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Prostate cancer (PCa) is the most common cancer—excluding skin tumors—in men older than 50 years of age. Over time, the
ability to diagnose PCa has improved considerably, mainly due to the introduction of prostate-specific antigen (PSA) in the clinical
routine. However, it is important to take into account that although PSA is a highly organ-specific marker, it is not cancer-specific.
This shortcoming suggests the need to find new and more specific molecular markers. Several emerging PCa biomarkers have been
evaluated or are being assessed for their potential use. There is increasing interest in the prospective use of extracellular vesicles
as specific markers; it is well known that the content of vesicles is dependent on their cellular origin and is strongly related to the
stimulus that triggers the release of the vesicles. Consequently, the identification of a disease-specific molecule (protein, lipid or
RNA) associated with vesicles could facilitate their use as novel biological markers. The present review describes several in vitro
studies that demonstrate the role of vesicles in PCa progression and several in vivo studies that highlight the potential use of vesicles

as PCa biomarkers.

1. Prostate Cancer

The prostate is an exocrine gland in the male reproduc-
tive system that is responsible for the production of semi-
nal/prostatic fluid, a liquid that usually constitutes 50-70%
of the semen volume (along with seminal vesicle fluid and,
of course, spermatozoa) [1]. The mature prostate gland is
composed of columnar and polarized cells lining the prostatic
lumen and more elongated basal epithelial cells that separate
the lumen from the stroma [2, 3]; both basal and luminal
epithelial cells can mutate, thus causing prostate cancer (PCa)
(2].

As with all types of cancer, PCa is the result of genetic
and epigenetic alterations that induce transformations of
normal glandular epithelia [4]. The dysregulation of many
molecules and genes has been implicated in PCa; some of
these molecules (e.g., NKX3.1, FOXAI, and Myc) seem to
be relevant for cancer initiation because their expression is
altered during the early stages; other pathways (TMPRSS2-
ERG and RB) seem to be involved in the transition from
PCa to CRPC. The PI3 K, Akt, PTEN, and mTOR are always
dysregulated in PCa [2].

With regard to epigenetic alterations, both hypo- and
hypermethylation are well documented. Hypermethylation
is common in PCa and is believed to play a role in PCa
initiation and progression; hypermethylation of the GSTPI
gene promoter (which can involve the 5V region or CpG
islands) is a highly specific marker for PCa, but it lacks
sensitivity [5]. The dysregulation of gene expression in PCa
appears to be due to changes in chromatin remodeling
as well as posttranslational modifications of histones, with
several histone-modifying enzymes (namely, HDACs, HMTs,
and HDMs) being altered. Changes in miRNA levels are
also important in PCa progression, as demonstrated by the
role of miRNAs in blocking apoptosis, cell-cycle promotion,
migration, invasion, and the maintenance of androgen-
independent growth [6, 7].

Among nonskin cancers, PCa is the most common cancer
in men older than 50 years of age [8, 9]. The etiology of
PCa has not been fully elucidated; however, its risk factors
are well-established and include age (incidence and mortality
rates increase exponentially after 50 years of age), ethnicity
(African Americans have the highest rates), and a family
history of PCa (men with fathers or brothers affected by
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PCa have double the risk of developing this form of cancer)
[8,10, 11]. Other risk factors are likely involved, such as genetic
susceptibility, and there is strong evidence from migrant
studies that hormones, smoking, diet, sexual factors, and
other lifestyle factors also play roles in the development of
PCa|[8,10,12,13]; among all of these risk factors, diet seems to
play a major role in the initiation, promotion, and progression
of prostate cancer [13].

PCa incidence rates are generally higher in North Amer-
ica when compared to Western Europe, Oceania, and Asia,
but the rates have increased considerably worldwide during
the past half century, largely due to the advent of prostatic
specific antigen (PSA) testing and its increased use, which
has greatly improved diagnosis of this pathology and has
highlighted an increased number of cases [14, 15]. At the
same time, the extensive use of PSA screening accounts for a
great reduction in the proportion of men who present with
metastatic disease at the time of diagnosis and the lower
mortality rate in some populations [16].

PSA is a serine protease that was first identified in 1966
in seminal fluid; in 1979, its role as tumor marker was first
described. Some years later, it was approved by the U.S.
Food and Drug Administration for monitoring the disease
status of recurrence after definitive treatment in men with
PCa, and it is now used to identify men with PCa. It seems,
moreover, that PSA can even identify men who are at risk
of developing PCa [17, 18]. PSA exists in the bloodstream
in several specific forms, including free and complexed
(e.g., a-l-antichymotrypsin) forms; free PSA is composed of
three isoforms: i-PSA (inactive PSA), pro-PSA (proenzyme
PSA),and BPH-PSA (benign prostatic hyperplasia-PSA). The
measurement of total PSA and its specific forms can help to
differentiate between malign (PCa) and benign conditions
(17, 18].

In the blood of patients with either benign prostatic
hyperplasia (BPH) or PCa, the prevailing form is the com-
plexed form, whereas the ratio of free/total PSA is lower in
PCa than in BPH. BPH-PSA and i-PSA are relatively more
abundant than pro-PSA in BPH, whereas in PCa, the reverse
is observed [17, 18]. It seems that higher levels of pro-PSA are
associated with a higher risk for PCa in men with total PSA
levels of 4-10 ng/mL [19] and with more aggressive forms of
PCa, as characterized by Gleason scores >7 or extracapsular
tumor extension [20]. The Gleason score is used to grade
PCa, and it is based on the microscopic appearance of cancer
tissue, which takes into account the differentiation grade
of the tissue. Cancers with higher Gleason scores are more
aggressive and have worse prognoses than cancers with lower
scores [21].

PSA analysis in serum accompanied by digital rectal
examination has been the standard method for PCa screen-
ing. Although PSA is highly organ-specific, it is not a cancer-
specific marker because it cannot distinguish among indolent
PCa, aggressive PCa, and benign conditions (e.g., prostate
inflammation is characterized by increased levels of PSA)
(18, 22]. PSA levels can even be altered by ejaculation, drugs,
or prostate manipulation (particularly by catheterization or
prostatic massage), thus contributing to false positives that
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lead to unnecessary biopsies or other clinical interventions
(17, 23].

Nevertheless, in the last few years, mortality specifically
attributable to PCa decreased in some countries (such as the
US, Canada, Germany, Italy, Switzerland, France, and Spain).
As already stated, this decrease is likely due to the introduc-
tion of PSA screening, which allows the detection of PCaat an
early stage, allowing early curative treatments and improving
clinical outcomes. At the same time, new surgical approaches,
improved irradiation protocols, and antiandrogenic therapies
likely have contributed to mortality decrease as well [24].
Antiandrogenic therapy is important because PCa depends
on androgen receptor activity at all stages; standard treatment
strategies for disseminated cancer are based on targeting
this pathway using androgen deprivation therapy (ADT) or
androgen receptor antagonists. Despite such interventions, a
successful treatment effect is often followed by reactivation of
the androgen receptors, leading to a recurrence of PCa (so-
called “castrate-resistant PCa” or CRPC) [2].

2. Extracellular Vesicles

It is now widely known that cells are able to release several
types of extracellular vesicles [25-28] that are not merely
a form of waste elimination, as it was thought when they
were discovered; instead, they act as signaling packages and
are able to affect neighboring cells and the surrounding
microenvironment with the messages they convey [29]. The
involvement of extracellular vesicles in various physiological
and pathological events, such as the immune response,
cellular differentiation, and vascular and cancer pathologies,
is also clear [30]. How extracellular vesicles interact with
target cells remains to be fully elucidated, even if several
hypotheses have been proposed—for example, direct cellular
contact mediated by the interaction of membranes with
target cell receptors, fusion with the plasma membrane, or
encapsulation by endocytosis [26, 31].

Usually, extracellular vesicles can be isolated in vivo
from all bodily fluids (e.g., blood, urine, semen, amniotic
fluid, saliva, synovial and bronchoalveolar fluids, breast milk,
spinal fluid, ascites, and malignant pleural effusion) [22, 32],
particularly if they are exposed to primary tumors [33, 34].

The most important extracellular vesicles released from
cells are apoptotic bodies, exosomes, and shed microvesicles
(MVs) (Figure 1) [25-27]. Extracellular vesicles differ mainly
in their cellular origins and sizes. Apoptotic bodies are
released from the cell membrane as the final consequence of
cell fragmentation during apoptosis, and they have irregular
shapes with a range of 1-5 ym in size [26, 27]. Exosomes are
released by the fusion of multivesicular bodies (MVB) with
the plasma membrane and are 30-100 nm in size [26, 27].
Shed MVs are released through regulated outward budding
or blebbing of the plasma membrane; they are heterogeneous
in shape and are 100-1,000 nm in size [26, 27].

In addition to the well-defined differences in cell origin
and size, extracellular vesicles can also exhibit differences
or show overlapping features in their molecular composi-
tions and functions. We will further discuss exosomes and
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FIGURE 1: Schematic view of exosomes and microvesicles being
released from a cell.

MVs, which are released from viable cells and are primarily
involved in cell-to-cell communication.

The membranes of exosomes are composed of several
lipids, including cholesterol, ceramide, and sphingomyelin,
and they are specifically characterized by low levels of
phosphatidylserine exposure [26]. The contents of exosomes
include mRNA, microRNA (miRNA), and several proteins
(ranging from cytoskeletal proteins and adhesion molecules
to proteins involved in signal transduction, transcription
regulation, and antigen presentation) [35, 36].

Exosomes, secreted both in vitro and in vivo, are involved
in intercellular communication in both physiological as well
as pathological processes (i.e., cancer) [27, 37] with the
following effects.

(i) Immune system modulation. Exosomes are variously
involved in immune system functions and show either
stimulatory or inhibitory effects, acting in antigen
presentation or mediating immune tolerance [38, 39].
Exosomes constitutively released from syncytiotro-
phoblasts, for example, play a role in promoting
fetal survival, contributing to other mechanisms that
provide maternal immune tolerance of a fetus [40].

(ii) Regulation of neuronal cell functions. Some authors
have suggested that exosomes from microglia may
provide an effective means of intercellular neural
communication, which would be very useful con-
sidering the limited motility of such cells [41]. It
has also been shown that exosomes released from
oligodendroglial cells seem to be involved in the
trophic support of axons and to contribute to a
balanced production of proteins and lipids for myelin
[42].

(iii) Cancer progression. Tumor cells release exosomes,
which can contribute to metastasis and cancer pro-
gression. Exosomes are involved in adhesion to the
substratum, an important feature for metastatic cells

[43], and in angiogenesis induction [44]; moreover,
they contain and deliver prooncogenic miRNA to
target cells [45]. Adipose tissue-derived mesenchy-
mal stem cells treated with tumor-derived exosomes
adopt a myofibroblast phenotype, and myofibroblasts
are important tumor-supporting cells [46]; Fas-L-
expressing exosomes induce apoptosis in T cells,
playing a role in tumor immune evasion [39]. Exo-
somes are also involved in drug resistance: in drug-
resistant human ovarian carcinoma cells, higher cis-
platin export via exosomes has been observed [47].

MVs membranes are characterized by high levels of
phosphatidylserine, which is translocated from the inner
to the outer surface leaflet [25], and their cargo includes
proteins (e.g., enzymes, growth factors, growth factor recep-
tors, cytokines, and chemokines), lipids, and nucleic acids
(mRNA, miRNA, ncRNA, and genomic DNA) [48, 49].
Several studies of the molecular characterization of MVs
have suggested that MVs are not simply miniature versions
of the parental cells; instead, they show both similarities
and differences with respect to the molecular composition
of their cells of origin [25, 50]. For example, MVs from
human gliomas contain a multitude of molecules that are
not detectable or are expressed in different amounts in the
parental cells from which they originate [49]. MVs have
been widely studied both in normal cell types (including
platelets, red blood cells, and endothelial cells) and, more
frequently, in cancer cells [27, 51-53] for their well-established
role in cancer progression. Indeed, MV's contribute to cancer
progression in different ways [28], as described below.

(i) Contribution to the proinvasive characteristics of
cancer cells. Tumor progression and invasion depend
on the ability to modify the extracellular matrix. MV's
appear to promote the proteolytic cascade required
for the localized degradation of the extracellular
matrix through the involvement of lytic enzymes,
such as uPA, MMPs, and cathepsins, which are
contained in MV [53-57].

(ii) Apoptosis evasion. Since MV's contain caspase 3, one
of the main apoptotic enzymes, it has been suggested
that tumor cells may escape apoptosis by releasing
MVs enriched with caspase 3, thus preventing its
intracellular accumulation [58].

(iii) Induction of transformation. MVs derived from
human cancer cells (e.g., breast carcinoma and glioma
cells) are able to transform normal fibroblasts and
epithelial cells to adopt typical cancer cell char-
acteristics (e.g., anchorage-independent growth and
enhanced survival capability) through the transfer of
the tissue-transglutaminase enzyme [59].

(iv) Drug resistance. Some antitumoral drugs accumulate
in MVs and are expelled through them [60].

(v) Contribution to immunoescape. MVs mediate inter-
actions between cancer and immune cells to modulate
the immune response. MVs can carry Fas ligand,
resulting in T-cell apoptosis and consequently pre-
venting their cytotoxic effects on tumor cells [61].



The fusion of MVs from human melanomas and
colorectal carcinomas with monocytes inhibits differ-
entiation and promotes immunosuppressive cytokine
release [62]. MV-associated CD46, a membrane com-
plement inhibitor, helps cancer cells to escape from
complement-induced lysis [63].

(vi) Induction of angiogenesis. It is well known that tumor
growth and survival depend on the formation of new
blood vessels (i.e., angiogenesis) that infiltrate the
tumor mass [64]. MV-associated EGFR can activate
the VEGF/VEGEFR pathway in endothelial cells [65];
MVs are a rich source of proangiogenic growth
factors, such as VEGE, FGF-2, and proteases (e.g.,
uPA, MMPs, and cathepsin B) [52, 53, 66-69], and of
the MMP stimulant EMMPRIN ([70]. Lytic enzymes
can favor angiogenesis and new vessel formation by
carrying out degradation of the basal membrane and
the extracellular matrix.

Therefore, despite clear differences in cell origins and size
ranges, the specific functions and features of the different
extracellular vesicle subpopulations are often overlapping
and ambiguous; moreover, difficulties related to the available
isolation techniques make it difficult to precisely separate the
subpopulations of MVs, thereby preventing the investigation
of their specific characteristics.

To further amplify the confusion about the identity of
the vesicle subpopulations, in seminal/prostatic fluid, another
population of vesicles called prostasomes is present [22].
Prostasomes are derived from the prostate gland and are
present in high concentrations in seminal/prostatic fluid; they
range in size from 50 to 500 nm (with a mean diameter
of 150 nm) [22]. Prostasomes share origins with exosomes
because they are stored in the MVBs of epithelial cells lining
the acinar ducts of the prostate gland and are released after
MVB fusion with the cell membrane [71]. Despite their
overlapping origins, exosomes and prostasomes differ not
only in size (as already mentioned) but also in composition:
the membrane surrounding prostasomes has a specific com-
position with a higher concentration of cholesterol and sph-
ingomyelin and a substantially high cholesterol/phospholipid
ratio when compared to exosomes [22, 72, 73]. Further-
more, exosomes are usually characterized by a bilayer of
membranes, whereas prostasomes can have a multilayer
membrane [74]. Moreover, in prostasomes, chromosomal
DNA, which appears to be absent in exosomes, has been
reported [71, 75]. In addition to lipids and DNA, the cargo of
prostasomes could also consist of proteins, such as enzymes,
transport proteins, structural proteins, signal transduction
proteins, and GTP-binding proteins [76].

It is not clear, however, whether prostasomes isolated
in vivo from seminal/prostatic fluid correspond to vesicles
that are isolated in vitro. Some authors state that in prostate
secretion, only exosomes and prostasomes are present [77],
whereas others have hypothesized that prostasomes are exo-
somes derived from prostate cells in biological conditions
[22], and others consider them as belonging to the “exosome
family” [71]. Like exosomes and MVs, prostasomes are
involved in the exchange of information, specifically from
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prostate cells to other cells (in physiological conditions, recip-
ient cells are mainly spermatozoa) [78]. Transfers of messages
can involve several mechanisms, such as fusion or direct con-
tact between the prostasome and the sperm cell membrane,
initiating the internalization of prostasomes by the sperm
cell [78]. Regarding their biological function, prostasomes
seem to be involved mainly in human reproduction; they
have a stimulatory effect on spermatozoa motility (showing a
promotional effect), capacitation, and the acrosome reaction
(i.e., having a regulatory role involving cholesterol transfer) as
well as modulation of immunologic attacks (i.e., protecting
spermatozoa from phagocytosis performed by the female’s
immune cells); they also show antioxidant capacities (reduc-
ing reactive oxygen species production, to which human
spermatozoa are very sensitive) and antibacterial properties
(inducing bacterial membrane deformation) [78-81]. In addi-
tion to their physiological role in reproduction, prostasomes
also appear to be involved in PCa progression [78].

In fact, prostasomes are released not only from normal
prostate cells but also from benign prostate tissue, prostate
cancer cells, and poorly differentiated cells of prostate can-
cer metastases [81, 82]. It was suggested that prostasomes
contributed to the development of PCa because they were
observed in secretions from the prostate (a cancer with a very
high incidence) but not in seminal vesicle secretion (which is,
indeed, a cancer extremely rare) [78].

Several authors have suggested that some features of
prostasomes that may have developed to sustain their phys-
iological role in reproduction could also promote cancer
cell survival and proliferation [83]. The following are several
roles that have been proposed for prostasomes in cancer
progression.

(i) Inhibition of the immune system. Prostasomes inhibit
mitogen-induced proliferation in a dose-dependent
manner in cytotoxic T lymphocytes; therefore, they
could most likely interfere with their role (ie., the
recognition of antigens expressed on tumor cells)
[84].

(ii) Inhibition of the complement system. The comple-
ment system is involved in immune surveillance
against tumor development. If cancer cells are unable
to protect themselves against complement attack, they
will be eliminated very early during the development
of cancer. The phosphorylation of C3, a component
of the complement system, results in the inhibition
of both the classical and alternative pathways of
complement activation [85]. PCa prostasomes are
characterized by higher activities of protein kinases
A and C and casein kinase II when compared to
prostasomes isolated from seminal plasma. Conse-
quently, they are able to phosphorylate the C3 com-
ponent, thus inhibiting the complement [86]. Cancer
prostasomes also may inhibit complement through
an alternative mechanism: by expressing CD59, a
glycosylphosphatidylinositol-anchored protein that
prevents the full assembly of the membrane-attack
complex of complements, they inhibit complement-
mediated lysis [87]. Again, prostasomes from cancer
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cells express higher CD59 levels than those from
normal cells [87].

(iii) Induction of migration. Protein kinases A and C and
casein kinase contained in prostasomes from PCa are
able to perform fibrinogen phosphorylation. Fibrino-
gen phosphorylation inhibits fibrinolysis, making fib-
rinogen more resistant to cleavage and thereby more
available as a substrate for cancer cells, easing their
migration [78]. Additionally, prostasomes from PCa
express high levels of tissue factor (TF) [88], which is
known for its ability to promote cell migration [89]
and is also involved in cancer progression due to its
ability to induce tumor angiogenesis, cell adhesion,
and invasion. Consequently, prostasome-associated
TF may further contribute to tumor growth [78].

(iv) Induction of invasion. Dipeptidyl peptidase IV is
associated with prostasomes and is involved in the
proteolytic cascade required for cancer progression
through the ECM because the activation of plasmino-
gen and expression of MMP-9 seem to depend on the
activity of dipeptidyl peptidase IV [83].

(v) Induction of angiogenesis. As has already been men-
tioned, tissue factor is able to promote angiogenesis
through FVIla-induced VEGF expression. VEGF is
a key regulator of angiogenesis due to its ability to
stimulate proliferation and migration in endothelial
cells [90]. Another important molecule in inducing
angiogenesis is angiotensin II, which is produced
from the precursor angiotensin I by the action of the
angiotensin-1 converting enzyme (ACE) [91]; ACE
activity is very high in seminal fluid, and it is mainly
associated with the prostasomal membrane [83].

So, prostasomes, which normally have a fundamental role
in physiological processes related to fertilization, might turn
against the host, favoring the transition of normal cells to
cancer cells. The transition from positive to negative action
seems to take place at approximately 50 years of age. This is
likely why a higher prevalence of PCa is observed in men over
50 years [83].

3. Extracellular Vesicles in Prostate Cancers

Similarly to other cell types, PCa cells are able to release
extracellular vesicles (Figures 2 and 3). Nevertheless, only a
few in vitro studies in the literature refer to the role played by
vesicles released from the PCa cells, highlighting their roles
in cell-to-cell communication in cancer progression.

A deep proteomic analysis performed on vesicles from the
PC3 cell line revealed that vesicles contain numerous proteins
involved in the regulation of several biological processes,
ranging from transport to metabolic process, response to
stimuli, and cell differentiation and communication. Many
were nuclear and cytosol proteins, but numerous cytoskele-
ton proteins were also present. Among these proteins, CDCPI
and CDI51, whose involvement in PCa has already been
described, stand out as possible biomarkers considering that
they were more concentrated in vesicles released by prostate

cancer cells than in those released by normal epithelial
prostate cells [92].

PCa-derived vesicles stimulate fibroblast activation, a
fundamental requirement for the induction of a favorable
niche for cancer development, by increasing their motility
and protecting them from apoptosis—events that are partially
due to an increase in ERKI/2 phosphorylation. Vesicles
from fibroblasts thus activated are, in turn, able to induce
migration and invasion in the PC3 cell line, supporting cancer
pathogenicity. It seems that the chemokine receptor CX3CRI1
also plays a role in this process [93].

PCa tissue releases MVs capable of degrading collagen
IV and the reconstituted basal membrane Matrigel. MV's
released from PC3 cells (a highly metastatic PCa cell line)
have been found to enhance the adhesive and invasive
capabilities of LnCaP (a poorly invasive PCa cell line) [67].

It was also suggested that vesicles from hormone-
refractory PCa cells are able to induce mouse osteoblast
differentiation via Etsl contained in them, suggesting a
role for vesicles in cell-to-cell communication during the
osteoblastic metastasis process [94]. It is well known that in
osteoblastic metastasis, a vicious circle develops between PCa
cells and osteoblasts/osteoclasts, with PCa cells providing
growth factors to osteoblasts and osteolytic factors (e.g.,
BMPs, TGF-B, IGE, FGE, PDGE, ET1, VEGE, and MMPs)
that activate these cells and allow them to produce bone-
derived growth factors (e.g., PDGF, BMPs, TGEp, IGFs, and
FGFs) that further induce cancer-cell stimulation [94, 95].
Moreover, the release of vesicles from PCa cells is induced
from osteoblast-conditioned media, further suggesting that
vesicles contribute to communication between cells in the
course of this vicious circle [96].

A recent study highlights the role of vesicles in tumor
microenvironment cell-to-cell communication, showing that
vesicles released from the human prostate carcinoma cell
line DU145 are able to induce transformation in the non-
malignant human prostate epithelial cell line, as evidenced
by anchorage-independent growth in soft agar which is
a typical feature of malignant cells. Additionally, vesicles
isolated from PCa patients with a Gleason grade of 2 have
similarly been used to treat nonmalignant prostate cells and
have induced soft agar colony formation. The same study,
however, suggested that vesicles could potentially be used to
reverse the cancer phenotype because vesicles isolated from
nonmalignant cells inhibited the growth of carcinoma cells in
soft agar.

PCa vesicles are also involved in drug resistance: DU145
cells, which are normally sensitive to camptothecin treat-
ment, became resistant to camptothecin-induced apopto-
sis after being cocultured with vesicles isolated from the
camptothecin-resistant cell line RCI. Conversely, RCI cells,
cocultured with vesicles isolated from DUI45, underwent
apoptosis when treated with camptothecin, suggesting the
role of vesicles in mediating drug resistance. Several mol-
ecules seem to be involved in these processes, including
SOCS3 and STAT3 [97].

In addition to the in vitro studies that have tried to
understand the roles played by vesicles in cancer progression,
several in vivo studies have been performed to understand
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FIGURE 2: Transmission electron micrograph of extracellular vesicles released from PC3 cells. (a) Vesicle sized 248 nm (microvesicle). (b)

Vesicle sized 79 nm (exosome) (personal original unpublished data).
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FIGURE 3: Scanning electron micrograph of PC3, a human prostate cancer cell line. Note the enormous release of microvesicles of heteroge-
neous dimensions ranging between 300 and 1,000 nm. Microvesicle shedding is visible over the entire cell body (personal original unpublished

data).

whether vesicle number or some vesicle-associated molecules
could be used for diagnosis and prognosis. Although PSA is
currently considered the gold standard for the detection of
PCa, it is important to take into account not only PSA’ high
organ specificity but also its lack of cancer specificity. PSA
also gives no indication about the proliferation and metastatic
potential of prostate cancer cells [78], hence the need to find
new and more specific molecular markers to assist or replace
PSA.

To this end, PCa was studied indirectly by analyzing
biological fluids in a search for useful protein, DNA, and
RNA markers [5]. Several emerging biomarkers have been
evaluated or are being assessed for their potential use.
Biomarker research looks at all useful specimens, as identified
below.

(i) Prostate tissue. Tissues from PCa have been studied
not only to understand PCa pathophysiology but also
to find new biomarkers. The reliability of this strategy,
however, is based on the correct tissue sampling: if the

biopsy misses the tumor, even an optimal biomarker
will fail to detect cancer [98]. Several molecules from
prostate tissue are possible candidates, such as Ki-67,
p53, Bcl-2, AMACR, PSMA, BMP-6, PTEN, NF-«B,
CYCS, ICK, IKBKB, GAD]1, CDI0, and syndecan-1
[5].

(ii) Blood. Several useful techniques, ranging from ELISA

to capillary electrophoresis coupled to mass spec-
trometry, are being studied to facilitate the accurate
evaluation of plausible markers. Such studies have
shown, however, that blood may present some tech-
nical problems in tissue sampling that may make
it an unreliable source of biomarkers—this point
follows from the fact that the amount of proteins
being studied may depend on several factors (such
as clotting time). Consequently, the use of serum
or plasma may be more advisable [98]. Some blood
markers are EPCA and PSCA; serum markers include
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Crisp-3, hK2, OPG, CGA, TGF-f, hK2, IL-6, Cav-
1, E-cadherin, EGFR, VEGE von Willebrand factor,
alpha-1 chymotrypsin, vilin, hepsin, neuron-specific
enolase, 3-catenin, and hK11 [5].

(iii) Urine. The use of urine for sampling has several
obvious advantages. Samples are abundant, they are
obtainable in a noninvasive way, and they have
greater stability than tissue or blood samples; more-
over, there are no difficulties related to sampling.
Because urine can contain both exfoliated PCa cells
and PCa-secreted products, it could be considered a
potential source of markers for early detection [98].
Useful markers are TMPRSS2-ERG oncogenic gene
fusion rearrangement, PCA3/DD3, Survivin, telom-
erase, Tbl5, Bradeion, MCM-5, hepsin, J-catenin,
Lgals3, CFB, Apo-D, RECK, PECAMI, and others
5,23, 99].

(iv) Seminal plasma. As with urine, seminal plasma has
the advantage of being easily accessible and highly sta-
ble. Several biomarker candidates (N-acetyllactosam-
inide beta-1,3-N-acetylglucosaminyltransferase, pro-
static acid phosphatase, stabilin-2, GTPase IMAP
family member 6, and semenogelins-1 and -2) have
been identified based on differential expression
between PCa patients and controls [100].

The possibility of using extracellular vesicles as PCa
biomarkers has generated considerable interest. Because the
contents of these vesicles include a tumor-enriched repertoire
of biomolecules dependent on their cellular origin, strongly
related to the stimulus that triggers their release, the discovery
of a disease-specific protein, lipid, or RNA associated with
the vesicles could make it possible to use them as novel
biological markers for prognostic and diagnostic purpose and
for monitoring of the disease, not only in PCa but virtually
in all types of cancers [22, 50]; indeed, several studies in
this direction have been already conducted in several cancer
diseases (Table 1). The findings that urine from cancer patient
is characterized by elevated exosome secretion [101] and that
prostasomes can be detected at higher levels in plasma from
PCa patients if compared to patients with nonmalignant
prostate pathologies or indolent PCa [71] further support this
hypothesis. For the moment, the focus is primarily on vesicle-
associated miRNA, which shows great potential in urologic
cancers under diagnostic and prognostic profile [102].

miRNAs are short (19-26 nucleotides long), single-
stranded, noncoding RNAs that are responsible for the
regulation of gene expression at the posttranscriptional
level because they inhibit mRNA translation at the initi-
ation or elongation step, thereby blocking the translation
of mRNAs into corresponding proteins [109]. Changes in
miRNA expression mainly affect cell proliferation, apoptosis,
differentiation, and cell-cycle regulation, thus explaining the
role that miRNA plays in tumor cell survival and growth,
which are undoubtedly involved in cancer development and
progression [110, 111]. The consequences of changes in miRNA
levels include the altered expression of target oncogenes and
tumor suppressor genes. Indeed, it has been widely shown
that a substantial number of miRNAs that normally act as

tumor suppressors are downregulated in cancer cells, whereas
miRNAs normally acting as oncogenes are expressed at
higher levels in cancer cells [32, 112]. It was also demonstrated
in vitro that associated exosomal miRNAs can downregulate
their target genes in recipient cells [113].

Over the years, several miRNAs have been studied for
their biological role in PCa. For example, miR-20a and miR-
125b are oncogenic miRNAs that have antiapoptotic and
pro-survival effects, respectively, in PCa cells. miR-221 and
miR-222 contribute to cancer growth; miR-126 acts as tumor
suppressor, and its loss could contribute to PCa progression.
Additionally, miR-146a is a tumor suppressor [111].

Because miRNAs are attractive as potential diagnos-
tic/prognostic PCa biomarkers and may potentially be used
to monitor treatment response, their levels and profiles have
been studied in PCa tissue and compared with healthy
tissue [32, 102, 114]. Fifteen miRNAs have been observed
to be differentially expressed in PCa and benign tissue and
demonstrate up to 84% accuracy for discrimination between
these categories; 10 of these 15 miRNAs (namely, miR-16, miR-
31, miR-125b, miR-145, miR-149, miR-181b, miR-184, miR-
205, miR-221, and miR-222) exhibit downregulation, whereas
the remaining 5 (namely, miR-96, miR-182, miR-182x, miR-
183, and miR-375) exhibit upregulation. miR-96 expression,
moreover, has been associated with cancer recurrence after
radical prostatectomy [115].

It is important to keep in mind that miRNAs are not only
present within cells but they can also be released in vitro into
cell culture media. Moreover, miRNAs have been identified in
vivo in several biological fluids, such as blood, urine, breast
milk, and seminal plasma [32, 116]. Although controversy
has existed over whether miRNAs circulate freely or are
encapsulated in vesicles, some studies have demonstrated
that in biological fluids (specifically saliva and urine), the
concentration of miRNAs was consistently higher in vesi-
cles (especially exosomes) compared to the vesicle-depleted
supernatant [117]. miRNAs can also be contained in apoptotic
bodies and high-density lipoproteins or associated with Agol
and Ago2 proteins; all of these forms of association are likely
responsible for protecting the molecules from degradation
secondary to RNase treatment [32, 102].

A large number of studies have evaluated the presence
of miRNAs in serum or plasma, assessing the differences
between PCa patients and healthy controls [32]. miR-375 and
miR-141 have been demonstrated to be the most consistently
associated with the pathological stage and Gleason score
[102, 116]; their levels are higher in the serum of patients with
castration-resistant prostate cancer than in the serum of low-
risk, localized patients [118]. Additionally, miR-141levels have
been able to distinguish patients with prostate cancer from
healthy controls [119].

Some of these studies specifically considered miRNA
associated with serum-derived vesicles. Twelve miRNAs were
differentially expressed in prostate cancer patients compared
with controls, and the levels of 11 miRNAs were signifi-
cantly increased in PCa patients with metastases compared
to patients without metastases (vesicle-associated miRNA-
141 and miRNA-375 were confirmed to be associated with
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TABLE 1: Summary of some studies in which tumor EVs have been assessed for their potential clinical use in disease monitoring and diagnosis

of cancer patients.

Cancer type Evidences reported in the paper

Reference

32 of 63 plasma samples from ovarian cancer patients contained exosomes
containing claudin-4, a protein that is frequently overexpressed in ovarian cancers.

Ovarian cancer

Only 1 of 50 samples from control patients, instead, contained claudin-4-positive
exosomes. The assay of exosomes-associated claudin-4 in blood could be useful,

[103]

alone or in combination with other screening methods, for the detection of ovarian

cancer.

Exosomes purified from plasma of patients with ovarian cancer carried
cancer-specific miRNAs; women with early or advanced cancer showed similar

Ovarian cancer

miRNAs profiles, whereas healthy women or patients with benign ovarian disease (104]

expressed very different profiles. Thus, miRNA profiles of circulating exosomes

could be used as diagnostic marker.

Mutant mRNAs and miRNAs specific for gliomas can be detected in microvesicles
from serum of glioblastoma patients. In 7 of 25 samples, for example, EGFRVIII was
detected (the tumor-specific mutant splice variant of EGFR mRNA typical of many

Glioblastoma

gliomas), but it was not found in serum exosomes from 30 control patients. [49]

Moreover, levels of miRNA-21, usually overexpressed in glioblastoma tumors, were
higher in serum microvesicles from glioblastoma patients than in control patients.
So, tumor-derived microvesicles could be used to obtain diagnostic information.

This pilot study showed that microvesicles from urine of cancer patients contained 8

Bladder cancer

proteins whose levels were elevated, suggesting that protein composition of [105]

microvesicles could be used in early detection of bladder cancer.

Platelet microparticles plasma levels were assessed in patient with gastric cancer.
Levels were significantly higher in the patients than in the healthy controls and

Gastric cancer

higher in patients with stage IV disease than those in patients with lower stages (106]

(I/II/III). Plasma levels of platelet microparticles had a high diagnostic accuracy
and might be useful to identify metastatic gastric patients.

Microparticles from blood of patients with breast and pancreatic cancer had
significantly increased levels of tissue factor (TF) compared with healthy controls.

Mucinous
adenocarcinomas

Patients with higher levels of TF and MUCI (epithelial mucin) in MVs were
associated with a lower survival rate at 3-9 month followup compared to those with

(107)

low TF-activity and no MUCI expression, suggesting the possible use of plasma

vesicles in prognosis of disease.

Hormone
refractory

prostate cancer it

In patients with hormone-refractory prostate cancer, platelet MV levels were
predictive of outcome; overall survival was significantly shorter in those patients
with MVs level above the cut-off compared to those patients whose level was below

(108]

metastatic PCa), suggesting that circulating miRNAs could
be used to diagnose and stage prostate cancer [120].

Using exosomes as biomarkers contained in urine would
be even more preferable. Because urine passes through the
prostate before being discharged, miRNA features in urine
would reflect the status of tumor cells [102]. When compared
to blood, urine offers several advantages. Particularly, the
samples can be obtained in a noninvasive way and in large
quantities; moreover, the composition of urine is undoubt-
edly less complex than that of blood, leading to easier sample
analyses [32].

Apart from studies on exosome-associated miRNAs, the
exosomal content from PCa patient samples has been variably
evaluated.

The amount of urinary exosomes decreases after andro-
gen deprivation therapy, and some PCa markers (specifi-
cally, PSA, PSMA, and tumor-associated marker T54) have
sometimes been detected in urinary exosomes but never

in healthy donor samples; in one patient, the decrease of
exosomal PSA was clearly related to treatment [101]. Even if
the authors admit that the future of urine-exosome analysis
in PCa remains uncertain, the use of urinary exosomes could
eventually be a noninvasive approach that provides clinically
useful information.

RNA expression analyses in urine-derived exosomes
from patients with PCa have further confirmed the possibility
of using such vesicles for new methods of diagnosis. For
example, exosomes from patients with high PSA levels and
high Gleason scores expressed the mRNA transcript for the
fusion gene TMPRSS2:ERG, whereas PCA3 was detectable in
exosomes from all patients (mMRNA of TMPRSS2:ERG and
PCA3 being PCa biomarkers). TMPRSS2:ERG and PCA3
were not detectable in patients treated with ADT nor in
medically castrated or prostatectomized patients with verified
bone metastases [77]. The Nilsson study established the
potential use of urine-derived exosomal mRNA to obtain



BioMed Research International

TABLE 2: Summary of clinical trials that assessed or are evaluating the application of EV's in anticancer therapy.

Phase of
Cancer type study State

Purpose of clinical trials and outcome

References

Non-small-cell
lung carcinoma
(NSCLC)

Phase I USA

The study intended to use exosomes carrying specific antigens to
activate immune response against established tumours.

Exosomes from dendritic cells (DCs) obtained through leukophoresis
were collected from patients with advanced NSCLC with tumor
expression of MAGE-A3 or -A4 antigens.

These exosomes, loaded with specific MAGE peptides, were
administrated to patients to induce immune response.

This form of immunotherapy was well tolerated; in 3 of 9 patients,
who had no reactivity to MAGE before immunization, an increased
systemic immune response against MAGE, an increased NK cells lytic
activity, and a long term stabilization of disease in some patients were
observed.

(126]

Melanoma Phase I France

The study was intended to asses a DCs-derived exosomes based
vaccination in melanoma patients; autologous exosomes pulsed with
MAGE 3 peptides were used to induce the immunization in patients
with melanoma at stages III and IV. The study confirmed the
feasibility of exosomes production in large scale, the safety of their
administration to patients, and the good tolerance in cancer patients;
nevertheless, even if treatment induced minor or partial responses in

[127]

some patients, no MAGES3 specific T-cell immune responses were
detected in peripheral blood of the same patients.

The study wanted to assess the possibility to use exosomes in
immunotherapy and reported that exosomes derived from ascites, if

Colorectal
cancer

Phase I China

subcutaneously administrated with GM-CES (granulocyte
macrophage colony-stimulating factor) in patients with colorectal (128]
cancer, were able to induce an antigen-specific anticancer cytotoxic T

lymphocyte response. Toxicity of exosomes was minimal and patients
tolerated very well the administration.

The study aims to assess the efficacy of a therapeutic vaccine

Ongoing

NSCLC phase II

France

constituted by autologous DC-derived exosomes in nonoperable and
advanced NSCLC patients (stages ITIB and IV), to verify if they are [129]
able to stimulate the patients’ natural defenses in order to obtain the

stop of tumor progression or tumor regression.

information on tumor status. The presence of tumor-specific
transcripts in vesicles, moreover, is not limited to PCa but it
is also present in other cancers suggesting that tumor-specific
transcripts contained in vesicles could serve for diagnostic of
cancer diseases; in Ewing’s sarcoma (ES), for example, it has
been found that both exosomes and microvesicles contained
the ES specific transcript EWS-FLII, which is not present
in healthy donors and might be useful as a noninvasive
diagnostic ES marker in peripheral blood [121, 122].

The circulating levels of survivin (a member of the
“inhibitor of apoptosis” family), either free or contained
in serum/plasma-derived exosomes, have been found to be
lower in patients with benign prostatic hyperplasia and in
healthy controls when compared to PCa patients. Circulating
survivin levels remain high both in subjects with low and
high Gleason scores, suggesting that it may be useful as a
biomarker even for the earlier detection of PCa [123].

Some studies on prostasomes have shown that they could
be used as potential PCa biomarkers. Using a method called
4PLA, which is a variant of the proximity ligand assay
and has high sensitivity and specificity for prostasomes, the

researchers demonstrated that plasma from PCa patients con-
tains high levels of prostasomes. Moreover, the assay seemed
to be able to discriminate between patients with medium
and high Gleason score from those with low Gleason score.
The authors suggested that the loss of prostate epithelial cell
polarity, typical of PCa, could be involved in the modification
of prostasome features. This method could potentially be
used for early diagnosis or for monitoring responses to
treatment [34].

4. Conclusions

Over the years, many studies have been conducted to
better understand the role of extracellular vesicles circu-
lating in biological fluids in various clinical tumor condi-
tions and their potential use as biomarkers for prognostic
or diagnostic purpose or as vaccine to induce immune
response [124, 125]; some clinical studies have been already
conducted to evaluate the use of vesicles in this form
of immunotherapy (Table 2). The other forms of clinical
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application of extracellular vesicles need, instead, a further
evaluation. Thus, a deeper understanding of the roles of
extracellular vesicles in cell-to-cell communication and in
prostate cancer biology, as well as continued expansion of
the field of vesicle research, may lead to the development
of extremely useful vesicular biomarkers for determining
the diagnosis or prognosis of cancer. Such biomarkers
may serve as valid instruments with which to assess the
responses to clinical treatments. However, many questions
remain about the effective role of extracellular vesicles
in prostate physiological and pathological processes, and
further studies are needed to clarify their usefulness as
biomarkers. Furthermore, it is necessary to refine the tech-
niques used to isolate and quantify, in blood or other
biological fluids, vesicles specifically derived from tumor
tissues as well as to standardize sample collection and
analytical methodologies.
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