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Abstract
We present an asymptotic treatment of errors involved in point-based image registration where
control point (CP) localization is subject to heteroscedastic noise; a suitable model for image
registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a
multivariate regression problem. With measurement errors existing for both sets of CPs this is an
errors-in-variable problem and linear least squares is inappropriate; the correct method being
generalized least squares. To allow for point dependent errors the equivalence of a generalized
maximum likelihood and heteroscedastic generalized least squares model is achieved allowing
previously published asymptotic results to be extended to image registration. For a particularly
useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known
matrix (including the case where covariance matrices are multiples of the identity) we provide
closed form solutions to estimators and derive their distribution. We consider the target
registration error (TRE) and define a new measure called the localization registration error
(LRE) believed to be useful, especially in microscopy registration experiments. Assuming
Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE
and LRE are themselves Gaussian and the parameterized distributions are derived. Results are
successfully applied to registration in single molecule microscopy to derive the key dependence of
the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations
show asymptotic results are robust for low CP numbers and non-Gaussianity. The method
presented here is shown to outperform GLS on real imaging data.

Keywords
Errors-in-variable; fluorescence microscopy; generalized least squares; image registration

I. Introduction
Image registration is the process of overlaying two or more images of the same scene [1].
From a theoretical stance, registration is the process of establishing the geometric
transformations between two or more data sets such that they can be viewed in a single
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coordinate system. These images could arise from different times (multitemporal), different
viewpoints (multiview), or different sensors (multimodal).

Broadly speaking, image registration techniques can be divided into two categories. The first
is intensity-based registration where gray scale values in both images are correlated to match
the images, e.g. [2], [3]. Here we are concerned with the alternative method, feature-based
registration, whereby correspondence between the two images is determined through the
matching of distinct features common in both images e.g. [4], [5], (although there exist
methods that combine both feature and intensity-based approaches to registration e.g. [6]).
Specifically we are concerned with the case where the features used for matching are points
in the image where pair correspondence is certain. In this case they are known as control
points (CPs). It is common that these points are created with the use of fiducial markers, e.g.
beads in microscopy [7], [8], or infrared emitting diodes in computer aided surgery [9].

We consider an image to capture a subset of the space ℝd, d = 2 or 3. Given two image
spaces ℐ1 ⊆ ℝd and ℐ2 ⊆ ℝd, say, registration is concerned with estimating the mapping T :
ℐ1 → ℐ2. It is typical to consider T to be an affine transformation e.g. [10]–[13]. In this
circumstance, for x ∈ ℐ1, T(x) = Ax + s where A ∈ ℝd×d is a square invertible matrix and s ∈
ℝd is a translation vector. This includes the well studied subclass of rigid transformations
where the matrix A is a rotation transformation [11], [12], [14], [15]. Registration involves
using the CP locations in ℐ1 and their corresponding mapped positions in ℐ2 to find T.

In general, due to noisy signals, the location of the CPs in at least one of the images can not
be measured exactly and instead are perturbed by random errors. Commonly these error
terms are not identically distributed (heteroscedastic) and/or directional (anisotropic).
Consequently it is not possible to exactly match the CPs in both images. With this problem
in mind, two key questions arise. Firstly; what is the procedure for estimating A and s that
correctly accounts for the measurement errors in localizing the CPs? Secondly; how
accurately can we determine the transformation and hence what errors arise from the
registration process? In response to the second of these questions, it has been common in the
literature to define the target registration error (TRE) as a measure of accuracy for a
registration and its distributional properties are of keen interest e.g. [10]–[12], [14]–[16].

One of the most widely researched and applied methods of image registration has been the
traditional least squares estimator [13], [14], [17]. Given that the CP locations are precisely
known without error in one of the images, and the errors in their localization in the second
image are independent and identically distributed (iid) then this provides a proper method of
registration. In the case of rigid transformations (A represents rotation only) [14] provides an
approximation to the root mean square of the TRE that has been corroborated with simulated
data. This was extended to an approximate distribution of the TRE in [15] and [16]. For
rigid transforms when errors are only present in one set of CPs then several papers have
attempted to extend distributional results for the TRE to the case where errors are
heteroscedastic and anisotropic based on a number of different approaches, including
maximum likelihood procedures [12], and a spatial stiffness model [10].

In most registration scenarios measurement errors will exist in both sets of CP locations
rendering these methods insufficient. In this circumstance the problem is known as an
errors-in-variables (EIV) problem and it is well known the that traditional least square
method provides inconsistent estimators [18]. If all measurement errors are iid then the total
least squares (TLS) method (see [19]–[21]) is the correct procedure and [22] provides
distributional results for the parameter estimators in the Gaussian case. Under the
assumption that measurement errors are iid and white then [23] (corrected by [24]) takes a
maximum likelihood (ML) approach to the EIV problem associated with image registration

Cohen and Ober Page 2

IEEE Trans Signal Process. Author manuscript; available in PMC 2014 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and Cramér-Rao lower bounds are derived for the variance of parameter estimators.
However the reality is iid is a rare luxury and any deviation from this render the TLS and
ML methods inconsistent. It is therefore necessary to consider the broader class of model
called heteroscedastic EIV (HEIV).

In this paper we will use fluorescence microscopy as a motivating example. Using fiducial
markers to perform image registration is an important pre-processing step when correcting
for drift between successive frames (multitemporal) e.g. [7], or combining a pair of different
colored monochromatic images captured through different sensors (multimodal) e.g. [8],
[25]. Localization accuracy depends on the brightness of the light emitting object (see [26]–
[30]) and hence each fiducial marker is localized with varying degrees of accuracy. This
presents us with a typical HEIV model. It is useful to define a new measure of registration
error that we will call the localization registration error (LRE). Recent advances in
microscopy have made it possible to detect single molecules in a cellular environment, e.g.
[31]–[33]. Localizing a feature (e.g. a single molecule) in ℐ1 typically has its own errors
associated with it. The LRE measures the combined effect of this localization error and the
registration error to give the localization error of the feature registered in the second image,
and is of importance to researchers [8], [25].

There have been recent attempts to tackle the EIV approach to rigid image registration for
heteroscedastic errors in [34], [35] with the heteroscedastic EIV (HEIV) algorithm; an
iterative procedure that finds an optimal solution to the HEIV model. Numerical Monte
Carlo estimates of the TRE for the HEIV algorithm are considered in [11] and compared
with a spatial stiffness model approach to the HEIV problem.

In this paper we consider the HEIV model for CP registration, the most general form of the
registration problem (under the affine assumption). In Section II we rigorously formulate CP
based image registration and formally define the TRE and LRE measures. In Section III, by
taking the generalized maximum likelihood approach introduced in [36] as a starting point,
we are able to show its equivalence to a heteroscedastic formulation of generalized least
squares (GLS) and an EIV analogy of the least squares approach, here called ordinary least
squares (OLS) in keeping with the terminology of [22] for iid EIV. In the case where error
covariance matrices for each CP are a scalar multiple of a known matrix (e.g. multiples of
the identity), we derive the closed form solution. In Section IV, asymptotic results derived in
[36] are used to derive distributions for the registration parameters. In Section V these
distributions are used to derive asymptotic distributions for the TRE and LRE. In Section VI
we derive the asymptotic second order moments of the TRE and LRE in a microscopy
setting, giving neat closed form expressions in terms of photon counts and experimental
parameters. We verify these results in Section VII with numerical simulations and show
asymptotic results are appropriate for relatively low (realistic) numbers of CPs. The method
presented here is shown in Section VIII to outperform the traditional GLS method (that
assumes homoscedastic measurement errors) when applied to real fluorescence microscopy
imaging data. This paper represents a significant development upon the preliminary results
first reported in [37].

A comprehensive list of abbreviations and notations used in this paper can be found in
Tables II–V in Appendix A.

II. Formulating the Problem
Suppose K CPs are located in at true locations in ℐ1 ⊆ ℝd at true locations {x1,k ∈ ℐ1,k = 1,
…, K}, and in ℐ2 ⊆ ℝd at true locations, such that {x2,k ∈ ℐ2,k = 1, …, K}, such that x2,k =
T(x1,k) = Ax1,k + s, k = 1, …, K, where A ∈ ℝd × d and s ∈ ℝd. In reality the positions of the

Cohen and Ober Page 3

IEEE Trans Signal Process. Author manuscript; available in PMC 2014 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CPs cannot be known exactly and must instead be measured. Consequently we observe the
CP locations as {y1,k ∈ ℐ1,k = 1, …, K} and {y2,k ∈ ℐ2,k = 1, …, K}, where yj,k = xj,k + ∊j,k,
k = 1, …, K, j = 1, 2. The term ∊j,k ∈ ℝd is a random variable known as the measurement
error. Each measurement error is assumed zero mean and to have individual symmetric
positive definite covariance matrix Ωj,k. It is assumed that all measurement errors are
pairwise independent across the CPs.

We define the ℝd × K matrices Xj ≡ [xj,1, …, xj,K], Yj ≡ [yj,1, …, yj,K] and ℰj ≡ [∊j,1, …,

∊j,K], j = 1,2, and further define the stacked ℝ2d × K matrices ,

 and . With this notation the system of equations can be
conveniently represented as the single matrix equation

(1)

where T is the matrix transpose, α = [0T, sT]T, Λ = [Id, AT]T and 1K is a column vector of
length K with every element taking the value 1. The columns of X1 are known as the
independent variables and the columns of X2 are the dependent variables. Models of type (1)
where observations of both the dependent and independent variables contain measurement
errors are EIV models.

If covariance matrices differ across CPs then they must be known [36]. (In [34] the
covariance matrices are unknown, but still require estimation through bootstrapping
methods). It is convenient at this point to assume the errors in model (1) follow two
possible, but different statistical frameworks. The first shall be called the second-order
framework .

Assumption I—Under , the columns of ℰ are independent with kth column

 having mean zero and known symmetric positive definite (SPD)
covariance matrix

(2)

where cov{v} denotes the covariance matrix of a vector v.

The alternative framework shall be called the distributional framework .

Assumption II—Under , the columns of ℰ are independent and of known distribution

with the kth column  where the SPD covariance matrix Ωk is
again known and of form (2). (Notation  means ‘equal in distribution’ and Np(μ, Σ) denotes
the p-variate normal distribution with mean μ and covariance Σ.)

With both  and , matrices {Ωk, k = 1, …, K} are in general not equal. In this circumstance
(1) is a HEIV model.

Given measurements Y, and assuming (1) models the system, the image registration process
involves constructing estimators Â and ŝ for parameters A and s, respectively. The method of
estimation will be discussed in Section III.
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A. Image Registration Errors
Suppose we have registered the pair of images with estimators Â and ŝ, we need a measure
of how successful the registration procedure has been. We begin by defining the commonly
used target registration error [10]–[12], [14]–[16]. For anisotropic noise it is important to
consider the error as a vector, rather than just its magnitude.

Definition II.1—The target registration error (TRE) τ : ℐ1 → ℝd for an arbitrary point x1 ∈
ℐ1 with corresponding mapped position in ℐ2 of x2 = Ax1 + s is given as τ(x1) ≡ x2−(Âx1 +
ŝ) = Ax1 + s − (Âx1 + ŝ).

We may find it more helpful to consider a related measure. Suppose we are interested in
registering a specific feature (e.g. a single molecule) in ℐ1 with true position x1,F ∈ ℐ1, in
the second image the true position of this feature is x2,F ∈ ℐ2, with x2,F = Ax1,F + s.
However, as with the CPs, the position of the feature in ℐ1 is actually measured to be at y1,F
= x1,F + ∊1,F, where ∊1,F is a measurement error with zero mean and covariance Ω1,F.
Therefore our estimator for the position of the feature in ℐ2 is Ây1,F + ŝ. A key question is;
what is the error associated with localizing the feature in ℐ2? To quantify this we define a
new measure that we will call the localization registration error.

Definition II.2—For a feature in ℐ1 with true and measured locations x1,F and y1,F = x1,F +
∊1,F respectively, the localization registration error (LRE) ℓF is defined as the difference
between the true position and the registered position, i.e. ℓF ≡ x2,F − (Ây1,F + ŝ) = Ax1,F + s
− (Ây1,F + ŝ).

Let us define the difference between the true and estimated values of the transform
parameters as ΔA ≡ Â − A and Δs ≡ ŝ − s. It can be shown that

(3)

(4)

We can connect the two as ℓF = −Aε1,F − ΔAε1,F + τ(x1,F). When localization of the feature
in ℐ1 can be achieved exactly, i.e. ∊1,F = 0, then ℓF = τ(x1,F). To derive the distribution of
the TRE and LRE, and importantly their respective covariance matrices Ωτ and Ωℓ, it is
necessary to know the distributional properties of the terms ΔA and Δs.

III. Parameter Estimation
Parameter estimation for EIV models of type (1) when the columns of the measurement
error matrix ℰ are iid is well established. The multivariate total least squares (TLS) (see
[19]–[21]) or the multivariate generalized least squares (GLS) method [22] solve different
but equivalent minimization problems. The parameter estimators that solve the respective
minimization problems are exactly known and [22] also derived their asymptotic
distributions for Gaussian measurement errors.

The reality is that the covariance matrices {Ωk, k = 1, …, K} for the stacked measurement
errors {∊k, k = 1, …, K} are, in general, not identical and as such the iid assumption is
invalid (although pointwise independence is still assumed). Hence, these estimators and the
distributional results derived for the iid case are unsuitable for the image registration
problem posed here. It is therefore necessary to take a more general approach to formulating
the minimization problem and parameter estimation that can take into account
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heteroscedastic measurement errors. Definition III.1(i) is given in [36] and Definitions III.
1(ii)–(iii) are given here as a generalization to the minimization problems considered in [22].

Definition III.1—Consider the observation matrix Y of measured CP locations that is
assumed to arise from model (1) under Assumption I (second-order framework ).

i. Define likelihood function ℒ(A, s, X1; Y) ≡ p(Y; A, s, X1), where

 is the joint probability density function (pdf)

for the columns  of observation matrix Y = [y1, …, yK]. The ML

estimators ŝml, Âml and  are defined as .

ii. For any given A and s, the residual vectors rk ≡ yk − Λx1,k − α are zero mean and

have covariance matrix Ωk, k = 1, …, K. Let 
and let ║ · ║F represent the Frobenius matrix norm, the ordinary least squares

(OLS) estimators ŝols, Âols and  are defined as

.

iii. For any given A and s, the residual vectors qk ≡ y2,k − Ay1,k − s are zero mean and
have covariance matrix Φk = UΩkUT, k = 1, …, K, where U = [−A, Id]. Let

, the generalized least squares (GLS) estimators

ŝgls, Âgls are defined as .

The maximum likelihood solutions for models of type (1) are discussed in [36]. The number
of unknown nuisance parameters {x1,k, k = 1, …, K} increases linearly with the number of
observations {yk, k = 1, …, K} and are known as incidental parameters [38]. [36] adopts the
generalized likelihood approach of [39] to estimate the structural parameters A and s in
models containing incidental parameters and an iterative procedure for computing the
estimators is given. Let vec(Z) for a r × s matrix Z = [z1, …, zs] be defined as the rs × 1

vector  and define β ≡ [sT, vec(A)T]T.

Assumption III—Let D be a matrix with (m, n)th element given as E{∂2 ℒ(A, s, X; Y)/
∂βm∂βn}. All elements of D exist and D is non-singular.

Under Assumption III, these estimators of A and s are consistent [36], [40]. We now present
the key result of this section, the proof of which is found in Appendix B.

Theorem III.2—Consider model (1) under Assumption I (second-order framework ),
where the random vectors {∊k, k = 1, …, K} are pairwise independent and vector ∊k has
covariance Ωk, k = 1, …, K, then the solutions to the OLS and GLS minimization problems
(see Definitions III.1(ii) and III.1(iii)) are identical to the ML estimators for the likelihood
function under Assumption II (distributional framework ) (i.e. Âml = Âols = Âgls, ŝml = ŝols

= ŝgls and ), where .

We note the OLS and GLS estimators do not depend on having Gaussian distributed
measurement errors.
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A. Weighted Covariance Generalized Least Squares
While iterative procedures are required to compute the ML/OLS/GLS estimators—see
Definitions III.1(i),(ii) and (iii)—in the general case of heteroscedastic noise it is possible to
derive an exact closed form expression for the ML/OLS/GLS estimators when we consider
the following special case, which we term weighted covariance.

Assumption IV—For all k = 1, …, K, the SPD covariance matrix Ωk of ∊k—the kth
column of the measurement error matrix ℰ—is given by Ωk = ηkΩ0 where Ω0 is a known
SPD matrix and ηk ∈ ℝ+ is known.

Assumption IV will be shown to be suitable in fluorescence microscopy image registration
—see Section VI-A—and from a theoretical stance includes the important case of

. We introduce a further set of assumptions that are necessary for consistency of
the estimators presented in Theorem III.3.

Assumption V
i.

Define the scalar , vector  and

matrix , then

we assume  exists, and there exists ȳ and W such that  and

 with probability one (wp1).

ii.
Define vectors , matrix

 and matrix  ,

then we assume there exists Ψ such that  wp1.

The proof of the following theorem is found in Appendix C.

Theorem III.3—Consider the multivariate EIV model (1) under Assumption I (second-
order framework ) and Assumption IV (weighted covariance). Define

, vector  and matrix

. The eigendecomposition

of  is represented as  with E = diag{e1, e2, …, e2d} where e1 ≥

… ≥ e2d are the ordered eigenvalues of  and the columns of G are the

corresponding eigenvectors. Making the partition , and assuming 
exists, the ML/OLS/GLS estimators A of s and are given as

(5)

where Û = [−Â, Id]. Furthermore, provided Assumption V additionally holds then Â and ŝ
are consistent estimators of A and s, respectively.
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IV. Asymptotic Distributions for Parameter Estimators
For the most general case where the covariance matrices {Ωk, k = 1, …, K} are unrelated and
unequal SPD matrices, [36] also derived the asymptotic distributions for the ML estimators
of s and A under distributional framework . These estimators form the elements of the
estimator β̂ for the parameter vector β ≡ [sT, vec(A)T]T. Provided Assumption II (statistical
framework ) holds, i.e. measurement errors are Gaussian, the result will also be appropriate
for the OLS and GLS estimators as given in Definitions III.1(ii) and III.1(iii). We introduce

 to denote asymptotically equal in distribution with respect to K. The following is from
[36].

Theorem IV.1—Consider the multivariate EIV model (1) under Assumption II
(distributional framework ), then given β̂ ≡ [ŝT, vec(Â)T]T is a consistent estimator of β ≡

[sT, vec(A)T]T, defining Δβ ≡ β̂ − β we have , where ,
with B(K) = H(K)−1 P(K)(H(K)−1)T,

(6)

and

(7)

where Φk = UΩkUT, U = [−A, Id],  and ⊗ denotes the Kronecker
product. Given β̂ is a consistent estimator of β, then H and P are consistently estimated by
Ĥ(K) and P̂(K) respectively, calculated by substituting X̂1 = [x̂1,1, …, x̂1,K] for X1, and then Â
and ŝ into (6) and (7).1

Using this result we are able to present the following corollary for the asymptotic
distributions of the estimators in the special case of the weighted covariance property—see
Section III-A. We introduce the notation [M]mn for the (m, n)th element of a matrix M, and
specifically use Δamn as short-hand for [ΔA]mn. The proof of the following is found in
Appendix D.

Corollary IV.2—Consider the multivariate EIV model (1) under Assumption II
(distributional framework ) and Assumption IV (weighted covariance). Define vector

, matrix , matrix

, matrix Φ0 = UΩ0UT (where U = [−A, Id]), and matrix

. Let β̂ ≡ [ŝT, vec(ÂT)]T be constructed from

1A minus sign, believed to be incorrectly missing in [36], has been added to the leading diagonal term in (6). This is required for
consistency with the well established iid results found in [22] and [41].
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the estimators in (5), then under Assumption V (consistency) , where

 where

(8)

(9)

This gives the following key asymptotic identities as K → ∞

where we define  and the limits  and  (which both
exist under Assumption V).

We note that in the iid case where Ωk = σ2I2d for all k = 1, …, K then the parameter
estimation procedures (as outlined in Theorem III.3) and the asymptotic results (as outlined
in Corollary IV.2) reduce to the results presented in [22] and thus forms a natural extension
to well established GLS results.

V. A symptotic Distributions for TRE and LRE
Given the distributional results of Theorem IV.1 and Corollary IV.2 it is now possible to
derive asymptotic distributions for the TRE and LRE—see Definitions II.1 and II.2,
respectively. The proof of the following is omitted but follows directly from the linear
combination of Gaussian random variables being itself Gaussian. The covariance matrix
follows directly from (3), Theorem IV.1 and Corollary IV.2.

Corollary V.1—Under model (1), Assumption II (distributional framework ) and

Assumption III (consistency), for a point x1,F ∈ ℐ1 then  with (m, n)th
element given as

(10)

with B as defined in Theorem IV.1. Further to this, under Assumption IV (weighted
covariance) and Assumption V (consistency), where Θ and Φ0 are as defined in Corollary
IV.2
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(11)

To consider distributional results for the LRE, it is necessary to decompose ℓF into two
parts, ℓF = − Aε1,F + zF where zF = − ΔAε1,F − Δs − ΔAx1,F. The term −Aε1,F is a random
variable with no dependency on the image registration process, being independent of ΔA and
Δs (and hence K, CP locations and CP measurement errors). By contrast, each term in zF is
dependent on the image registration process, being a function of ΔA and Δs. It is important
to note zF and −Aε1,F are independent. We can now provide the following asymptotic result
for zF, the proof of which is omitted but follows directly from the linear combination of
Gaussian random variables being itself Gaussian. The covariance matrix follows directly
from (4), Theorem IV.1 and Corollary IV.2.

Corollary V.2—Under model (1), Assumption II (distributional framework ) and

Assumption III (consistency) provided  where ε1,F is the measurement error

associated with localizing a feature in ℐ1 with true location x1,F, then  with
(m, n)th element of Z given as

(12)

Further to this, under Assumption IV (weighted covariance) and Assumption V
(consistency),

(13)

While the asymptotic distributions presented here are mathematically elegant, experimenters
are keen to know the covariance matrices Ωτ and Ωℓ of the TRE τ and LRE ℓF, respectively,
in their registration procedure. It is therefore necessary to have results for finite K. Consider
model (1) under Assumptions II (distributional framework ) and III (consistency), or
Assumptions II, IV (weighted covariance) and V (consistency). Let x1,F ∈ ℐ1 be the true

position of a feature that is localized at y1,F = x1,F + ∊1,F, where . For
“large K” we assume the asymptotics have been approximately met and hence from
Corollaries V.1 and V.2, together with the independence of zF and −Aε1,F, the TRE τ(x1,F)
and LRE ℓF are both approximately d-dimensional normally distributed with zero mean and
have respective approximate covariance matrices
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(14)

(15)

These approximations will be used in Sections VI and VII to investigate in more detail
registration problems in single molecule microscopy.

VI. Image Registration Error Analysis for Single Molecule Microscopy
We apply the theory presented thus far in this paper to the important problem of assessing
localization errors due to the registration process in a fluorescence microscopy setup.
Registration is a common pre-processing step in microscopy experiments. Fiducial markers
are used as CPs, these are bright, light emitting objects (e.g. fluorescent beads [8], [42]) that
require estimation of their location. One example of a fluorescence microscopy experimental
setup is to register a pair of different colored monochromatic images, for example to see if
two different protein molecules colocalize e.g. [8], [25], [43], [44]. This is a multimodal
registration problem. Fiducial markers are also used for drift correction between successive
image frames [7]. This is a multitemporal registration problem.

As will now be discussed, the covariance matrix associated with localizing each CP/fiducial
marker in each image is dependent on the number of photons associated with it that are
detected at the sensor, and therefore presents us with a HEIV problem of type (1).

A. Measurement Errors
In [26] and [30] are lower bound expressions for the covariance matrix of the error in
localizing an isolated point source emitting photons as an inhomogeneous Poisson process in
the presence of background and readout noise, which in turn is shown in [26] to be a
reasonable estimate for the true covariance matrix. These general expressions can be used
with the estimation procedure of [36]—see Section III—for parameter estimation and TRE
and LRE second-order moments can be computed with the generalized expressions of (10)
and (12), respectively.

When imaging in the absence of background noise and readout noise the covariance matrix
for the error in localizing a point source in the object space is given as N−1 J, where N is the
number of photons collected from the point source at the detector, and J is a SPD matrix that
can be computed from experimental parameters including photon wavelength, numerical
aperture and the point spread function of the optical system. For a non-pixelated detector J is
diagonal, with pixels introducing off-diagonal terms. In the image space this covariance
matrix becomes N−1 ℳ2 J, where ℳ is the known system magnification between the object
space and the image space (a distance r in the object space is measured as ℳr in the image
space). Further to this, it is shown in [45] that even in the presence of typical levels of
background and readout noise the covariance matrix N−1 ℳ2 J is a suitable approximation
to the covariance matrix for errors in localizing a bright (high signal to noise ratio) point
source. Conventional fiducial markers used in fluorescence microscopy are typically bright
and hence for the purposes of this paper we assume that they can be treated in this way.

We assume the image registration formulation of Section II and model (1) with the use of K
fiducial markers for the CPs. The matrix J and system magnification ℳ are specific to the
image and hence labeled Jj and ℳj, respectively, j = 1, 2. Suppose Nj,k photons are detected
at the detector for fiducial marker k in ℐj, k = 1, …, K, j = 1,2. The measurement errors ∈j,k,
k = 1, …, K, j = 1, 2, are therefore assumed to have covariance Ωj,k of the form Ωj,k = (1/
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Nj,k)Ωj,0, where  is a SPD matrix and universal for all CPs in ℐj. This gives the

covariance matrix of  as the block diagonal matrix Ωk = diag{(1/N1,k)Ω1,0,
(1/N2,k)Ω2,0}.

Consider the two common image registration scenarios described at the beginning of this
section. The first is in registering two monochromatic images captured at the same time with
two different sensors (multimodal). While the photon count associated with a single fiducial
marker at two different wavelengths (i.e. in separate monochromatic images) will be
different, it is reasonable to assume that there is a linear relation between the brightness of
the marker in each image i.e. a marker that is bright in ℐ1 is also bright in ℐ2.
Mathematically we say N2,k = cN1,k for all k = 1, …, k, where c > 0 is a constant of
proportionality, suitable for all k = 1, …, k. The second scenario is performing drift
correction by registering two images taken by the same sensor at different times
(multitemporal). In this case, provided the brightness of the marker remains constant in the
time between captures, then we assume N1,k ≈ N2,k (which is mathematically equivalent to
the multimodal scenario with c = 1). The constant c need not be known to derive expressions
for Ωτ and Ωℓ, we just assume it exists.

With this assumption we have the situation where the covariance matrices of the
measurement errors have the weighted co-variance property, i.e. they are scalar multiples of

(16)

with ηk = 1/N1,k providing the scaling factor. This gives

, the mean photon count for the K CPs
in ℐ1. Fig. 1 summarizes the key steps involved in registering a pair of fluorescence
microscopy images.

B. Microscopy LRE
We now consider the expressions for the TRE and LRE covariance matrices, Ωτ and Ωℓ,
respectively. Consider localizing a single molecule in ℐ1 at point y1,F, where y1,F =
x1,F+∈1,F with the measurement error having covariance Ω1,F estimable from [26], and x1,F
being the true positional vector. We estimate its location (the registered position) in ℐ2 as
Ây1,F + ŝ.

We begin by considering the following 2D model.

Assumption (i)—We model the CP measurement errors  where Ωk is given

in (2) with  where Nj,k is the photon count at the detector
associated with CP k in ℐj, k = 1, …, K, j = 1, 2. ℳj is the known system magnification
associated with ℐj. ζj is a known function of the point spread function, photon wavelength
and numerical aperture. In multimodal registration ℳj and ζj will be different for each
image, while in multitemporal registration they will be identical for both images. Ω0 is of

form (16) where .
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Assumption (ii)—Consider the CP true positions {x1,k, k = 1, …, K} to be K realizations
of a random variable  ∈ ℝ2 with mean zero and covariance κ2 I2, and let associated photon
counts be non-zero, finite and independent of CP positions.

Assumption (iii)—The affine transformation parameter A = SR represents a scaling S =
ςI2, ς ∈ ℝ+, combined with a unitary rotation or reflection (or a combination of both)R, i.e.
RT R = RRT = I2.

We will make use of the following Lemma, the proof of which is found in Appendix E.

Lemma VI.1—Let CP positions {x1,k,k = 1, …, K} be K realizations of a random variable
 ∈ ℝd with finite mean μ and SPD covariance II, and let weights{ηk, k = 1, …, K} be K

realizations of a random variable  with finite non-zero mean and finite variance

independent of CP position. Let  and

 where  and

, then  and

, each wp1.

From Assumption (ii) and Lemma VI.1 x̄1 = 0 and N̄1 κ2 I2 will provide our estimate of Ψ,

where . We introduce . Using these
expressions for x̄1 and Ψ and with the covariance matrix in Assumption (i) and the form of
the transformation parameters in Assumption (iii), then from the definitions in Corollary IV.
2 we have the identities Φ0 = (ς2ζ1 + c−1 ζ2)I2 and

. Substituting these expressions into (11) and
(13) gives

where rF ≡ ║x1,F║ is the radial distance of the feature/single molecule from the origin.
Given the spread of the CPs (represented by κ) is much greater than the localization
accuracy of the individual CPs (represented by σ̄1 and σ̄2) and the localization accuracy of

the feature (represented by σF)—as is typical in microscopy—then the term 

and  (both in the order of 10−6 for a typical microscopy experiment) can be considered
negligible. From Corollaries V.1 and V.2 and assuming approximations (14) and (15) we
state the following key result:
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Proposition VI.2—For large K, under Assumptions (i)–(iii) the (m, n)th element of the
covariance matrix of the TRE can be approximated as

(17)

The (m, n) th element of the covariance matrix of the LRE can be approximated as

(18)

If the covariance Ω1,F is itself representable as , where N1,F is the
photon count associated with the feature (molecule) imaged in ℐ1, then in (18) we replace

 with . The covariance matrices Ωτ and Ωℓ are both given with
respect to image space ℐ2. To express these matrices with respect to the object space

coordinates we use  and .

Consider (17). We immediately notice that the TRE has an inverse dependence the number
of CPs (denoted by K). Given extra CPs have similar localization errors to those already
deployed, then increasing the number of CPs will improve the TRE covariance and it
vanishes to zero as the number of CPs tends to infinity. It will be the case that for relatively
small numbers of CPs the TRE improvements are significant by attempting to introduce
more of them into the registration process. However, if we already have a large number of
CPs then there is no significant gain in registration performance by small increases in their
numbers. Specifically to microscopy, the TRE covariance will also vanish as the mean
photon counts tend to infinity. Therefore extending exposure time will improve registration.
Diagonal terms of the TRE covariance have dependency on CP measurement errors in both
images, while off diagonal terms of the TRE covariance depend only on measurement errors
in ℐ2. In relation to the parameters A and s, the LRE and TRE covariance matrices are
independent of rotation and translation and exhibit dependence only on scaling factor ς. The

diagonal terms of the Ωℓ have lower bound .

Localization accuracy is defined as the standard deviation of the molecule's object space
localization error. One derivable quantity of interest to researchers will be the amount by
which the registration process affects localization of a feature (single molecule) in object
space.

Definition VI.3—Let  be the covariance matrix for the measurement
error in localizing a feature at true location x1,F ∈ ℐ1 and let Ωℓ be the covariance matrix of
the LRE, then the localization loss ratio, ΔF say, has (m, n)th element

.

From (18) we now give the following result for the registration induced error ratio:
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Proposition VI.4—Under Assumptions (i)–(iii) the diagonal terms of the registration
induced error ratio matrix, ΔF, for a feature at true location x1,F ∈ ℐ1 are given as (for n = 1,
2)

(19)

Proposition VI.5—If we wish the localization accuracy of a registered feature in ℐ2 to be
restricted to p% more than the localization accuracy in ℐ1, i.e. [ΔF] ≤ 1 + (p/100), assuming
strict equality in (19), we require the following inequality is satisfied:

(20)

Consider a multitemporal registration scenario, i.e. point spread functions, numerical
aperture and photon wavelengths can be considered identical ζ1 = ζ2, ℳ1 = ℳ2 and N1,k ≈
N2,k for all k = 1, …, K. Assume A is a rotation with no scaling (i.e ς = 1) and we have an
arbitrary translation s. Inequality (20) becomes

. For example, suppose we image a
single molecule in ℐ1 with a photon count of N1,F = 200 on the outer corner of a square ℐ1

of dimensions l × l, then . Consider CPs that are uniformly distributed in ℐ1, then κ2

= l2/12 and (rF/κ)2 = 6. To restrict the loss in localization accuracy of the single molecule
due to the registration process to within 10% then we require K−1((1/N̄1) + (1/N̄2)) ≤ 1.5 ×
10−4. In such a scenario, 10 CPs with a mean photon count of 1350 would be sufficient. A
single molecule at the center of ℐ1 would undergo a loss in localization accuracy of only
0.71%.

C. Non-Diagonal Ω0

Let us now consider the case where there exists off-diagonal terms in the matrices Ω1,0 and

Ω2,0—see Section VI-A. Ω0 is still of form (16) with . Assuming the
analysis in Section VI-B on the order of magnitude of relative terms still holds, and matrix

(21)

represents a rotation by angle φ, we have the following

(22)
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(23)

(24)

where , j = 1, 2, and ρ̄1 = ρ1,0/N̄1. Equations (22), (23) and (24) show that when
the covariance of the CP measurement errors contain off-diagonal terms, the covariance
matrices of the TRE and LRE are dependent on the amount of rotation in the transform. For
example, for φ ∈ (0, π/4) then [Ωτ]11 < [Ωτ]22, and for φ ∈ (−π/4, 0) we have [Ωτ]11 >
[Ωτ]22. However, for small rotation angles φ the effect of off diagonal terms is negligible
and the results in Propositions VI.2 and VI.4 will still be appropriate.

D. Geometrically Regular Control Point Configurations
In addition to control points that appear to the experimenter at random locations in the image
space, it is also useful to consider the use of deterministic, geometrically regular CP
locations set by the experimenter. These could take the form of a grid or ellipse (which
includes the special case of a circle, provided pair correspondence between the CPs in both
images can be guaranteed). We once again take the weighting factor for the covariance
matrix (the reciprocal of the photon count) associated with a CP to be a realization of a
random variable  and is completely independent of CP location.

Consider a square grid of side length a centered at the origin, where CPs are evenly spaced
including positioning at each vertex (i.e. K is always square). It can be shown Ψ = E{ −1}
(a2/3)I2. In this situation (18) is valid, replacing κ with a2/3.

We also consider an ellipse centered at the origin with the major axis running along the x
axis with major radius a and minor radius b, then it can the shown that Ψ = (1/2) E{ −1}
diag {a2,b2}. Equation (18) is still valid, however for the case n = m = 1 then κ should be
replaced by a. When n = m = 2, k is replaced b. With a > b, this implies that image
registration is better resolved in the direction of the major axis as opposed to the direction of
the minor axis.

VII. Simulations
Here we seek verification of the results in Section VI through Monte Carlo simulations. We
consider a multitemporal registration scenario. ℐ1 and ℐ2 each comprise of 512 × 512 pixels,
with each pixel being of dimensions 16 μm × 16 μm. The system magnification is ℳ1 =
ℳ2 = 100, so in object space each pixel corresponds to a square of 0.16 μm × 0.16 μm. We
consider the affine transformation T : ℐ1 → ℐ2, T(x) = Ax + s with A being a rotation of form
(21) with φ = π/6 and s = [480, 480]T (corresponding to 30 pixels in each direction).

We assume the measurement errors for the bead positions in ℐj have mean zero and

covariance matrix (ℳjζj/Nj,k)I2 where  [26]. λj,em is the wavelength of the
photons observed in the jth image and is set as 0.520 μm for j = 1 and 2. nF is the numerical
aperture of the optical system and set to a typical value of 1.4 for both images. Nj,k is the
photon count associated with the kth CP in the jth image. We consider a single molecule in
ℐ1 with true position x1,F = (1600,1200) (giving rF = ║x1,F║ = 2000 μm), assuming

localization is subject to measurement error with covariance , where σF = 0.186 μm.
Estimators Â and ŝ were computed as outlined in Theorem III.3.
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Simulations for a multimodal scenario would be carried out in an analogous manner.
However, instead of the system parameters (photon wavelength, numerical aperture, system
magnification) being the same for both images, they would in general differ between ℐ1 and
ℐ2. These different values can be easily accounted for by calculating the covariance matrix
Ω0 appropriately and generating measurement errors with this covariance. LRE and TRE
covariance terms can be calculated by substituting the system parameters into (17) and (18).
Affine transformation parameters A and s are then estimated in an identical way.

A. Distributional Analysis
Fig. 2 is a quantile-quantile (Q-Q) plot for the distribution of the first element of the TRE.
The curve is produced by ordering 10000 independent and normalized estimates (with
respect to the theoretical variance) into increasing order of the size. The probability of a
value less than the jth ordered estimate (or sample quantile) is pj = j/10001 to a close
approximation. The corresponding theoretical quantile of the normal distribution is the value
υj such that pj = F(υj), where F(·) is the cumulative distribution function of the normal
distribution. The values υ1, …, υ10000 are plotted on the x-axis against the ordered estimates
for (a) K = 6, (b) 10, (c) 15, (d) 20 uniformly distributed CPs. Even for low numbers of CPs
the fit to the derived “large K” distribution is striking, and similar results were seen for the
second element of the TRE.

We note that the LRE ℓF is comprised of contributions from the TRE τ and the measurement

error ∊1,F. The elements of the TRE have standard deviation of order  nm, whereas the

elements of ∊1,F have standard deviation of order 2 nm. The  is
therefore dominated by the Gaussian measurement error ∊1,F. For this reason it is more
meaningful to focus analysis on the distribution of the TRE.

B. Localization Analysis
We now consider four different CP configurations; CP locations are (a) normally distributed
about the center of ℐ1 with covariance κ2I2, κ = 1350 μm, (b) uniformly distributed in ℐ1,
(c) arranged in an ellipse with major radius 4000 μm and minor radius 3000 μm, and (d)
arranged in a square grid of side 8100 μm. Due to restrictions on the possible values of K in
(d) we consider simulations where K takes the value of the square numbers from 4 to 64
inclusive. For configurations (a)–(d) the sample standard deviation of [ℓF]1 for 100000
Monte Carlo simulations is computed for each value of K, while keeping the same uniform
distribution that the CP photon counts are sampled from. The results are plotted in Fig. 3, as
are the values predicted by (18). The dashed line marks the theoretical lower bound

 of the LRE standard deviation.

The accuracy for normally and uniformly distributed CPs (scenarios (a) and (b)) shows some
deviation from the large sample results for small K ∼ 9, and in such a circumstance (20) is
not totally appropriate. A better interpretation is; at the very least this inequality must be
satisfied. However, for larger values of K this provides an excellent guide to experimenters.
The elliptical and grid configurations (scenarios (c) and (d)) show a much closer fit for small
K compared to the random configurations (secnarios (a) and (b)). This is most likely due to
the random positioning of the CPs adding to the overall variance of the parameter
estimators. In the deterministic case (20) is an excellent guide to experimenters.

In Fig. 4 we keep the number of CPs constant at K = 16 and change the mean of the uniform
distribution from which the photon counts are sampled. For configurations (a)–(d), the
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sample standard deviation of the first element of the LRE for ℒF 100000 Monte Carlo
simulations is computed. We also plot the values as predicted by (18). The dashed line

marks the theoretical lower bound  of the LRE standard deviation. By
increasing the photon count, the asymptotic results can be readily achieved and the key
results presented in this paper provide an excellent guide.

We have shown in Section VI-B that for a diagonal covariance matrix Ω0, as is the case in
our simulations, then the LRE and TRE are independent of rotation angle and translation in
the affine transformation. In Fig. 5 we keep the number of CPs constant at K = 16, the mean
of the uniform distribution from which the photon counts are sampled is kept constant and
with affine transformation parameter A = R of form (21) change the angle of rotation φ. For
each rotation angle the translation is by a random amount. For configurations (a)–(d), the
sample standard deviation of the first element of the LRE ℒF for 100000 Monte Carlo
simulations is computed. We also plot the values as predicted by (18). The dashed line

marks the theoretical lower bound  of the LRE standard deviation. It is clear
that the standard deviation of the LRE is invariant to rotation angle and translation, as
predicted.

C. Non-Gaussian Measurement Errors—The derived Gaussian distribution for the
TRE presented in this paper is given under the assumption that measurement errors in
localizing CPs are themselves Gaussian distributed. The measurement errors in a
microscopy experiment are often assumed to be Gaussian—which is justified by large
sample results and evidence based on the analysis of experimental and simulated data—it is
nevertheless useful to know how robust the results of this paper are under deviations away
from this Gaussian assumption. We therefore consider the TRE when measurement errors
are uniformly distributed, an extreme deviation from Gaussianity.

Fig. 6 gives Q-Q plots to compare the first element of the TRE against the normal
distribution. Labels (a)–(d) refer to the same values of K as with Fig. 2. Even with such a
pronounced change in the distribution of the CP measurement errors the plots show the
normal distribution is still an appropriate approximation for the TRE, although the exact
distribution is unknown.

VIII. Imaging Data and Method Comparison
We now apply the algorithm presented in this paper to real imaging data. Analysis has been
conducted by performing image registration between a pair of images of the same object
space taken by two separate cameras (multimodal registration). We have 599 repeat
captures, resulting in 599 pairs of images to register. The registration was performed using
27 TetraSpeck fluorescent beads visible in both fields of view. System parameters were
identical for each image, with system magnifications of 63, numerical apertures equal to
1.45 and the photon wavelength distributions peaking at 638 nm.

To calculate the TRE for each of the 599 registrations we need to know the exact
coordinates of a point in each image that perfectly map to one another under the affine
transformation. Without knowledge of the true transformation parameters this is not
available and we instead isolate one of the beads and average its location over the 599
images for each camera. This will give a very high precision estimate of its true location in
each image and these coordinates are used as the reference points for the TRE. The TRE is
then calculated for each of the 599 registration experiments using two different methods.
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The first method is the weighted covariance GLS method presented in this paper (developed
in Section III-A and implemented on simulations in Section VII). This method uses the
system parameters quoted above and the point spread function to calculate covariance
matrix Ω0 and takes into account both the photon count and location estimates for each bead
to compute estimates of the affine transformation parameters A and s—see Fig. 1 for details.

The second method used is the traditional GLS method presented in [22, page 28] (that
assumes homoscedastic measurement errors and is equivalent to the ML approach to image
registration used by [23]). This method uses just the location estimates for each bead in
estimating A and s.

For both methods, the sample standard deviation of the TRE for the x- and y-direction is
computed and displayed in Table I. This was repeated 27 times, each time isolating a
different bead to act as the reference point.

The results show the weighted covariance GLS methods presented here consistently
outperforms the traditional GLS method. Comparisons with the theoretical results would be
misleading because of a lack of access to the ground truth and photon counts significantly
differ across the 599 samples.

IX. Concluding Remarks
We have used a heteroscedastic generalized least squares approach to point-based image
registration. This has allowed an asymptotic analysis of the distributional properties of the
TRE and the LRE; a new measure of registration success that is of interest in microscopy.
By considering the weighted covariance we have derived closed form expressions for both
the registration estimators and the large sample TRE/LRE distributions. These distributions
can be used for determining confidence intervals of errors induced by registration.

Fluorescence microscopy image registration was used as a motivating example. Here we
have derived the TRE and LRE covariance matrices in terms of the number of CPs, their
spread in the object space, and associated photon counts. The relative loss in localization
accuracy of a imaged single molecule was further derived. When the covariance matrices of
the CP measurement errors are multiples of the identity then there is no dependence on the
translation or rotation components of the affine transformation. When they have off-
diagonal terms then the TRE/LRE are dependent on the rotation part of the affine
transformation but still remain independent of the translation. Theoretical results have been
verified with Monte Carlo simulations and even for relatively small values of K simulations
show excellent agreement with the theory. However, small but notice able discrepancies
between the simulations and large sample expressions do occur for small K and in such a
situation the results presented here should be considered a useful guide rather than exact.

Using real imaging data the weighted covariance GLS method presented here has been
shown to consistently outperform the traditional GLS method.
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Appendix A
Table II gives a list of standard abbreviations. Table III gives a list of common operators and
functions. Table IV gives a list of standard notations. Table V gives a list of fluorescence
microscopy notations.

Appendix B

Proof of Theorem III.2
Under Assumption II, the 4D multivariate Gaussian pdf for measurement vector

 is given as

where μk = Λx1, k + α, k = 1, …, K, Λ = [Id, AT]T. The likelihood function ℒ(A, s, X1; Y) for
A, s and X1 is given as

The parameter values that maximize ℒ(A, s, X1; Y) are those that minimize the term

. Noticing

it follows that Âml = Âols, ŝml = ŝols and .

Lemma B.1
Let the kth column of X̂1 be given as

(25)

then for any fixed A and s, r(s, A, X ̂1; Y) ≤ r(s, A, X1; Y) and ℒ(A, s, X̂1; Y) ≥ ℒ(A, s, X1; Y).

Proof—Let , then

. The conditional estimator x̂1, k is

the value of x1, k that gives . This gives 
and the result follows.
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The ML estimators (under Assumption II) and OLS estimators (under Assumption I) for A

and s are the values that minimize  where .
Substituting in (25) gives

(26)

We note that  is a non-singular square matrix and

.

Lemma B.2
Let F and G be equal dimension n × p matrices such that the matrix [F, G] is square
nonsingular and FT G = 0, then In = F(FT F)−1 FT + G(GT G) −1 GT.

Lemma (B.2) gives

(27)

Substituting (27) into (26) gives r̃k = Γk(A)T q̃k where  and  is

a row orthogonal matrix. Hence Γk(A) Γk(A)T = I2d and , giving

under Assumption I.

Appendix C

Proof of Theorem III.3
This proof borrows from [22]. Consider the Frobenius norm

Then
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and consequently by setting equal to zero we conclude for any fixed

 where

(28)

Under Assumption IV we have Φk = ηkΦ0 and we can simplify (28) to give ŝ =

γ(K)−1Uȳ(K),where  and .

Define vk ≡ yk − γ(K)−1ȳ, k = 1, …, K and the matrix V ≡ [v1, …, vK], then it can be shown
for any fixed A that

(29)

where

with equality in (29) holding if and only if

We now note that under Assumption IV

where

and hence we can write  with . We note
ṼṼT = W(K).

We are required to minimize
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with respect to A.

Lemma C.1
Let M ∈ ℝm × n with m ≥ n and rank(M) = r and let P ∈ ℝn × q, q ≤ r, be a matrix with q

orthonormal columns. Then  is minimized for given M, when P =
G̃k where  G̃T is a singular value decomposition (svd) of M and G̃k = [gm−k+1, …, gm]
denotes the matrix k of orthonormal right singular vectors of M corresponding to the k
smallest singular values.

We note that

and ΓT(A) is a 2d × d matrix with orthonormal columns. Let  G̃T be the svd of 
where we partition the matrix of right singular vectors

From Lemma C.1 we have

with equality reached when Â is such that . From the svd of  we
have

the eigendecomposition of  where the columns of  are the eigenvectors of

, with inverse

(30)

We have  which gives , resulting in
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with the final equality coming from (30), where we make the partition

With

we have  and Â = −([G−1]22)−1[G−1]21. Using the block inverse of G we have

 and , and it

follows that . We have now shown

for all A and s.

We are left with showing consistency. Let

and consider eigendecomposition  with E(K) = diag{e1, e2,

…, e2d} where e1 ≥ … ≥ e2d are the ordered eigenvalues of  and the columns of
G(K) are the corresponding eigenvectors. Under Assumptions I, IV and V(i) it can be shown

 exists and is equal to  wp1, where

 and Λ =

[Id, AT]T. Further to this, Assumption V(ii) implies  is positive definite. Under these
conditions we give the following as a summary to the results found in [22, Section 3].

Lemma C.2

 will have eigendecomposition  where  and

 each wp1.

Let γ1 ≥ γ2 ≥ … γd ≥ 0 be the eigenvalues of  is symmetric hence

there exists d × d matrix ψ such that  where Dγ = diag{γ1, γ2, …, γd}.
We therefore have
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and hence

Consequently, we conclude that Λψ are ordered eigenvectors of  with eigenvalues E =

(Id + Dγ). By also considering  we see that the columns of Λψ are the d
eigenvectors with the largest corresponding eigenvalues, and the columns of ΓT(A) are the
eigenvectors with the smallest eigenvalues (each equal to one). As such, if we define  to be

a matrix whose columns are the eigenvectors of , ordered by descending size of their
corresponding eigenvalues, then

for some unitary matrix . From Lemma C.2 this gives

wp1.

Using this result and under Assumption V  where  and

. By the strong law of large numbers (SLLN), 

wp1, and hence ȳ = x̄ where  with . Therefore, with

Uxk = x2, k − Ax1, k = s for all k = 1, …, K, γ−1Uȳ = γ−1Ux ̄ = γ−1 γs and  wp1.

Appendix D

Proof of Corollary IV.2
Under Assumptions II, IV, V and IV, and from Theorems III.3 and IV.1, we have that

asymptotically in K,  where H and P are given by (6) and (7),

respectively. Let us define scalar , vector 

and matrix . Under Assumption IV it can be shown
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and

Considering the forms of  and  in (8) and (9), respectively, we write

 and . Using the mixed-product property of the
Kronecker product and the symmetry of H, then

and

Using the block matrix inverse

where . Results follow by computing ,
forming the Kronecker product with Φ0 and taking limits as K → ∞ under Assumption V.
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Appendix E

Proof of Lemma VI.1

. With weighting factors {ηk, k = 1, …, K} being independent of
points {x1, k, k = 1, …, K} by SLLN

wp1. Let us consider the matrix

where  and . By SLLN γ = E{ −1}. By
SLLN and independence

Hence

wp1.
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Fig. 1.
Flow chart summarizing the key steps in registering a pair of fluorescence microscopy
images.
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Fig. 2.
Q-Q plot for the first element of the TRE vector with normally distributed CP measurement
errors, for (a) K = 6, (b) 10, (c) 15, (d) 20 CPs uniformly distributed in the image space. The
(mostly obscured) dashed straight line marks the line of perfect fit.
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Fig. 3.
The sample standard deviation of ℓF (from 100000 simulations) in object space dimensions
is plotted as a function of the number of CPs K for (a) normally distributed, (b) uniformly
distributed, (c) elliptical and (d) grid CP configurations (see Section VII-B for more details).
The ‘+’ represents the sample standard deviation of the LRE (in units nanometers). The
circles represent the standard deviation as predicted by Corollary V.2. The ‘×’ shows the
standard deviation as predicted with (18). The dashed line marks the theoretical bound σF.
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Fig. 4.
The sample standard deviation of ℓF (from 100000 simulations) in object space dimensions
is plotted as a function of N̄1, the mean photon count for the CPs in I1, for a constant K = 16
with (a) normally distributed, (b) uniformly distributed, (c) elliptical and (d) grid CP
configurations (see Section VII-B for more details). The ‘+’ represents the sample standard
deviation of the LRE (in units nanometers). The circles represent the standard deviation as
predicted by Corollary V.2. The ‘×’ shows the standard deviation as predicted with (18). The
dashed line marks the theoretical bound σF.
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Fig. 5.
The sample standard deviation of ℓF (from 100000 simulations) in object space dimensions
is plotted as a function of rotation angle φ (in degrees) when A = R with R of form (21), for a
constant K = 16 with (a) normally distributed, (b) uniformly distributed, (c) elliptical and (d)
grid CP configurations (see Section VII-B for more details). The ‘+’ represents the sample
standard deviation of the LRE (in units nanometers). The circles represent the standard
deviation as predicted by Corollary V.2. The ‘×’ shows the standard deviation as predicted
with (18). The dashed line marks the theoretical bound σF.
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Fig. 6.
Q-Q plot for the first element of the TRE vector with uniformly distributed CP measurement
errors, for (a) K = 6, (b) 10, (c) 15, (d) 20 CPs uniformly distributed in the image space. The
(mostly obscured) dashed straight line marks the line of perfect fit.
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Table II
Abbreviations

CP(s) control point(s)

TRE target registration error - Definition II. 1

EIV errors-in- variables - (1)

TLS total least squares

ML maximum likelihood

HEIV heteroscedastic errors-in-variables

LRE localization registration error - Definition II.2

GLS generalized least squares - Definition III. 1

OLS ordinary least squares - Definition III.l

SPD symmetric positive definite

WCGLS weighted covariance generalized least squares - Section III-A
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Table III
Operators and Functions

cov{·} covariance matrix of a random vector

Np(μ, Σ) p-dimensional multivariate normal distribution with mean μ and covariance matrix Σ

equal in distribution

ℒ(·) likelihood function

p(·) probability density function

vec(·)

vec(Z) of a r × a matrix Z = [z1, …, zs] is the rs × 1 vector 

E{·} expectation operator

⊗ Kronecker product

δij δij equals zero for i ≠ j and equals one for i = j.
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Table IV
Key Notation

Notation Type Definition

d d ∈ {2,3} dimension of image space

ℐj subset of ℝd image space j, j = 1,2

A ℝd × d matrix valued affine transformation parameter

s ℝd vector valued affine transformation parameter

K ℕ number of CPs

xj,k ℝd true location of kth CP (k = 1, …K) in ℐj

∊j,k ℝd random measurement error associated with localizing kth CP in ℐj

yj,k ℝd measured location of kth CP in ℐj, yj,k = xj,k + ∊j,k

Ωj,k ℝd × d Ωj,k = cov{∊j,k}

Xj ℝd × K Xj = [xj, 1, …, xj,k]

ℰj ℝd × K ℰj = [∊j, 1, …, ∊j,k]

Yj ℝd × K Yj = [ yj, 1, …, yj,k]

X ℝ2d × K

ℰ ℝ2d × K

Y ℝ2d × K

Λ ℝ2d × d Λ = [Id, AT]T

0 ℝd 0 = [0, 0]T or [0, 0, 0]T

α ℝ2d α [0T, sT]T

1K ℝK 1 = [1, 1, …, 1]T

∊k ℝ2d

Ωk ℝ2d × 2d Ωk = cov{∊k}

τ(·) ℝd ↦ ℝd TRE

xj,F ℝd true location of a feature in ℐj

∊j,F ℝd random measurement error associated with localizing a feature in ℐj

yj,F ℝd measured location of a feature in ℐj, yj,F = xj,F + ∊j,F

Ω1,F ℝd × d ΩF = cov{∊1,F}

Â ℝd × d estimator of A

ŝ ℝd estimator of s

ℓF ℝd LRE for a feature

ΔA ℝd × d ΔA = Â − A
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Notation Type Definition

Δs ℝd Δs = ŝ − s

Ωτ ℝd × d Ωτ = cov{τ}

Ωℓ ℝd × d Ωℓ = cov{ℓF}

yk ℝ2d

U ℝd×2d U = [−A, Id]

Φk ℝd×d Φk = UΩkUT

β ℝ(d+d2) β = [sT, vec(A)T]T

ηk ℝ+ scalar and matrix valued quantities when we have the property Ωk = ηkΩ0

Ω0 ℝ2d × 2d

γ(K) ℝ+

γ γ = limK → ∞ γ(K)

ȳ(K) ℝ2d

ȳ ȳ = limK → ∞ ȳ(K)

W(K) ℝ2d × 2d

W W = limK → ∞ W(K)

ℝd

Ξ(K) ℝd × d

Ψ(K) ℝd × d

Ψ Ψ = limK → ∞ Ψ(K)

Θ(K) ℝd × d

Θ Θ = limK → ∞ Θ(K)

θ ℝ

Φ0 ℝd × d Φ0 = UΩ0UT
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Table V
Fluorescence Microscopy Notation

Notation Type Definition

Nj,k ℕ photon count associated with kth CP in ℐj

Nj ℤ+ mean photon count for CPs in ℐj

ℳj ℝ+ system magnification for ℐj

λj,em ℝ+ photon wavelength associated with ℐj

ζj ℝ+ known function of the point spread function, photon wavelength and numerical aperture for ℐj

κ2 ℝ+ x/y-direction variance of randomly positioned CPs

R ℝd ×d a rotation matrix

ς ℝ+ scaling constant for A of the form ςR

ℝ+

rF ℝ+ radial distance of single molecule from origin of ℐ1
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