Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 30;93(9):4187–4191. doi: 10.1073/pnas.93.9.4187

Molecularly engineered resistance to California serogroup virus replication in mosquito cells and mosquitoes.

A M Powers 1, K I Kamrud 1, K E Olson 1, S Higgs 1, J O Carlson 1, B J Beaty 1
PMCID: PMC39509  PMID: 8633038

Abstract

Introduction of genetic elements derived from a viral pathogen's genome may be used to reduce the vectorial capacity of mosquitoes for that virus. A double subgenomic Sindbis virus expression system was utilized to transcribe sequences of LaCrosse (LAC) virus small (S) or medium (M) segment RNA in sense or antisense orientation; wild-type Sindbis and LaCrosse viruses have single-stranded RNA genomes, the former being positive sense and the latter being negative sense. Recombinant viruses were generated and used to infect Aedes albopictus (C6/36) mosquito cells, which were challenged with wild-type LAC virus and then assayed for LAC virus replication. Several recombinant viruses containing portions of the LAC S segment were capable of inducing varying degrees of interference to the challenge virus. Cells infected with TE/3'2J/ANTI-S virus, expressing full-length negative-sense S RNA of LAC virus, yielded 3-6 log10TCID50 (tissue culture 50% infective dose) less LAC virus per ml than did cells infected with a double subgenomic sindbis virus containing no LAC insert. When C6/36 cells infected with TE/3'2J/ANTI-S were challenged with closely related heterologous bunyaviruses, a similar inhibitory effect was seen. Adult Ae. triseriatus mosquitoes infected with TE/3'2J/ANTI-S were also resistant to challenge by LAC virus. Organs that were productively infected by the double subgenomic Sindbis virus expressing the LAC anti-S sequences demonstrated little LAC virus or antigen. These studies indicate that expression of carefully selected antiviral sequences derived from the pathogen's genome may result in efficacious molecular viral interference in mosquito cells and, more importantly, in mosquitoes.

Full text

PDF
4187

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaty B. J., Bishop D. H., Gay M., Fuller F. Interference between bunyaviruses in Aedes triseriatus mosquitoes. Virology. 1983 May;127(1):83–90. doi: 10.1016/0042-6822(83)90373-2. [DOI] [PubMed] [Google Scholar]
  2. Beaty B. J., Thompson W. H. Delineation of La Crosse virus in developmental stages of transovarially infected Aedes triseriatus. Am J Trop Med Hyg. 1976 May;25(3):505–512. doi: 10.4269/ajtmh.1976.25.505. [DOI] [PubMed] [Google Scholar]
  3. Bejarano E. R., Lichtenstein C. P. Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses. Plant Mol Biol. 1994 Jan;24(1):241–248. doi: 10.1007/BF00040592. [DOI] [PubMed] [Google Scholar]
  4. Besansky N. J., Collins F. H. The mosquito genome: organization, evolution and manipulation. Parasitol Today. 1992 Jun;8(6):186–192. doi: 10.1016/0169-4758(92)90262-z. [DOI] [PubMed] [Google Scholar]
  5. Chanas A. C., Gould E. A., Clegg J. C., Varma M. G. Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis. J Gen Virol. 1982 Jan;58(Pt 1):37–46. doi: 10.1099/0022-1317-58-1-37. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Crampton J., Morris A., Lycett G., Warren A., Eggleston P. Transgenic mosquitoes: a future vector control strategy? Parasitol Today. 1990 Feb;6(2):31–36. doi: 10.1016/0169-4758(90)90057-b. [DOI] [PubMed] [Google Scholar]
  8. Fitchen J. H., Beachy R. N. Genetically engineered protection against viruses in transgenic plants. Annu Rev Microbiol. 1993;47:739–763. doi: 10.1146/annurev.mi.47.100193.003515. [DOI] [PubMed] [Google Scholar]
  9. Gubler D. J., Rosen L. A simple technique for demonstrating transmission of dengue virus by mosquitoes without the use of vertebrate hosts. Am J Trop Med Hyg. 1976 Jan;25(1):146–150. doi: 10.4269/ajtmh.1976.25.146. [DOI] [PubMed] [Google Scholar]
  10. Hahn C. S., Hahn Y. S., Braciale T. J., Rice C. M. Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2679–2683. doi: 10.1073/pnas.89.7.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hemingway J. Genetics of insecticide resistance in mosquito vectors of disease. Parasitol Today. 1992 Sep;8(9):296–298. doi: 10.1016/0169-4758(92)90099-n. [DOI] [PubMed] [Google Scholar]
  12. Higgs S., Powers A. M., Olson K. E. Alphavirus expression systems: applications to mosquito vector studies. Parasitol Today. 1993 Dec;9(12):444–452. doi: 10.1016/0169-4758(93)90098-z. [DOI] [PubMed] [Google Scholar]
  13. Jacoby D. R., Cooke C., Prabakaran I., Boland J., Nathanson N., Gonzalez-Scarano F. Expression of the La Crosse M segment proteins in a recombinant vaccinia expression system mediates pH-dependent cellular fusion. Virology. 1993 Apr;193(2):993–996. doi: 10.1006/viro.1993.1213. [DOI] [PubMed] [Google Scholar]
  14. Kamrud K. I., Powers A. M., Higgs S., Olson K. E., Blair C. D., Carlson J. O., Beaty B. J. The expression of chloramphenicol acetyltransferase in mosquitoes and mosquito cells using a packaged Sindbis replicon system. Exp Parasitol. 1995 Nov;81(3):394–403. doi: 10.1006/expr.1995.1130. [DOI] [PubMed] [Google Scholar]
  15. Kamrud K. I., Schmaljohn C. S. Expression strategy of the M genome segment of Hantaan virus. Virus Res. 1994 Jan;31(1):109–121. doi: 10.1016/0168-1702(94)90074-4. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Olson K. E., Higgs S., Hahn C. S., Rice C. M., Carlson J. O., Beaty B. J. The expression of chloramphenicol acetyltransferase in Aedes albopictus (C6/36) cells and Aedes triseriatus mosquitoes using a double subgenomic recombinant Sindbis virus. Insect Biochem Mol Biol. 1994 Jan;24(1):39–48. doi: 10.1016/0965-1748(94)90121-x. [DOI] [PubMed] [Google Scholar]
  19. Powers A. M., Olson K. E., Higgs S., Carlson J. O., Beaty B. J. Intracellular immunization of mosquito cells to LaCrosse virus using a recombinant Sindbis virus vector. Virus Res. 1994 Apr;32(1):57–67. doi: 10.1016/0168-1702(94)90061-2. [DOI] [PubMed] [Google Scholar]
  20. Rayms-Keller A., Powers A. M., Higgs S., Olson K. E., Kamrud K. I., Carlson J. O., Beaty B. J. Replication and expression of a recombinant Sindbis virus in mosquitoes. Insect Mol Biol. 1995 Nov;4(4):245–251. doi: 10.1111/j.1365-2583.1995.tb00030.x. [DOI] [PubMed] [Google Scholar]
  21. Rice C. M., Levis R., Strauss J. H., Huang H. V. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol. 1987 Dec;61(12):3809–3819. doi: 10.1128/jvi.61.12.3809-3819.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sundin D. R., Beaty B. J. Interference to oral superinfection of Aedes triseriatus infected with La Crosse virus. Am J Trop Med Hyg. 1988 Mar;38(2):428–432. doi: 10.4269/ajtmh.1988.38.428. [DOI] [PubMed] [Google Scholar]
  23. Wilson T. M. Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3134–3141. doi: 10.1073/pnas.90.8.3134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de Haan P., Gielen J. J., Prins M., Wijkamp I. G., van Schepen A., Peters D., van Grinsven M. Q., Goldbach R. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology (N Y) 1992 Oct;10(10):1133–1137. doi: 10.1038/nbt1092-1133. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES