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Background: The epidermal growth factor receptor (EGFR) is overexpressed in colorectal cancer (CRC), and is correlated with
poor prognosis, making it an attractive target for monoclonal antibody (mAb) therapy. A component of the therapeutic efficacy of
IgG1 mAbs is their stimulation of antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells bearing the CD16
receptor. As NK cells are functionally impaired in cancer patients and may be further compromised upon chemotherapy, it is
crucial to assess whether immunotherapeutic strategies aimed at further enhancing ADCC are viable.

Methods: CRC patients before, during and after chemotherapy were immunophenotyped by flow cytometry for major
white blood cell populations. ADCC-independent NK cell functionality was assessed in cytotoxicity assays against K562 cells.
ADCC-dependent killing of EGFRþ A431 cancer cells by NK cells was measured with a degranulation assay where ADCC was
induced by GA201, an anti-EGFR mAb glyco-engineered to enhance ADCC.

Results: Here, we confirm the observation that NK cells in cancer patients are dysfunctional. However, GA201 was able to induce
robust NK cell-dependent cytotoxicity in CRC patient NK cells, effectively overcoming their impairment.

Conclusions: These findings support the evaluation of the therapeutic potential of GA201 in combination with chemotherapy in
CRC patients.

Colorectal cancer (CRC) is the second most frequent cause of
cancer death in the western world. In the United States alone, the
American Cancer Society estimates more than 140 000 new cases
and 50 000 deaths for 2013. Overall, the lifetime risk of developing
CRC is 5.1% (American Cancer Society, 2013). A modest increase
in average survival can be achieved with current therapeutic

strategies, yielding 10–12 months with single agent 5-fluorouracil
and increasing to 16–20 months upon addition of oxaliplatin and
irinotecan, compared with 6 months with palliative care alone.
When administered as a first-line treatment, combination
chemotherapy can substantially improve response rates (31%–
56%), median progression-free survival (6.5–9 months) and median
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overall survival (14.5–21.4 months) (Giacchetti et al, 1999; de
Gramont et al, 2000; Douillard, 2000; Saltz, 2000; Goldberg et al,
2004; Grothey and Goetz, 2004; Tournigand et al, 2004; Kohne
et al, 2005; Laurent-Puig et al, 2009; Maughan et al, 2011).
Although these results are encouraging, much remains to be
achieved in CRC therapy.

Small-molecule drugs have been joined by innovative biologics
in the treatment of CRC. This is the case, for instance, of the anti-
epidermal growth factor receptor (EGFR) monoclonal antibodies
(mAbs) cetuximab and panitumumab. EGFR is a growth factor
receptor affecting cell adhesion, survival and proliferation that is
overexpressed in 75% of CRC and correlated with poor prognosis
(Nicholson et al, 2001; Giacomelli et al, 2003; Azria et al, 2005;
Spano et al, 2005; Markman et al, 2010). By blocking ligand
binding to EGFR, cetuximab and panitumumab prevent mitogenic
signalling, ultimately hampering cell division. Intimately connected
to their mechanism of action, the benefit of anti-EGFR mAbs is
bypassed by gain-of-function mutations in KRAS, a signalling
molecule downstream of EGFR (Amado et al, 2008; Karapetis et al,
2008; Bokemeyer et al, 2009; Van Cutsem et al, 2009). Indeed, in
subjects with KRAS-mutant tumours, the proliferative signal is
constitutively active and therefore unaffected by receptor blockade
(Ciardiello and Tortora, 2008). However, mAbs can be further
optimised for greater therapeutic potential. In addition to being
highly specific inhibitors, antibodies are naturally endowed with
several immunomodulatory properties. Such properties may be
exploited to achieve immunotherapeutic effects, in synergy with
receptor blockade and possibly in combination with chemotherapy.

The immune system naturally monitors and continuously
eliminates nascent transformed cells, a realisation that dates back
to at least 1957 (Burnet, 1957). Integral to this process of immune
surveillance is the natural killer (NK) cell, a type of leukocyte that
has a major role in the rejection of tumours. NK cells kill target
cells by releasing small granules of apoptosis-inducing and lytic
proteins, such as granzymes and perforin (Vivier et al, 2008). NK
cells are lymphocytes identified by the surface marker CD56 (in
humans) and by the lack of T- and B-cell antigen receptors or
lineage markers, such as CD3. Most NK cells express CD16
(FcgRIIIa), an activating low-affinity receptor for the Fc domain of
IgG-isotype antibodies. Through CD16, NK cells recognise IgG-
coated cells and promptly kill them, a process called antibody-
dependent cell-mediated cytotoxicity (ADCC). Not all IgG
subclasses are equally able to elicit ADCC. For instance, IgG1
antibodies are more ADCC-efficient than IgG2 (Nimmerjahn and
Ravetch, 2005; Schneider-Merck et al, 2010).

Therefore, it comes as no surprise that one component of the
therapeutic efficacy of IgG1 mAbs is immunological. Indeed, a
common single-nucleotide polymorphism in CD16 (V158F) is
correlated with clinical responses to cetuximab (Zhang et al, 2007)
and the anti-CD20 mAb rituximab (Cartron et al, 2002).
Mechanistically, this polymorphism was found to modulate the
affinity of CD16 for antibodies, in turn affecting the potency of
ADCC (Taylor et al, 2009). These observations, connecting
antibody/Fc receptor affinity, ADCC efficiency and clinical
outcomes, are crucial, as they lead to the prediction that
enhancements of mAb affinity for Fc receptors may result in
significant clinical benefits. One way to increase the binding
between Fc receptors and mAbs is to manipulate protein
glycosylation, which is known to affect protein–protein
interactions. Pioneering work demonstrated that antibodies
containing engineered bisected, afucosylated oligosaccharides in
their Fc domain show greatly increased affinity for CD16,
ultimately resulting in ADCC amplification (Umana et al, 1999;
Ferrara et al, 2006, 2011). Importantly, glyco-engineering
improves the therapeutic potential of mAbs in both low (158F)
and high (158 V) affinity variants of CD16 (Wu et al, 1997;
Mossner et al, 2010; Gerdes et al, 2013). Moreover, this therapeutic

mechanism is likely to be important when simple interference with
receptor/ligand interactions fails as a therapeutic strategy, as in the
case of EGFR/EGF inhibition in tumours with activating KRAS
mutations (Gerdes et al, 2013).

For ADCC-based immunotherapy of cancer patients to be
effective, it is essential that pivotal immune effector cells, such as
NK cells, are present and have sufficient functional capacity.
However, treatments inducing leukopenia, such as chemotherapy,
may negatively impact on the immunotherapeutic contribution of
mAbs. Understanding whether ADCC-eliciting antibodies retain
effectiveness even in combination with chemotherapy is critical to
pave the way to novel therapeutic strategies against cancer. This is
even more compelling in the light of recent findings calling into
question the clinical efficacy of the IgG1 mAb cetuximab in
synergy with oxaliplatin-containing chemotherapy (Maughan et al,
2011), in contrast to earlier positive reports with both FOLFIRI
and FOLFOX-4 (Bokemeyer et al, 2009; Van Cutsem et al, 2009).

Therefore, we studied NK cell cytotoxic responses (ADCC and
also CD16-independent responses) in metastatic CRC patients
before oxaliplatin/irinotecan-containing chemotherapy, on active
therapy or following two lines of standard treatment. ADCC was
induced using a novel glyco-engineered anti-EGFR mAb, GA201
(RG7160), which showed superior potency compared with
cetuximab (Gerdes et al, 2013), and is currently in phase I/II
clinical trials for colorectal and head and neck cancers. We found
that, despite defects in CD16-independent cytotoxic functions, NK
cell numbers and ADCC were largely preserved in patients,
regardless of their therapeutic stage, giving full scope to combining
chemotherapy and ADCC-triggering immunotherapy.

MATERIALS AND METHODS

Patient samples. Blood samples were drawn following informed
consent for study from age-matched healthy controls at disease
progression or colorectal carcinoma patients at presentation with
metastatic disease (met CRC), before therapy; on active
chemotherapy, 2–3 weeks post recent cycle of oxaliplatin-based
(FOLFOX/CAPOX) or irinotecan-based (FOLFIRI/single-agent/
þCapecitabine) regimen before cycles 2–11 of first or second line;
or at disease progression, after at least 4 weeks since failure of two
lines of standard treatment. An aliquot of blood was used for direct
immunophenotyping. Peripheral blood mononuclear cells
(PBMCs) were isolated using the standard Ficoll density gradient
and cryopreserved in freezing medium (10% DMSO, 40% FBS,
50% Cellgro SCGM).

Immunophenotyping and cell counts. The Multitest IMK kit
with Trucount beads (BD Biosciences, San Diego, CA, USA) was
used to enumerate mature human T cells (CD3þ ), helper/inducer
T cells (CD3þ CD4þ ), suppressor/cytotoxic T cells (CD3þ

CD8þ ), B cells (CD19þ ) and NK cells (CD3� CD56þ /CD16þ )
directly in unprocessed whole blood. Deeper phenotyping of NK
cells requires accurate measurement of CD16. In our pilot
experiments, we found that CD16 is not readily detectable in
whole blood, whereas it is after removing plasma, probably due to
the binding of CD16 by the Fc domain of antibodies present in the
serum. Consequently, we immunophenotyped NK cells for CD16
in freshly isolated PBMCs.

Functional assays of NK cell cytotoxicity. Cryopreserved PBMCs
were thawed and rested for 16 h in Cellgro SCGM serum-free
medium (Cellgenix, Freiburg, Germany) supplemented with
50 IU ml� 1 recombinant human lL-2 (Peprotech, Rocky Hill, NJ,
USA) before use in functional assays.

Direct NK cell cytotoxicity was measured in a standard assay
against the erythroleukaemia cell line K562 (NKTEST, Glycotope,
Berlin, Germany). Briefly, CFSE-prelabelled K562 cells (provided
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by the manufacturer) were incubated with donor PBMCs at different
effector:target ratios (6 : 1, 12 : 1 and 25 : 1). After 4 h, killed target
cells were identified by uptake of the fluorescent DNA stain
7-aminoactinomycin D, which can only penetrate dead cells through
compromised plasma membranes. Results were adjusted for the rate
of spontaneous cell death (in the absence of effector cells) and for
the NK cell frequency in thawed PBMCs as determined by flow
cytometry. Note that it is well known that NK cells are the only
population within PBMCs mediating K562 cell killing.

To induce ADCC in NK cells, we co-incubated donor PBMCs
with the EGFRþ epidermoid carcinoma cell line A431 (obtained
from ATCC, Manassas, VA, USA) at 1 : 1 ratio in the presence of
10 mg ml� 1 GA201 anti-EGFR antibody. Because EGFR-positive
cells grow as adherent cultures, a degranulation assay is more
suited to test the NK cell cytotoxic function than the NKTEST. To
detect degranulation, an APC-conjugated anti-CD107a antibody
was added to the co-culture at 1 mg ml� 1. After 1 h, the protein
transport-inhibitor monensin (0.1 mM) was added to prevent
CD107a endosomal recycling and improve the CD107a staining,
as per the standard protocols (Alter et al, 2004). After an additional
2 h, cells were harvested, stained for CD56 and CD3 and acquired
with a FACSCanto II flow cytometer (BD Biosciences). Degranu-
lating NK cells were identified as CD3� CD56þ CD107aþ .

Statistical analysis. Data were analysed with Prism 6 (Graphpad,
San Diego, CA, USA) and R 3.0.1 (http://cran.r-project.org/bin/
windows/base/old/3.0.1/) using the packages lme4, ez, gmodels and
multcomp.

When few patient cohorts were compared with a single control
group (Figures 1 and 2), a Fisher’s LSD test was performed. When
only a meaningful subset of pairwise comparisons was selected for
testing (Figure 3), a Sidak test was performed. P-values were coded
with asterisks.

CD16-independent NK cell cytotoxic responses (Figure 4) were
fitted to a linear mixed effect model. The subject ID was modelled

as a random effect, while log-transformed NK:Target ratio and
patient cohort were modelled as fixed effects. The conditional
coefficient of determination was calculated according to Nakagawa
and Schielzeth (2013). Pairwise contrasts of intercepts or slopes
between healthy controls and each patient cohort were tested for
significance, with P-values adjusted for multiple comparisons using
the single-step method.

RESULTS

CRC patients show a largely intact immune system regardless of
chemotherapy stage. We immunophenotyped age-matched
healthy controls and CRC patients (pre-chemotherapy, undergoing
chemotherapy and second-line failure post chemotherapy) by flow
cytometry. The numbers of white blood cells (WBCs) and
lymphocytes were comparable in healthy donors and patients
(Figure 1A), with the exception of patients on active chemother-
apy, who showed reduced WBC counts, as expected. When
lymphocytes were segregated into subsets, we found comparable
counts for B cells (CD19þ ), NKT cells (CD56þ CD3þ ) and
T cells, either unsegregated or split into subsets (CD4þ , CD8þ or
double negative), across all cohorts of healthy donors and patients
(Figure 1B).

Then, we focused on NK cells. The percentage of NK cells in
lymphocytes was comparable in healthy donors and patients
(Figure 2A). Similarly, even if actual NK cell counts appeared
slightly reduced in all the patient cohorts, no statistically significant
differences were found (Figure 2B). In addition, NK cell expression
of CD16, the major receptor mediating ADCC, was preserved in
patients (Figure 2C).

Patients on before and post chemotherapy, but not on
active chemotherapy, show impaired CD16-independent NK
cell-mediated cytotoxicity. To assess the functional potential
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of NK cells in patients, we first investigated whether
antibody-independent cytotoxicity was intact by measuring the
ability of NK cells to kill the classical target cells K562 (Figure 4A).
NK cell cytotoxicity against the erythroleukaemic K562 cells is not
driven by CD16 but by a variety of activating receptors, such as
NKG2D (Chen et al, 2007). As shown in Figure 4B, pre- and
post-chemotherapy patients exhibited impaired killing capacity
when compared with controls. Conversely, patients actively
undergoing chemotherapy retained their killing capacity.

ADCC responses to GA201 were robust in healthy donors as
well as in all the patient cohorts. CD16-dependent cytotoxic
function (ADCC) of NK cells was assessed by measuring the
accumulation of CD107a (LAMP-1) from cytolytic granules at the
cell surface, as a result of degranulation. The EGFRþ epidermoid

carcinoma cell line A431 targeted by the anti-EGFR mAb GA201
was used to trigger ADCC (Figure 3A).

In both healthy donors and all patient cohorts, GA201 was able
to induce robust NK cell degranulation, whereas the IgG2a mAb
panitumumab was ineffective (Figure 3B). Importantly, ADCC in
pre-chemotherapy patients was as efficient as in patients actively
undergoing chemotherapy (Figure 3B). This suggests that the
impairment of patients’ NK cells noted above (Figure 4B) affects
only CD16-independent functions, sparing ADCC capabilities,
which are central to immunotherapeutic approaches based on
glyco-engineered mAbs. Moreover, while the magnitude of
responses of failures to two lines of chemotherapy was lower than
those of patients on pre-chemotherapy or on chemotherapy, it was
still substantially high in absolute terms.

Altogether, these findings indicate that immunotherapeutic
approaches exploiting ADCC in CRC patients may be viable even
in synergy with chemotherapy.

DISCUSSION

A large body of literature has demonstrated an accumulation of
inflammatory cells in the direct vicinity of solid tumours. Several
studies found that the infiltration of NK cells in malignant tumours
was associated with a favourable outcome (Coca et al, 1997;
Ishigami et al, 2000; Villegas et al, 2002; Menon et al, 2004). Others
highlighted that colorectal tumours were only sparsely infiltrated
by NK cells compared with cytotoxic T cells, despite loss of MHC
class I expression by the tumour cells (Sandel et al, 2005). This was
unusual in that NK cells, but not cytotoxic T cells, are in charge of
clearing MHC class I-negative targets (Raulet, 2006), leading the
authors to speculate that NK cell-escaping tumor variants had been
selected. As such, they suggest that an NK cell-centric immune
therapy approach may restore the contribution of the immune
system to tumour surveillance and control (Sandel et al, 2005).

ADCC-inducing mAbs precisely leverage NK cell cytotoxic
abilities. Most NK cells express high levels of the activating Fcg
receptor CD16, and we found this not to be impaired in patients
with metastatic CRC, either on or after chemotherapy. NK cell
levels themselves were, at most, only marginally affected (if at all)
by disease and/or therapy. This is of particular importance because
if NK cells were compromised by chemotherapy, then the benefit
provided by mAbs given in combination therapies would be
limited to the blockade of receptor signalling. Not only were NK
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cell levels normal but we also found that CD16-dependent
cytotoxicity was largely intact in patients’ NK cells, as demon-
strated by the ability of the ADCC-capable GA201 antibody to
elicit degranulation in a substantial fraction of NK cells. This
contrasts with the observation that CD16-independent natural
cytotoxicity was impaired in pre- and post-chemotherapy patients
(but not in patients actively undergoing chemotherapy, possibly
because chemotherapy-induced inflammation may have had a
stimulatory adjuvant effect on NK cells). It is entirely conceivable

that CD16-dependent and -independent functions are differentially
impacted upon by disease and/or therapy (Levy et al, 2011).
However, it may also be the case that the strong stimulation
provided by glyco-engineered antibodies is able to overcome, at
least to some degree, the impaired NK cell function, whereas the
lower magnitude of physiological activation triggered by K562 cells
could be inadequate in rescuing the functionally compromised
cells. Whatever may be the case, ultimately the data presented
show that NK cells can be targeted by immunotherapeutic
strategies.

The present study builds upon and extends previous important
observations. First, it is established that GA201 elicits amplified NK
cell-mediated ADCC when compared with non-engineered anti-
bodies, such as cetuximab (Gerdes et al, 2013). Second, such
ADCC enhancement has the potential to benefit those patients in
whom cetuximab is either partially or totally ineffective, such as
carriers of low-affinity CD16 polymorphism or KRAS gain-of-
function mutations, respectively (Wu et al, 1997; Mossner et al,
2010; Gerdes et al, 2013). The failure of cetuximab to benefit
patients with KRAS-mutated tumours (Lievre et al, 2006) suggests
that natural unmanipulated ADCC cannot act as a failsafe
mechanism when receptor blocking is not a viable therapeutic
option, providing further grounds to artificially enhancing ADCC
via bioengineering. Indeed, GA201 activity is robust irrespective of
the genetics of CD16 and KRAS (Gerdes et al, 2013). Furthermore,
we now show that GA201 is able to elicit NK cell activation
in patients, regardless of therapeutic stage (pre-treatment,
on active chemotherapy and following second-line failure post
chemotherapy). Our findings strongly support the need for
evaluation of enhanced-ADCC therapies in clinical trials of CRC
patients following two lines of chemotherapy and possibly even
patients on active chemotherapy.

Although we focused on anti-EGFR mAbs against CRC, in
principle our approach may be generalised. Indeed, a number of
malignancies are currently being targeted by mAb therapies,
from breast cancer (trastuzumab, anti-HER2/neu) to B-cell
lymphomas (rituximab, anti-CD20). Endowing ligand-blocking
mAbs with enhanced ADCC-triggering capabilities in such
diseases may prove beneficial. For instance, in the first stage of a
phase 3 study, obinutuzumab/GA101, a type 2 anti-CD20
antibody glyco-engineered using the same strategy behind
GA201, showed improvement of progression-free survival in
people with chronic lymphocytic leukaemia (Roche, 2013).
However, as mAb manipulation becomes increasingly common,
it brings the need of pre-emptively assessing NK cell functionality
in the particular disease under scrutiny, similarly to our present
investigation in the context of anti-EGFR therapy of CRC. This is
even more important because it is current clinical practice to
combine chemotherapy with mAbs. As biotechnology redefines
our current notion of drugs, classical clinical studies of effective-
ness will increasingly need to be accompanied by research
focusing on the underlying biological mechanism to provide
informative feedback supporting clinical decisions and/or techno-
logical refinement.
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