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The accurate assessment of disease progression and treatment response in individual patients
is a critical prerequisite for personalized therapy. High-throughput microarray technologies
have the potential to allow molecular diagnostics. To date, there have been few gene
expression-based tests applied in clinics for disease intervention. This fact puts a premium
on developing innovative methodologies to embed biological relevance into biomarker
identification. With the completion of the Human Genome Project, the emphasis of genome-
wide studies has shifted from cataloging a “parts list” of signature genes and proteins, to
elucidating the networks of interactions that occur among them (1;2). Molecular network
analyses have been used to improve disease classification (3–11) and identify novel
therapeutic targets (12–26). Nevertheless, major challenges include the development of
methods for efficiently constructing genome-scale interaction networks (27) and the
identification, from among the enormous number of genes, of a particular set of markers
with the highest capacity for molecular diagnostics/prognostics (28;29).

The emerging use of biomarkers may enable physicians to make treatment decisions based
on the specific characteristics of individual patients and their tumors, instead of population
statistics (30). In current genome-wide association studies, genes are ranked according to
their association with the clinical outcome, and the top-ranked genes are included in the
classifier. To identify the most powerful biomarkers in individualized prognostication, state-
of-the-art feature selection methods (31–33) should be widely applied. Attribute selection
techniques can be categorized as those that rank individual attributes (filters) or those that
rank subsets of attributes. Commonly used filtering methods include Cox models, ANOVA,
Bhattacharyya distance, divergence-based methods (34), gain ratio, information gain, relief
(35;36), linear discriminant analysis (37), and random forests (38–40). Algorithms that
evaluate subsets of features include correlation-based feature selection, consistency-based
subset evaluation, wrapper (35;36), self-organizing maps (SOM) (41), independent
component analysis (42–44), partial least squares (45), principal component analysis (PCA)
(46–48), kernel PCA (49;50), sliced inverse regression (51), and logistic regression (52).
Exhaustive search, branch-and-bound search, sequential search (forward or backward),
floating search, “plus l-take away r” selection (53), Tabu search (54), ant colony
optimization (55;56), genetic algorithms (57;58), simulated annealing (59–61), and
stochastic hill climbing (62) can be used as search strategies in feature selection. Only the
first two search methods guarantee the optimal subset; the rest generate suboptimal results.
However, the worst-case complexity of the first two search methods is exponential, and
these two methods are not feasible for a large dataset. Some feature selection algorithms
such as significant analysis of microarray (SAM) (63) and the multivariate permutation test
(MPT) are designed specifically for gene filtering (64). As the number of variables is much
greater than the sample size in high-throughput applications, feature pre-selection using the
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t- or F-test (65) and nonparametric Wilcoxon statistics (66;67) are used in processing raw
microarray data.

It has been noted that individual biomarkers showing strong association with disease
outcome are not necessarily good classifiers (68–70). Because genes and proteins do not
function in isolation, but rather interact with one another to form modular machines (71),
understanding the interaction networks is critical to unraveling the molecular basis of
disease. Molecular network analysis has led to promising applications in identifying new
disease genes (72–89) and disease-related subnetworks (90–99), mapping cause-and-effect
genetic perturbations (100–106), and classifying diseases (3–11). The various computational
models that have been developed for molecular network analysis can be roughly categorized
into three classes (27): logical models to demonstrate the state of entities (genes/proteins) at
any time as a discrete level (107–110); continuous models to represent real-valued network
processes (111–120) and activities (121–135); and single-molecule models (136–138) to
simulate small regulatory networks and mechanisms (139–143).

In the category of logical models, Boolean networks (107) were recently used to analyze the
relationship between regulation functions and network stability in a yeast transcriptional
network (144) and the dynamics of cell-cycle regulation (145). The structure of Boolean
networks can be learned from gene expression profiles (146–148). Boolean networks can
provide important biological insights into regulation functions and the existence and nature
of steady states (i.e., polarity gene expression) (149) and network robustness. Nevertheless,
as the number of global states is exponential in the number of entities and the analysis relies
on an exhaustive enumeration of all possible trajectories, this method is computationally
expensive and only practical for small networks (27). Due to insufficient experimental data
or incomplete understanding of a system, several candidate regulatory functions may be
possible for an entity. To express uncertainty in regulatory logic, the probabilistic Boolean
network (PBN) was developed (150) and used to model a 15-gene subnetwork inferred from
human glioma expression data (151). The synchronous dynamics of a Boolean network can
be captured by a Petri net (152), which is a non-deterministic model widely used for
detecting active pathways and state cycles (153) and for analyzing large metabolic pathways
(154–157) and regulatory networks (158). Another model, module networks, infers the
regulation logic of gene modules as a decision tree, given gene expression data (159). The
Boolean implication networks presented by Sahoo et al. (160;161) used scatter plots of the
expression between two genes to derive the implication relations in the whole genome. To
date, Boolean implication networks have not been applied in biomarker discovery.

A recent formalism, Bayesian belief networks, is recognized as one of the most promising
methodologies for prediction under uncertainty (62;162). Bayesian networks express
complex causal relations within the model and predict events based on partial or uncertain
data computed by joint probability distributions and conditionals (163–166). Bayesian
networks have been utilized to aid clinical decision-making (167–176) and to model cellular
networks (177), including genome-wide gene interactions (178), protein interactions (179–
181), and causal influences in cellular signaling networks (182). In modeling signal pathway
interactions, Bayesian networks not only automatically elucidated most of the traditionally
reported signaling relationships but also predicted novel inter-pathway network causalities,
which were verified experimentally (182). The acyclic structure of Bayesian networks
clearly represents the primary cause in the directed graph, which is appealing in predictions.
Nevertheless, the number of possible networks is exponential in the number of nodes under
consideration, which makes it impossible to evaluate all possible networks. Thus, heuristic
searches are used to construct Bayesian networks. Furthermore, it is not always possible to
determine the causal relationships between nodes, i.e., the direction of the edges, owing to a
property known as Markov equivalence (183;184). More importantly, the acyclic Bayesian
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network structure was unable to model feedback loops, which are essential in signal
pathways (182) and genetic networks (185–187). To overcome this limitation, a more
complex scheme, dynamic Bayesian networks, was explored for modeling temporal
microarray data (188–195). As an expansion of Bayesian networks, a probabilistic version
of the MetaReg model (196), represented as a factor graph (197;198), was developed (199)
to facilitate changes in the network structure (refinement) and inclusion of additional entities
(expansion) (200).

As an alternative to Bayesian networks, an implication network model employs a partial
order knowledge structure (POKS) for structural learning and uses the Bayesian theory for
inference propagation (201;202). When using Dempster-Shafer theory for belief updating,
this implication network methodology is termed a Dempster-Shafer belief network
(203;204). An implication network is a general methodology for reasoning under
uncertainty, as are other alternative formalisms such as neural networks (205;206),
dependency networks (207), Gaussian networks (208), Mycin’s certainty factors (209),
Prospector’s inference nets (210;211), and fuzzy sets (212). POKSs are closed under union
and intersection of implication relations, and have the formal properties of directed acyclic
graphs. The constraints on the partial order can be entirely represented by AND/OR graphs
(201;213). When the constraints on the partial order are relaxed, the implication networks
can represent cyclic relations among the nodes. In this condition, the implication network
structure is a directed graph with nodes connected by implication (causal) rules, which can
contain cycles such as feedback loops.

Recently, the implication networks have been used to model concurrent coexpression with
major disease signaling hallmarks for lung cancer prognostic biomarker identification
(214;215). In these studies, genome-wide coexpression networks specifically associated with
different prognostic groups were constructed using implication networks. Candidate genes
co-expressed with 6 or 7 major lung cancer signaling hallmarks were identified from these
disease-associated genome-wide coexpression networks. These candidate genes were further
selected to form prognostic gene signatures using rank-based methods including Cox model,
Relief and random forests (215). The selected biomarker sets form biologically relevant
networks when evaluated with curated databases of protein-protein interactions,
chromosome locations, signaling pathways, cis-regulatory motifs/transcription factor
binding sites, cancer related gene sets, and gene ontology. This network-based approach
identified extensive prognostic gene signatures outperforming existing ones that were
identified using traditional rank-based methods. These results demonstrate that rather than
using traditional methods to merely evaluate statistical association with disease outcome,
embedding biological relevance into network modeling of human genome could identify
clinically important disease biomarkers.

Unraveling complex molecular interactions and networks and incorporating clinical
information in the modeling will present a paradigm shift in molecular medicine. In addition
to innovative methodology development, open access to publications and original
microarray data is crucial to facilitate the sharing of data, analytical tools and scientific
findings. Other features of the OMICS publishing group including digital book, audio
version-enhanced features of the journal website, language translation, and social
networking will greatly expedite the knowledge sharing and dissemination in the –omic era.
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