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ABSTRACT: Nutrient over-enrichment is one of the classic triggering mechanisms for the
occurrence of cyanobacteria blooms in aquatic ecosystems. In the Baltic Sea, cyanobacteria regularly
occur in the late summer months and form nuisance accumulations in surface waters and their
abundance has intensified significantly in the past 50 years attributed to human-induced
eutrophication. However, the natural occurrence of cyanobacteria during the Holocene is debated.
In this study, we present records of cyanobacteria pigments, water column redox proxies, and
nitrogen isotopic signatures for the past ca. 8000 years from Baltic Sea sediment cores. Our results
demonstrate that cyanobacteria abundance and nitrogen fixation are correlated with hypoxia
occurring during three main intervals: (1) ca. 7000−4000 B.P. during the Littorina transgression, (2)
ca. 1400−700 B.P. during the Medieval Climate Anomaly, and (3) from ca. 1950 A.D. to the present.
Issues of preservation were investigated, and we show that organic matter and pigment profiles are
not simply an artifact of preservation. These results suggest that cyanobacteria abundance is
sustained during periods of hypoxia, most likely because of enhanced recycling of phosphorus in low
oxygen conditions.

■ INTRODUCTION

The Baltic Sea, one of the largest brackish water bodies in the
world, is vulnerable to hypoxia (dissolved oxygen < 2 mg/L)
because of the limited bottom-water inflow of oxygenated
waters from the adjacent Kattegat. Widespread hypoxia in the
stratified water column1,2 maintains a ready resupply of
phosphorus from the sediments.3,4 Together with enhanced
denitrification, this leads to low surface water nitrogen/
phosphorus (N/P) ratios following the spring bloom, favoring
diazotrophic cyanobacteria blooms in the summer months.
Unlike most phytoplankton, which require both high N and P
conditions, diazotrophic cyanobacteria only require high P
concentrations because they are “N-fixing” and can produce
their own ammonia as a nutrient source from atmospheric N2
gas.5 Thus, diazotrophic cyanobacteria can flourish in the Baltic
Sea during strongly N-limiting conditions and usually form
blooms in the summer if the N/P ratio after the spring bloom is
below the Redfield ratio of 16.1,6 In addition to low N/P ratios,
the prevalence of cyanobacteria is also influenced by other
environmental factors, such as light attenuation, water temper-
atures (which must be >15 °C for blooms to occur), and
vertical mixing.7

Cyanobacteria have been shown to provide a positive
feedback to eutrophication, by supplying new N to the system
and enhancing the downward flux of degradable organic matter
from surface waters, which elevates oxygen consumption and
the regeneration of phosphate.2 Moreover, some species are
toxic, and they are, therefore, problematic for recreation and

fisheries.2 Because of these negative effects of cyanobacteria
blooms, some scientists argue that efforts should be made to
reduce their abundance and their contribution to the
phytoplankton community.8 Others argue that cyanobacteria
are a characteristic, natural feature of the Baltic Sea.9

Cyanobacteria have been shown to be present in the Baltic
Sea since around 7000 years B.P.,9,10 but the triggers to past
cyanobacteria blooms remain unclear. An improved under-
standing of the controls on cyanobacteria blooms will assist in
developing solutions to reduce their occurrence in the future. In
this study, we examine the presence of cyanobacteria pigments
in sediment cores and compare these to proxies for past redox
conditions to determine if there is a link between cyanobacteria
and hypoxia in the Baltic Sea during the Holocene.

■ MATERIALS AND METHODS
Sediment cores were taken with R/V Aranda in May/June
2009. Multi-cores (collecting the top 30 cm of the sediment)
and gravity cores (collecting ∼4.5 m of sediment) were
obtained at two sites in the Baltic Sea (Figure 1): LL19 in the
Northern Gotland Basin (58.8807° N, 20.3108° E, and 169 m
water depth) and F80 in the Far̊ö Deep (58.0000° N, 19.8968°
E, and 191 m water depth). These sites were selected because
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we expected continuous accumulation of sediment in these
deep basins over the Holocene. Multi-cores were sampled
immediately in a nitrogen-filled glovebox. Gravity cores were
cut into 1 m sections and stored in the dark at 4 °C. Gravity
cores were subsampled in a nitrogen-filled glovebox in a dark
lab for pigment analyses. Sample resolution varied between 1
and 5 cm, and the sample selection for each analysis varied

slightly because of the availability of material. Subsamples were
freeze-dried and homogenized with a mortar and pestle.
Multi-core and gravity core data were combined on the basis

of overlaps in the geochemical profiles. The age models for
both sites were constructed using a combination of 210Pb dating
for multi-cores and tuning of the gravity core Corg profiles to
the loss on ignition (LOI) profile of core 372740-3 from the
Gotland Deep.11 Core 372740-3 was independently dated by
identification of two Pb pollution isochrones12 and 10
paleomagnetic secular variation features (see the Supporting
Information for more details on the construction of the age
models for LL19 and F80 and errors in absolute age estimates).
To determine the ratio of molybdenum/aluminum (Mo/Al,

%/%), sediment samples were dissolved in HF (40%) and a
HClO4/HNO3 mixture in a closed Teflon bomb at 90 °C for
12 h. The acids were evaporated at 190 °C. The resulting gel
was redissolved in HNO3 and analyzed by inductively coupled
plasma−optical emission spectroscopy (ICP−OES) for Mo and
Al (precision and accuracy < 5%). For total percent carbon and
δ15N measurements, samples were analyzed using a Carlo Erba
NC2500 analyzer connected to a Finnigan MAT Delta V mass
spectrometer. The reproducibility was better than 0.15‰ for
δ15N and <1% for total percent carbon.
For pigment analysis, sediment samples were mixed with

cold high-performance liquid chromatography (HPLC)-grade
acetone/methanol/Milli-Q water (80:15:5%), sonicated, and
stored in a freezer (−20 °C) overnight. Extracts were
centrifuged and filtered (0.45 μm) and then were quantitatively
analyzed by HPLC on a Shimadzu Prominence HPLC
equipped with an online photodiode array detector (SPD-

Figure 1. Map of the Baltic Proper showing the principle sub-basins,
water depth, and locations of the cores collected in the Gotland Basin
for this study: LL19 in the Northern Gotland Basin (58.8807° N,
20.3108° E, and 169 m water depth) and F80 in the Far̊ö Deep
(58.0000° N, 19.8968° E, and 191 m water depth). Multi-cores
(surface of ∼40 cm) and gravity cores (∼450 cm) were collected at
both sites. Bathymetric and coastline data are presented in Miller
cylindrical projection, taken from the General Bathymetric Chart of
the Ocean (GEBCO) Digital Atlas.43

Figure 2. Proxy profiles as a function of time in years B.P. for Northern Gotland Deep (LL19, black line) and Far̊ö Deep (F80, blue line). From left
to right: molybdenum/aluminum (%/%) (euxinia proxy), total percent carbon (productivity proxy), zeaxanthin and echinenone (micromoles of
pigment per gram of sediment normalized to total percent carbon) (cyanobacteria biomarkers), δ15N versus air (‰) (indicator of N fixation), and
pheophytin a/chlorophyll a (mole ratio) (degradation proxy). The colored bars denote three intervals of hypoxia as determined by the occurrence of
extensive laminated sediments: green, Littorina Transgression (7000−4000 years B.P.); purple, Medieval Climate Anomaly (1400−700 years B.P.);
and orange, modern hypoxic period (∼60 years B.P. at F80 and ∼30 years B.P at LL19; present = A.D. 2010).
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M20A PDA) and an autosampler (Sil-10AF). The run program
was programed as described by Reuss and Conley.13

Coefficients of determination (R2) were calculated between
the complete data series of δ15N and each of the other
sedimentary proxies (total percent carbon, echinenone,
zeaxanthin, and Mo/Al) (n = 194). Because the sample
selection varied per analysis, data series were interpolated
between age 15 and 7700 years B.P. and points were extracted
at every 50 years (n = 154) for calculation of the coefficients of
determination and p values. Data were analyzed using the R
statistical program (R 2.15.2).

■ RESULTS AND DISCUSSION

Laminated sediments, indicative of hypoxic conditions, were
observed during three intervals of the Holocene sedimentary
record at the two sites: the Littorina Transgression, the
Medieval Climate Anomaly (MCA), and the modern hypoxic
interval. These intervals were also characterized by enhanced
sedimentary Mo/Al (Figure 2). This proxy tracks the intensity
of reducing conditions close to the sediment−water interface,14
because of the conversion of seawater MoO4

2− to particle-
reactive thiomolybdates above a critical activity of hydrogen
sulfide.15 Hence, our records indicate intermittent euxinic (i.e.,
sulfidic) conditions in the bottom waters of the deep basins
during the Holocene (Figure 2). The hypoxic intervals are also
characterized by enhanced organic carbon (Corg) contents,
which we attribute to both enhanced preservation of organic
matter under reducing conditions and enhanced primary
productivity during the hypoxic intervals. Enhanced primary
productivity was likely sustained by sedimentary phosphorus
release under anoxic conditions, as shown by numerous
studies.3,15−17 The centennial-scale oscillations in hypoxia
during the Littorina Transgression and MCA were recently
suggested to be related to shifts in the North Atlantic
Oscillation (NAO) and amplified by internal feedbacks in the
phosphorus cycle of the Baltic Sea.16 That study also showed
that the replacement time of the Baltic Sea is sufficiently short
for Mo/Al to be unaffected by reservoir effects and that Mo/Al
varies in concert with organic carbon to total phosphorus
(Corg/Ptot) ratios, confirming the role of phosphorus regener-
ation in sustaining hypoxia.
During the hypoxic intervals, we observe higher carbon-

normalized concentrations of cyanobacteria pigments in the
sediments (zeaxanthin and echinenone; Figure 2). The pigment
concentrations also vary in concert with the centennial-scale
oscillations in Mo/Al. Furthermore, δ15N signatures are
inversely related to total carbon, pigment concentrations, and
Mo/Al, indicating enhanced N fixation during hypoxic
intervals.17 In combination, these results suggest that N-fixing
cyanobacteria were more prevalent during intervals of hypoxic

conditions in the Baltic Sea and less so during the intervening
oxic intervals (see Table 1 for statistics).
Organic matter is often better preserved in anoxic sediments

because of the comparatively slow rate of microbial degradation
in the absence of oxygen.18 To examine if our cyanobacteria
abundance trends are influenced by preservation artifacts, we
calculated the molar ratio of pheophytin a/chlorophyll a
(pheophytin a/chl a).19 Pheophytin a is a degradation product
of chlorophyll a; hence, low values of this ratio indicate good
preservation of the initial material, and high values indicate
poor preservation of the initial material. As shown in Figure 2,
pheophytin a/chl a molar ratios show no systematic relation-
ship (F80, r2 = 0.026 and p value = 0.031; LL19, r2 = 0.026 and
p value = 0.029) with redox conditions, as represented by Mo/
Al. These observations suggest that changes in the pigment
concentration in the sediments are dominantly controlled by
changes in the initial flux of the pigments to the sediments, i.e.,
by cyanobacteria abundance in the surface waters, and less by
preferential preservation effects after sedimentation.
Three prominent intervals of frequent hypoxia and high

cyanobacteria abundance occurred in the past ca. 7500 years.
The first and longest of these, the Littorina Transgression (ca.
7000−4000 B.P.), followed the seawater intrusion through the
Danish straits, which transformed the freshwater Ancylus Lake
to the brackish Littorina Sea.20 This intrusion of seawater
increased the stratification of the water column of the Baltic Sea
and has been hypothesized to be the primary cause of deep-
water hypoxia during this interval.21 It is likely that widespread
hypoxia and euxinia in bottom waters stimulated sediment-
bound P to be released into the water column,9,22,23 and the
low N/P conditions created an ideal environment for
diazotrophic cyanobacteria to thrive.9 The highest ratio
between zeaxanthin and β-carotene (unpublished data), which
is an indicator of the proportion of cyanobacteria in the
phytoplankton community, was observed following seawater
intrusion, as seen in previous studies (e.g., see refs 4 and 9).
Additionally, this period coincides with the Holocene Thermal
Maximum (HTM) when warmer surface waters may have
favored cyanobacteria blooms. Around ca. 4000 B.P., the
Littorina Sea stabilized and salinity decreased because of the
reduction in the depth of the Danish straits, increasing vertical
mixing and replenishing oxygen to the deep basins.24 This shift
reduced surface water phosphate concentrations and increased
the N/P ratio, making conditions less favorable to diazotrophic
cyanobacteria after ca. 4000 B.P.8

Hypoxia and high productivity was again observed ca. 1400−
700 B.P. during the MCA (Figure 2). Several important factors
may have contributed to hypoxia during this interval. First,
northern Europe experienced milder winters because of a
persistently positive phase of the NAO climate mode.25 This
increase in winter temperatures may have been sufficient to

Table 1. Correlation Statistics between the Biomarkers: Mo/Al, Total Percent Carbon, Zeaxanthin, Echinenone, and δ15N (n =
154)a

aSignificant inverse relationships (p < 0.001) between δ15N and other biomarkers were calculated for both sites: Northern Gotland Deep (LL19) (in
bold) and Far̊ö Deep (F80) (not in bold).
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increase thermal stratification, hence decreasing bottom-water
oxygen concentrations and stimulating the release of P from the
sediments. As during the HTM, the warmer temperature of the
MCA may also have favored cyanobacteria.26 Second, the
population for many of the countries in the Baltic Sea
watershed (i.e., Denmark, Germany, Poland, and Sweden)
nearly doubled within 300 years,27 leading to a change in land
use28 and increased terrestrial nutrient runoff.29 The con-
sequent spread of hypoxia in the Baltic Sea re-established the
conditions required for diazotrophic cyanobacteria to thrive.
During the Little Ice Age (LIA), which followed the MCA,

the NAO shifted to a more persistently negative phase.25 This
may have led to an increase in storm frequency30 and cooler sea
surface temperatures in the Baltic Sea.26,31 In addition, the
population decreased during the 14th century when the
bubonic plague (Black Death) and famine hit Europe. For
example, the Swedish population is estimated to have decreased
approximately by one-third during this time,32 leading to a 30−
50% farm abandonment in some parts of Sweden.33 This could
potentially have caused a decrease in nutrient runoff into the
Baltic Sea. In combination, these conditions were less favorable
for hypoxia and cyanobacteria blooms.
The onset of modern hypoxic conditions in the late 20th

century at both sites is directly linked to excess nutrient loading
from agricultural activities and urban development in the past
century.34,35 From 1850 to 1980, N and P loads in the Baltic
Sea increased on average 4.5-fold.36 In the spring, algal blooms
thrive in these highly nutrient-enriched waters. Sedimentation
of the spring bloom, in addition to organic matter runoff,
increases microbial respiration, resulting in hypoxia and
creating an ideal environment for cyanobacteria blooms to
form in the summer months.37 Current climate change likely
intensifies hypoxia26 because of the reduction in vertical mixing
of the water column, therefore favoring cyanobacteria blooms.38

■ PERSPECTIVES

By reconstructing long-term trends, we conclude that multiple
stressors, including climate variability, stratification, and
anthropogenic activity, have influenced the occurrence of
hypoxia in the Baltic Sea at different times during the
Holocene. However, each hypoxic interval has been charac-
terized by abundant cyanobacteria blooms, implying a close
coupling between the two phenomena. Because of the
limitations of sampling resolution, it remains difficult to
determine the exact sequence of events at the onset of each
hypoxic interval, i.e., the potential lead lag between hypoxia and
cyanobacteria blooms. Theoretically, an external input of P
could trigger cyanobacteria blooms by lowering surface water
N/P ratios, leading to increased oxygen demand and hypoxia.
Alternatively, hypoxia could be triggered by a change in
stratification, leading to sedimentary P release and favoring
cyanobacteria blooms. However, it is clear that once hypoxia is
established, efficient phosphorus regeneration from sediments
and cyanobacteria are closely coupled,39,40 sustaining a
“vicious” circle of eutrophication.2

Recent observations and models suggest that hypoxic and
suboxic regions of many marine and freshwater systems are
likely to expand and become shallower with warmer temper-
atures.41 Hence, lakes,38 marine waters above oxygen minimum
zones,42 and the Baltic Sea as reported here may all experience
expanded hypoxia in the future. Coupled to the stress of
anthropogenic nutrient loading and climate change, this global

expansion of hypoxia may be expected to drive an increase in
the global prevalence of cyanobacteria blooms.
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