scientific Inc., San Diego, CA, USA). Data are mean±SE (n> 30). To analyze statistical difference with in each treatment
group F-test (ANOVA) and LSD were carried out at P� 0.05. Bars with different letters indicate significant differences.
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To test this, we constructed an rpa1c rpa1e double
mutant line and determined the hypersensitivity responses
to CPT and g-radiation. As shown in Figure 3A, the rpa1c
rpa1e double mutant does in fact display a supra-additive
hypersensitivity phenotype in response to CPT, but we did
not observe any obvious developmental defects in the
absence of these agents. In response to g-radiation, we
see a similar supra-additive pattern at the lower (50Gy)
dose, and a more additive hypersensitivity pattern at the
higher dose (100Gy), which is likely due to the fact that
the roots simply do not grow less than �1mm, regardless
of the hypersensitivity (Figure 3B). Nonetheless, this
supports a model that includes redundancy between
RPA1C and RPA1E in the absence of either protein.
To determine functional redundancy between RPA1A,

RPA1C and RPA1E in response to double-strand breaks,
we also generated the double mutant combinations rpa1a
rpa1c and rpa1a rpa1e. In response to CPT treatment,
rpa1a rpa1c showed similar hypersensitivity as the rpa1c
single mutant, while the rpa1a rpa1e double mutant
showed no additional sensitivity over the rpa1a, rpa1e
single mutants and wild type (Supplementary Figure S4).
This suggests no functional redundancy between RPA1A
and either RPA1C or RPA1E, and argues against a role
for RPA1A in response to CPT. However, further hyper-
sensitivity analyses of the triple mutant rpa1a rpa1c rpa1e
in response to a range of damaging agents will be needed
to fully characterize the genetic interactions of the ACE
group.
If RPA1E were acting within an ATR-pathway, we

would expect that an rpa1c rpa1e atr triple mutant
would display a hypersensitivity phenotype similar to the
rpa1c atr double mutant. To test this, we constructed the
rpa1c rpa1e atr triple mutant and find that this combin-
ation results in severe seedling defects that is, in most
cases, lethal. Although this result will require additional
analysis to understand why some triple mutant seedlings
survive, this nevertheless suggests the triple mutant is
hypersensitive to the relatively low levels of endogenous
DNA damage, and therefore suggests a supra-additive
interaction. Overall, these data suggest a model in
which RPA1C, RPA1E and ATR are acting largely in
independent pathways in response to double-strand
breaks, and that genetic redundancy plays a role in the
severity of individual rpa1c or rpa1e hypersensitivity
phenotypes.

RPA1C and RPA1E act in parallel in response to UV-B
and MMC

We further tested the rpa1c atr, rpa1e atr and rpa1c rpa1e
double mutants to agents that create replication-blocking
bulky lesions, UV-B light and MMC. In response to
a chronic UV-B exposure over a course of 120 h
(Figure 3C), the rpa1c atr double mutant displayed less
root growth than the (non-hypersensitive) rpa1c and
(hypersensitive) atr single mutants resulting in a supra-
additive response. In contrast the rpa1e atr double
mutant did not display additional hypersensitivity over
the atr single mutant. Combination of rpa1c and rpa1e
however resulted in supra-additive hypersensitivity.

This was surprising since neither single mutant displayed
significant hypersensitivity. These general trends in
response to UV-B were also observed in response to
chronic exposure to MMC (Figure 3D). Overall, the
additive phenotypes of rpa1c seen here with rpa1e and
atr are consistent with the notion that RPA1C plays a
largely unique and separate role, in this case in re-
sponse to lesions that block DNA replication. One
example could be that defective repair responses in atr
or rpa1e leads to double-strand breaks that require
RPA1C for repair.

The rpa1c mutation partially suppresses atr
hypersensitivity to the replication-blocking agents HU
and APH

As discussed above, none of our single rpa1 mutants dis-
played significant hypersensitivity to HU or aphidicolin
(APH), while the atr mutant displays a strong hypersensi-
tivity response to both agents (30) (Figure 3E and F and
Supplementary Figure S5). Surprisingly, combination of
rpa1c with atr results in less hypersensitivity to HU and
APH (increased root growth) over the single atr mutant
(Figure 3E and F). This suppression of hypersensitivity
was most pronounced at a lower concentration of HU
(0.25mM), but was still significant at the higher dose
(0.5mM; Figure 3E). Moreover, we see reduced cell
death in response to replication blocks (HU) in the
rpa1c atr double mutant versus the atr single mutant
(Figure 4), employing PI viability staining. In response
to APH, the root growth trend is similar, albeit
less pronounced in comparison (Figure 3F and
Supplementary Figure S5), but still statistically significant.
In contrast, the rpa1e atr double mutant did not display a
similar suppression phenotype to either HU or APH, sug-
gesting the hypersensitivity suppression of atr is rpa1c-
specific. Similar to CPT, UV-B and MMC above, the
rpa1c rpa1e double mutant displays supra-additive hyper-
sensitivity to both HU (0.5mM) and APH in comparison
to either single rpa1 mutants. Again, this suggests RPA1C
and RPA1E act in unique pathways, but each may par-
tially compensate for the absence of either protein in each
respective single mutant.

In light of the suppression phenotype observed in the
rpa1c atr mutant in response to HU and APH, increased
dNTPs might be one way to circumvent slower DNA
polymerases. Since the suppression phenotype is more
pronounced in response to HU, one possibility is that
RPA1C negatively regulates the transcription of RNR,
the rate-limiting and highly regulated enzyme in the pro-
duction of dNTPs (39,40). However, no significant (and/
or relevant) transcriptional differences were observed for
RNR1, RNR2A, RNR2B or TSO1/RNR2C comparing
WT, the rpa1c and atr single mutants, and the rpa1c atr
double mutant (Supplementary Figure S6). While this
suggests that RNR transcriptional regulation is not a
factor in the suppression phenotype for rpa1c atr, add-
itional analyses will need to be employed to determine
if post-transcriptional effects of RNR regulation are
affected by the presence of RPA1C.
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Elimination of RPA1C and RPA1E is not sufficient to
block activation of ATR-dependent cell-cycle arrest

RPA activates ATR-dependent responses to genomic
insults through the ATR interacting protein ATRIP
(scDdc2, spRad26), based on current models in animals
and yeasts (41,42). In plants, an ATRIP ortholog has been
identified and mutants in this gene display nearly identical
hypersensitivity responses and cell-cycle defects as the atr
mutant (12,13). This suggests that plants employ a similar
RPA-dependent mechanism to activate downstream
responses of ATR in response to DNA damage. Since
RPA1C and RPA1E likely play important roles in
response to DNA damage, we wanted to further test if
either is involved in activating cell-cycle arrest, a key
aspect of the DNA damage response. Previous studies
suggest that plant ATR and ATRIP play key roles
in the G2/M transition (checkpoint) in response to repli-
cation blocks and double-strand breaks (13,30,33). These
studies employed a PcyclinB1;1:GUS promoter/reporter
fusion construct (34) to monitor accumulation of G2
phase cells in root meristems (see Materials and methods
section for more information). Briefly, the construct is

transcriptionally expressed during S-phase to a
maximum in G2. Inclusion of the CyclinB1;1 mitotic de-
struction box upstream of the GUS reading frame results
in degradation of GUS reporter in M-phase.
To test whether RPA1C or RPA1E regulates the G2/M

transition similar to ATR, we constructed our various
single and double rpa1c, rpa1e and atr mutant combin-
ations with the PcyclinB1;1:GUS construct. This was accom-
plished by crossing the original parental lines (atr, rpa1c,
rpa1e) with an established individual PcyclinB1;1:GUS wild-
type (Col-0) line. As shown in Supplementary Figure S7,
all WT and mutant lines show a similar basal level of GUS
expression (a few GUS positive cells within the meristem-
atic region) grown under standard conditions without
g-radiation (Supplementary Figure S7A). Upon treatment
with g-radiation, we see an accumulation of GUS-positive
meristematic cells, consistent with G2-phase arrest, in WT,
rpa1c, rpa1e and the rpa1c rpa1e double mutant. However,
this accumulation is largely absent in the atr, rpa1c atr and
rpa1e atr lines and both rpa1/atr double mutants are
similar to the atr single mutant. This suggests that
RPA1C and RPA1E are not exclusive regulators of
ATR-dependent cell-cycle arrest in response to DNA
damage and genetic redundancy from other RPA1
subunits may play a role in activating cell-cycle responses
to DNA damage.

RPA1C functions synergistically with RPA1A
during meiosis

A recent study demonstrated that RPA1A is required for
class I crossover formation, playing a role in second-end
capture of homologous recombination (HR) during
crossing over (28). However, these authors found no
evidence of meiotic chromosomal fragmentation during
metaphase I or subsequent stages in the rpa1a mutant,
suggesting RPA1A is not essential for meiotic DSB
repair. The authors also produced antibodies to
Arabidopsis RPA1A to show meiotic localization consist-
ent with its function at later stages of prophase I. Based on
the requirement of RPA in meiotic DSB repair in yeast,
the authors further argue that additional RPA1 paralogs
likely play a role early on in the recombination process. In
comparison to the partially fertile rpa1a mutant, we find
here that the rpa1a rpa1c double mutant is infertile
producing no viable seeds (Supplementary Figure S8). In
addition, the infertility of the rpa1a rpa1c double mutant
is unique among the other double mutant combinations
constructed during the course of this study: the rpa1c
rpa1e is fertile and develop normal siliques, rpa1a rpa1e
is partially fertile similar to rpa1a and rpa1b rpa1d is par-
tially fertile, but may be due to developmental or pre-
meiotic replication defects (see below). This suggests a
key role for RPA1C in the processing of meiotic DSBs.
Since the rpa1c single mutant displays no obvious meiotic
defects, this may suggest that RPA1A can fulfill the role of
RPA1C in its absence.
To determine the role of RPA1C during meiosis, we

prepared chromosomal spreads of pollen-mother cells
from WT, rpa1a, rpa1c and the double mutant rpa1a
rpa1c. As shown in Figure 5, rpa1a displays visually

Figure 4. PI viability staining of HU-treated root tips. WT, rpa1c, atr
and rpa1c atr mutant lines were grown for 4 days, treated with
0.25mM HU for 24 h, then transferred to media without HU for
24 h. Roots were stained with 5mg/mL PI immediately prior to laser-
scanning confocal microscopy. PI-filled cells represent dead cells.
Bars=50 mm.
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normal chromosome synapsis at pachytene, but displayed
univalents during metaphase and resulted in
missegregation of chromosomes at the first and second
meiotic divisions as previously described (28). The rpa1c
single mutant displayed no obvious meiotic abnormalities
in all stages of meiosis I and II (not all stages are repre-
sented in Figure 5). However, in the rpa1a rpa1c double
mutant we are unable to identify any fully synapsed
pachytene stages (>40 zygotene stages were observed) or
stages that resembled WT metaphase. Instead, we observe
highly fragmented chromosomes during anaphase
I followed by similarly defective meiosis II stages. By com-
parison, the rpa1a rpa1c fragmentation resembles chromo-
some fragmentation seen previously in rad51 and atr atm
mutants (43). This suggests that both RPA1C, and

RPA1A (perhaps only in the absence of RPA1C), play
primary roles in the initiation of HR events during
meiosis.

RPA1B and RPA1D are required for normal DNA
replication during root and shoot development

Since individual mutations in the closely related RPA1B
and RPA1D genes revealed no obvious phenotypes
throughout development, we suspected functional redun-
dancy may also play a role in the BD group similar to the
ACE group described above. To test this, we constructed
an rpa1b rpa1d double mutant line. As is shown in
Figure 6, both root and shoot growth of the double
mutant is severely reduced under normal growth

Figure 5. Meiotic stages of pollen-mother cells from WT and rpa1 mutants. (A–E) Wild-type, (F–J) rpa1a, (K–O) rpa1c, (P–T) rpa1a rpa1c. Stages
included are zygotene (A, F, K, P), pachytene (B, G, L), a zygotene stage representing the absence of a fully synapsed pachytene stage in the rpa1a
rpa1c double mutant (Q), metaphase I (C, H, M, R), anaphase I (D, I, N, S) and anaphase II (E, J, O, T). In wild-type and rpa1c, homologs are
segregated in equal number at anaphase I (D, N), followed by the separation and segregation of sister chromatids at anaphase II (E, O). In rpa1a,
zygotene (F) and pachytene (G) stages are similar to WT and rpa1c. However, univalents (arrows) are present at the metaphase plate (H) leading to
unequal segregation of homologous chromosomes at anaphase I (I), and anaphase II (J). In rpa1a rpa1c, multiple fragmented chromosomes were
present at metaphase plate (R) and at anaphase I (S) leading to abnormal anaphase II (T).
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conditions versus WT and either single mutant line. Early
development of the rosette is delayed (Figure 6A) and
fewer leaves are produced (Figure 6E). Interestingly, the
resulting plants flower early (Figure 6B), similar to other
factors involved in chromatin remodeling [FAS1, FAS2
(44); BRU1 (45); TEB (46) for example], or DNA replica-
tion [DNA polymerase subunits (47,48); for review see
(49)]. The plants also produce smaller siliques and fewer
seeds (Supplementary Figure S9 and Figure 6D).
Preliminary analysis of meiotic chromosomal spreads
shows no obvious visual abnormalities during meiosis
I and II in either rpa1b or rpa1d single mutants, nor
the rpa1b rpa1d double mutant, possibly suggesting
defects during pre-meiosis replication. However, a more
complete analysis will be needed to determine the cause of
reduced fertility in the rpa1b rpa1d double mutant. The
double mutant also displays >50% reduction in root
growth versus WT and the single mutants (Figure 6C).

Since the most prominent defect in the double mutant is
reduced growth, this would suggest developmental defects
in cell elongation, cell division or both. If cell elongation
were defective in the double mutant, we would expect to
see differences in cell sizes of differentiated tissues.
As shown in Figure 7A and B, and quantified in
Supplementary Figure S10, we find no clear differences
in cell size of both pavement cells of leaves, and
differentiated root cells in the elongation zone, suggesting
that cell elongation is normal in the rpa1b rpa1d double

mutant compared to WT. In addition, the meristematic
region is reduced and the double mutant displays cell
death in stem cells and their descendants (Figure 7C).
To determine if DNA replication is defective in the root
meristem, we employed an EdU (nucleotide analog) in-
corporation assay to measure cellular DNA replication
levels. Interestingly, as shown in Figure 7D we find that
the number of actively replicating cells in root meristems is
reduced �50% overall. EdU positive cells are located
primarily within the meristematic region and unlike WT,
incorporation largely does not extend into the elongation
region. Overall, these data suggest that cell division is de-
fective in the rpa1b rpa1d double mutant, and the resulting
cell death accounts for its reduced growth.
Because RPA1B and RPA1D show overlapping func-

tions that promote normal DNA replication, it is possible
they may also have overlapping functions in response to
DNA damage. However, the reduced root growth seen in
the double mutant in the absence of DNA damaging
agents complicates analysis of hypersensitivity through
simple comparison of root length. To test the rpa1b
rpa1d double mutant for hypersensitivity to DNA
damage, we employed relative root growth rates (percent-
age of root growth reduction) as a measure of hypersen-
sitivity (see Materials and methods section for description
of assay). In response to UV-B and CPT we see no signifi-
cant hypersensitivity (Supplementary Figure S11), and a
small but significant, suppression effect (less growth

Figure 6. Phenotypes of the rpa1b rpa1d double mutant line. (A) Twenty-six-day-old plants grown on soil. (B) Thirty-one-day-old plants grown on
soil. (C) Eleven-day-old wild-type and mutant plants grown on MS phytoagar media. (D) Measurements of seeds produced by individual siliques of
wild-type and mutant plants. (E) Flowering time measurements as counted by the number of rosette leaves when the inflorescence is 1-cm long.
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reduction) in response to MMC. It is possible the latter
suppression effect is a result of reduced DNA replication
rates, perhaps allowing more time for repair of this type of
lesion. Nevertheless, this suggests RPA1B and RPA1D
play only minor roles, if any, in DNA damage repair.
Again, redundancy with ACE group subunits could play
a role here but overall these data argue against primary
DNA-repair roles for RPA1B and RPA1D.

DISCUSSION

In this study, we find that Arabidopsis encodes five RPA1
subunits (A–E), two RPA2 subunits (A; At2g24490, B;
At3g02920) and two RPA3 subunits (At3g52630;
At4g18590) consistent with previous accounts of RPA
genes in Arabidopsis (24,25,28). An initial examination
of Arabidopsis RPA1A and RPA1B T-DNA insertion
mutant and RNAi knockdown lines suggests that elimin-
ation of RPA1A is lethal, while elimination of RPA1B
results in hypersensitivity to DNA damaging agents (25).
However, two subsequent studies (not including this
study) isolated viable rpa1a homozygous mutants from
this particular T-DNA line (SALK_017580). In one,
rpa1a mutants displayed hypersensitivity to a variety of
genotoxic agents, including hydroxyurea, bleomycin and
MMS, as well as defective telomere-length homeostasis
(37). In the other, the rpa1a mutant displays reduced fer-
tility, manifested by defects in the later stages of meiotic
recombination required for the formation of class I cross-
overs (28). To perform a more comprehensive comparison
of the RPA1 family, we have isolated and confirmed

T-DNA insertion lines of all five Arabidopsis RPA1
genes, including those published previously. With the ex-
ception of a mild fertility defect in rpa1a, all of these in-
dividual lines display normal development under standard
conditions. Since RPA is required for viability in other
(non-plant) systems, this suggests overlapping functions
within the RPA1 family.

The RPA1 gene family encodes two main
functional groups

To obtain the broadest picture of RPA function in
Arabidopsis, we have focused here on the largest RPA
subunit gene family, RPA1. We suggest that the RPA1
family is roughly divided into two main functional
groups, the ACE group comprised of RPA1A, RPA1C
and RPA1E, and the BD group that is comprised of
RPA1B and RPA1D. Further, we hypothesize that the
primary function of the ACE group is related to DNA
repair/recombination activities, while the BD group
promotes genomic DNA replication activities. This is
supported by phylogenetic analysis of RPA1 protein se-
quences, analysis of rpa1 mutant phenotypes and expres-
sion analysis of RPA1 transcription under normal
conditions and in response to DNA damage, as discussed
below.

First, our phylogenetic analysis of RPA1 protein se-
quences shows that RPA1A, RPA1C and RPA1E fall
into a clade with strong bootstrap support (100%/1000
replicates) that includes rice RPA1A and RPA1C. An
additional separate clade, also with strong bootstrap
support (100%/1000 replicates), includes Arabidopsis

Figure 7. Leaf and root cell phenotypes of the rpa1b rpa1d double mutant. (A) Outlines of leaf epidermal cells in wild-type (upper) and mutant
(lower) plants. Calculated average cell areas for WT and rpa1b rpa1d were (2137±1403)mm2 and (2055±1300)mm2, respectively. (B) Laser-
scanning confocal microscope images of PI stained 9-day-old wild-type and rpa1b rpa1d double mutant root tips. Calculated average cell length for
WT and rpa1b rpa1d was 148±44mm and 162±51mm, respectively. (C) Laser-scanning confocal microscope images of PI stained 9-day-old wild-
type and rpa1b rpa1d double mutant root tips. Arrows indicate starting point of the cell elongation zone. (D) Laser-scanning confocal microscope
images of EdU stained 9-day-old wild-type and rpa1b rpa1d double mutant root tips. Fluorescent nuclei represent actively incorporating (replicating)
nuclei. Bars=50 mm.
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RPA1B and RPA1D and rice RPA1B. This analysis is not
robust enough to clearly determine where these clades fall
with respect to non-plant organisms, and where the ances-
tral duplication that gave rise to both the ACE and BD
group occurred. Additional plant, algal, fungal and
animal sequences from completed and well-annotated
genomes will be required (due to questions about
orthologous groups) to address this and related questions
about the evolution of the RPA1 family in plants.
However, it is clear that additional specialization
occurred in plants, likely after the separation of
monocots and dicots. It is also clear from our analysis
that the divergence of RPA1C and RPA1E, and RPA1B
and RPA1D in their respective groups is not likely a result
of recent gene duplications in Arabidopsis thaliana.

Second, genetic analysis of single and double mutants
of RPA1 gene members also suggests at least two distinct
functional groups. While none of the rpa1 single mutants
display obvious hypersensitivity to replication blocking
agents such as HU or APH, or to the DNA damaging
agents UV-B and MMC, rpa1c and rpa1e display hyper-
sensitivity to ionizing radiation, and rpa1c displays add-
itional hypersensitivity to CPT. Moreover, the rpa1c rpa1e
double mutant displays additive or supra-additive hyper-
sensitivity to all of the agents tested. As stated above,
previous genetic analyses of rpa1a (37) and rpa1b (25)
described hypersensitivity phenotypes of each to a
variety of damaging and replication-blocking agents,
including HU and UV-B. However, under our experimen-
tal conditions, we were unable to replicate these hypersen-
sitivity phenotypes. It is possible that the hypersensitivity
of rpa1a and rpa1b is relatively mild, and undetectable
under the conditions we employed. Nonetheless, based
on our analysis of hypersensitivity responses we suggest
that RPA1C and RPA1E play leading roles in the repair
responses to DNA damage among the RPA1 gene family
members.

Obviously, RPA1 is known in yeasts and animals as a
component of the single-stranded binding protein required
for ‘normal’ genome replication. In contrast to the ACE
group, we present here evidence that suggest the primary
role of the BD group is to promote normal genome repli-
cation throughout development of the plant. Neither the
rpa1b and rpa1d single mutants nor the rpa1b rpa1d
double mutant display obvious DNA damage hypersensi-
tivity. The pleiotropic-like developmental defects observed
in the rpa1b rpa1d double mutant in the absence of
exogenous DNA damage suggest a fundamental cellular
role of both genes throughout development. Essentially,
the plants appear normal but are slower to develop
(shorter roots, smaller leaves, reduced silique production,
etc.), perhaps suggesting either a reduction in cell size (cell
elongation), or a reduction in cell division. However, we
do not detect any obvious differences in cell size or morph-
ology in both root and shoot tissues. In contrast, we find
root meristematic regions that are significantly smaller
than either WT or the single rpa1b or rpa1d mutants.
These findings are similar to a mutant defective in
RPA2A (ROR1) (29), a member of the middle subunit
(RPA32/RPA2) family. In this study, ror1 was identified
as a suppressor of ros1 (‘repressor of silencing 1’), a

repressor of transcriptional gene silencing. Single mutant
(ror1) plants also display reduced vegetative growth
similar to the rpa1b rpa1d double mutant, while defects
in ROR1 in the ros1 background are not affected in final
cell sizes (cell elongation) compared to WT or ros1 single
mutants. Based on this, the authors concluded that muta-
tions in RPA2A/ROR1 affect cell division rather than cell
size. Here, we find discernably less DNA replication
occurring in root meristems in the rpa1b rpa1d double
mutant versus WT and single mutants, and accumulation
of dead cells throughout the meristem. Therefore, these
data suggest RPA1B, RPA1D and RPA2A (perhaps by
interacting in heterotrimeric complexes) cooperate during
cell division to promote faithful DNA replication of
normal developing cells in the absence of exogenous
DNA damage. Since the rpa1b rpa1d is not lethal this
further suggests partial overlap of the ACE group to
complete genome replication, albeit inefficient.
Third, comparison of genomic expression data in young

seedlings reveals that RPA1B and RPA1D display higher
basal levels of transcription than RPA1A, RPA1C
or RPA1E. However, in response to DNA damage
(ionizing radiation) this is reversed, as RPA1A, RPA1C
and RPA1E are all strongly up-regulated shortly after
irradiation (33). This further supports the notion that
the BD group plays important roles during normal devel-
opment, such as normal DNA replication, while the ACE
group is specialized for repair responses.

Genetic interactions of RPA1C, RPA1E and ATR

In an effort to better understand the role of RPA in DNA
repair induction through ATR, we focused on RPA1C
and RPA1E since (i) their respective mutants displayed
the most obvious hypersensitivity, (ii) RPA1C and
RPA1E show the highest transcriptional induction
within the ACE group and (iii) the rpa1a mutant did not
display obvious hypersensitivity either as a single mutant,
or additively in combination with rpa1c or rpa1e. Overall,
we find that combination of rpa1c, rpa1e and atr mutants
create additive (in some cases supra-additive) hypersensi-
tivity phenotypes in response to DNA-damaging agents
(ionizing radiation, CPT, UV-B and MMC). This is best
exemplified by hypersensitivity responses to double-strand
breaks created by CPT; the rpa1c atr double mutant
displays increased levels of hypersensitivity over either
single (hypersensitive) mutant (additive), while the rpa1c
rpa1e double mutant displays supra-additive hypersensi-
tivity since the rpa1emutant is no more sensitive than WT.
Based on the supra-additive effects we see, and the fact
that the rpa1c rpa1e double mutant is hypersensitive to all
DNA damaging and replication-blocking (HU, APH)
agents tested, it seems likely that genetic redundancy
(synergy) between RPA1C and RPA1E is playing a role
to compensate for the loss of one subunit. Therefore, our
current working model is that the primary functions of
RPA1C, RPA1E and in some cases ATR (for double-
strand breaks), are required for separate repair pathways.
In yeasts and mammals, ATR is activated in part

through interaction of ssDNA-bound RPA molecules
and the ATR-associated ATRIP (scDdc2, spRad26)
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subunit. This interaction has been shown to be important
in variety of cellular responses to DNA damage, including
regulation of the cell cycle (41). We have previously shown
that Arabidopsis mutants in ATR and ATRIP (HUS2)
display defects in cell-cycle regulation in response to
DNA damage and replication blocking agents (12,13,30).
Employing a similar strategy, we find here that neither
RPA1C nor RPA1E appear to directly regulate ATR-
dependent (and by extension ATRIP-dependent) cell-
cycle responses to genomic insults. This may suggest
that (i) functional redundancy compensates for loss of
RPA1C, RPA1E or both by other active RPA1 paralogs
or (ii) that RPA complexes involved in normal genomic
replication (e.g. RPA1B, RPA1D) are primarily involved
in activating ATR-dependent cell-cycle responses to
genomic insults. Careful analysis of cell-cycle responses
in both the rpa1a rpa1c rpa1e triple mutant and
the rpa1b rpa1d double mutant will be needed to better
determine if/how RPA regulates these ATR-dependent
responses.
In response to DNA damage, root meristem cells

undergo programmed cell death located primarily at
root initials and their daughter cells (50–52). Elimination
of either ATR or ATM effectively reverses this cell death
in roots treated with modest amounts (i.e. 40Gy of
gamma radiation) of damage (52). These latter results
led the study’s authors to conclude that ATR and ATM
promote programmed cell death in the presence of modest
amounts of DNA damage within the root. In response to
replication blocking agents (HU) however, we show that
WT roots do not accumulate dead cells, while loss of ATR
results in cell death throughout the root meristem (primar-
ily the initials and their daughter cells) grown in the
presence of modest levels of replication blocking agents
(e.g. 0.25mM HU causes <25% root growth inhibition
in WT). Obviously, the resulting cell death most likely
causes the severe hypersensitivity root phenotype. In the
case of replication blocks from polymerase inhibition (HU
and APH), it is likely that loss of ATR prevents the ability
of the cell to restart replication following DNA polymer-
ase stalling, although this has not specifically been shown
in plants to date.
Interestingly, we find combination of the atr mutant

with the rpa1c mutant resulted in less sensitivity to repli-
cation blocking agents, and less overall cell death (sup-
pression of atr). One way to overcome a lack dNTP
production (as is the case of cells treated with HU)
would be to simply increase RNR activity. RNR is tran-
scriptionally regulated in plants (40), although little is
known about post-transcriptional regulation. Employing
real-time PCR of each RNR catalytic and regulatory
subunit genes, we do not find any evidence to suggest
increased transcriptional regulation of any RNR subunit
in rpa1c mutant lines. In addition, we find that the rpa1c
mutant also suppresses APH hypersensitivity (albeit to a
lesser, but statistically significant amount), a direct inhibi-
tor of DNA polymerase that has no direct effect on
cellular dNTP levels. Taken together, this suggests that
rpa1c suppression of atr hypersensitivity to replication
blocking agents is not a result of increases in RNR
activity in the rpa1c mutant.

Mutations in chromatin modifying factors (SET1
and CHD1) have been shown to suppress the HU hyper-
sensitivity of mec1 mutants (an ATR ortholog) in
Saccharomyces cerevisiae (53). SET1 encodes a histone
H3 (K36) methyltransferase and CHD1 encodes a chroma-
tin remodeling factor. Both genes appear to play roles in
modification of transcribed regions that can affect RNA
polymerase action (54–60). However, suppression of mec1
HU hypersensitivity by set2 and/or chd1 suggests a role for
SET1 and CHD1 in negatively regulating DNA replication
(53). As described above, defects in RPA2A/RPA2-1 (ror1/
rpa2-1 mutants) in Arabidopsis results in altered transcrip-
tional gene silencing (29,61,62). In addition, ror1 plants
display similar defects in development (reduced growth of
root and shoot) and cell division as we find in our rpa1b
rpa1d double mutant (29), suggesting a role for RPA2A in
genomic DNA replication. While RPA is not known to
directly modify chromatin per se, it is possible that RPA
could play a role in maintenance of chromatin structure
that could affect progression of polymerases on DNA. By
extension, it is possible RPA1C could play a role in nega-
tively controlling DNA polymerase progression (perhaps
through chromatin modification) whereby, in the absence
of ATR, it could increase sensitivity to HU by further
inhibiting DNA replication.

Another possibility is that RPA1C promotes aspects of
replication fork restart, such as HR, and is regulated by
ATR. Stalled replication forks must be restarted in order
to complete replication. Checkpoint related kinases, such
as Mec1 and Rad53 (Chk2 ortholog) in yeast, play import-
ant roles in regulating restart by activating appropriate
pathways to resolve fork blockage (63,64). One important
step in this process is to reduce the frequency of HR that
could lead to destabilization of replication forks and
generate toxic HR intermediates (63,64). In the case of
rpa1c suppression of atr-dependent hypersensitivity to
HU and APH, we propose a possible model: in WT
cells, ATR regulates efficient restart by promoting fork
regression and reloading of the replication machinery
(polymerase, etc.), while preventing unnecessary HR.
In the case of depletion of dNTPs (HU) or polymerase
inhibition (APH), HR-mediated repair pathways would
generally not be required since in most cases of fork
stalling, there is no lesion to be removed. In the absence
of ATR (atr mutant), cells lose regulation of the restart
mechanism and HR (promoted through RPA1C) is un-
checked leading to lethal recombination intermediates.
Thus, elimination of RPA1C reduces atr-induced hyper-
sensitivity (atr rpa1c double mutant) by reducing the
number of lethal HR intermediates. In an analogous
example, unrestrained HR in yeast defective in the Srs2
helicase leads to increased cell death (65), and can be sup-
pressed by elimination of Rad51-dependent HR pathways
(66–68). This suggests that promotion of HR processing in
the absence of required (SRS2 helicase) factors might lead
to toxic HR intermediates. Nonetheless, considering the
hypersensitivity of rpa1c mutants to double-strand breaks
(g-radiation and CPT), the requirement of both RPA1C
and ATR in response to DNA lesions (UV-B and MMC)
and contributing defects in meiosis suggest a critical and
unique role for RPA1C in HR-dependent repair.
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