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Abstract
Regenerative medicine for heart failure seeks to replace lost cardiomyocytes. Chemical
approaches for producing ample supplies of cells, such as pluripotent stem cells and
cardiomyocytes, hold promise as practical means to achieve safe, facile cell-based therapy for
cardiac repair and regenerative medicine. In this review, we describe recent advances in the
application of small molecules to improve the generation and maintenance of pluripotent stem
cells. We also describe new directions in heart repair and regeneration in which chemical
approaches may find their application.

PLURIPOTENT STEM CELLS FOR CARDIAC REGENERATIVE MEDICINE
Heart failure is usually accompanied with severe loss of cardiomyocytes, the beating cells of
heart tissue.1 Cell transplantation might be a way to rebuild damaged heart tissue but it
requires ample sources of cells.2 Pluripotent stem cells (PSCs) differentiate into any cell
type, including cardiomyocytes, and thus hold tremendous promise for regenerative
medicine and heart repair.3 The therapeutic potential of pluripotent, human embryonic stem
cells (ESCs) has long been recognized.4 Their derivation, however, inevitably involves
manipulation of human embryos and thus is controversial.

Takahashi and Yamanaka began a new era of stem cell biology with their revolutionary
reprogramming technology. They demonstrated that murine somatic cells can be
“reprogrammed” into induced pluripotent stem cells (iPSCs) with a specific set of
transcription factors (TFs), namely Oct4, Sox2, Klf4 and c-Myc (OSKM).5 The same
strategy was soon proven applicable to reprogram human somatic cells and the human iPSCs
thus generated can differentiate into cells in the three germ layers.6, 7 The emergence of
iPSC technology circumvented the ethical and political controversies associated with human
ESCs and provides an exciting potential autologous cell source for cell-based regenerative
therapy.8 Notably, human iPSCs have started to take root in disease modeling and drug
development. 9, 10

Despite its groundbreaking success, the TF-based method to generate iPSCs has significant
drawbacks that limit its application in therapies. The involvement of oncogenic TFs and
genetic modifications imposes clinically unacceptable risks such as carcinogenicity and
genomic instability of iPSCs.11 In addition, the efficiency and speed of cell reprogramming
must be significantly improved to render the process more useful in practice.
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Small molecules are appealing substitutes for genetic materials. The former can exert their
cellular effects in a transient and dose-dependent manner, and allow the timing and the
magnitude to be precisely controlled and fine-tuned. The essentially unlimited possibilities
for structural variations in small molecules allow for ample opportunities to improve their
potencies, selectivities, and pharmacological properties. Bioactive small molecules with
high specifities can potentially serve as valuable chemical probes to investigate biological
processes.12 In addition, those advantages also renders small molecules particularly suitable
for translational development of drugs.

The search of small molecules to improve and/or enable cell reprogramming towards
pluripotency has been most fruitful. Progress in this approach has been comprehensively
reviewed elsewhere.13, 14, 15 In this review, we want to focus on the efforts to replace TFs
with small molecules to generate iPSCs from somatic cells. We will highlight the insights
drawn from the most recent, significant advances in murine and human cell reprogramming.
Special attention will be paid to the connections between the molecular functions of small
molecules and their roles in establishing pluripotency, as such knowledge will eventually
lead to the realization of chemically induced, therapeutically useful human PSCs (hPSCs).
The development of chemically defined conditions to maintain hPSCs will also be
summarized. Another focus of the review is the applications of small molecules in cardiac
regenerative therapy. Chemical approaches to boost the generation and transplantation of
cardiac cells derived from PSCs will be highlighted. Potential opportunities for small
molecule-based strategies in in situ heart repair will also be discussed.

Inducing PSCs with Small Molecules
Although they share essentially identical genomes, PSCs differ from somatic cells most
distinctively in gene expression. The identities of the PSCs and all cells are largely
established by their gene expression and epigenetic signatures.16, 17 During reprogramming,
somatic cells must undergo significant epigenetic changes (i.e., histone modifications and
DNA methylation) to adopt the ESC-like patterns.18, 19 On the other hand, epigenetic
modifications allow for proper changes of the chromatin structure and thus influence the
expression of genes crucial for cell reprogramming.20 Small molecules modulating activities
of enzymes involved in epigenetic modifications can, therefore, exert profound effects on
cell reprogramming.

Posttranslational modifications to histones are one of the most common epigenetic features.
Acetylated histones have generally been associated with transcriptional activation.21 Histone
deacetylase (HDAC) inhibitors presumably help to maintain a high level of acetylation of
histones and thus facilitate the expression of pluripotency-related genes crucial for the
reprogramming process.22 As an HDAC inhibitor, valproic acid (VPA) was demonstrated to
enhance reprogramming of mouse embryonic fibroblasts (MEFs) 23 in the absence of
exogenously expressed c-Myc, which has been known to recruit multiple histone acetylase
complexes to the genome and thus presumably converts the chromatin structure of somatic
cells to an opened, active state24 characteristic of PSCs.25 Although viable, reprogramming
under c-Myc-free conditions was inefficient.26, 27 VPA significantly improved the efficiency
of this sluggish process. VPA was also reported to promote the reprogramming of human
fibroblast in the absence of Klf4 and c-Myc.28 Small molecules modulating histone and/or
DNA methylations were also used to replace TFs in the reprogramming of somatic cells.
BIX-01294, an inhibitor of the H3K9 histone methyltransferase G9a,29 when used in
conjunction with either Bayk-8644 (an L-type calcium channel agonist) or RG108 (a DNA
methyltransferase inhibitor), enabled Oct4/Klf4 (OK)-mediated reprogramming of MEFs.30

BIX-01294 could even compensate the absence of ectopic Oct4 in the Sox2/Klf4/Myc
(SKM)-mediated conversion of neural progenitor cells to iPSCs.31
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During TF-mediated reprogramming, the coordinating orchestra of signal transduction
pathways is crucial to establish pluripotency.32 Small molecules modulating signaling
pathways have been identified to enhance reprogramming efficiency or even functionally
replace TFs in iPSC reprogramming. Activation of the transforming growth factor-β (TGF-
β) signaling pathway inhibits mesenchymal-to-epithelial transition (MET), a cellular process
indispensible for induction of pluripotency. 33 During the early stage of reprogramming,
murine fibroblasts typically undergo MET and are characterized with the adoption of
epithelial-like morphology, upregulation of epithelial genes, such as E-cadherin, and
simultaneous downregulation of mesenchymal genes, such as Snail. E-cadherin is also
expressed at high levels in human ESCs that resemble epithelial cells.2 Blocking TGFβ
signaling with small molecules may facilitate reprogramming towards pluripotency.34

SB431542 (a TGFβ signaling inhibitor) and PD0325901 (PD) (an inhibitor of MEK)
significantly accelerated the rate and enhance the efficiency of human iPSCs generation.
E-616542, a small-molecule inhibitor of TGFβ signaling, can functionally replace Sox2 in
MEF reprogramming (Table 1 and 2).35 TGFβ signaling inhibitors can functionally replaced
c-Myc as well as Sox2.36 More recently, iPSCs were generated from MEFs transduced with
Oct4 and treated with small molecules A83-01, a TGFβ receptor inhibitor, and AMI-5, a
protein methyltransferase inhibitor (Table 1 and 2).37

Manipulation of other signaling pathways has also been beneficial to cell reprogramming.
Wnt signaling is important for maintaining pluripotency of ESCs and self-renewal of adult
stem cells.38 CHIR99021 (CHIR), a glycogen synthase kinase 3β (GSK3B) inhibitor,
activates Wnt signaling and significantly improve the efficiency of reprogramming of MEFs
in the absence of Sox2 and cMyc. 39 Notably, combining CHIR with Parnate, an inhibitor of
lysine-specific demethylase 1, they converted human keratinocytes to iPSCs upon ectopic
expression of Oct4 and Klf4 (Table 1 and 2). In another study, kenpaullone, a GSK3B
inhibitor, functionally replaced Klf4 in the reprogramming of MEFs (Table 1 and 2).40

Using cocktails of functionally diverse small molecules to synergistically improve cell
reprogramming has been highly fruitful. Zhu et al. established an optimized combination of
small molecules to accomplish the reprogramming of human adult keratinocytes transduced
with Oct4 only. 41 PD0325901 and A83-01 induce pluripotency in neonatal human
keratinocytes transduced with Oct4 and Klf4. Further screening identified two compounds,
sodium butyrate (NaB) and PS48, that allow Klf4 to be omitted (Table 1 and 2). NaB turned
out to be superior to VPA as an HDAC inhibitor. Interestingly, mechanistic characterization
of PS48 in reprogramming revealed the metabolic switching from mitochondrial oxidation
to glycolysis as a fundamental process during reprogramming. Finally, Parnate and CHIR
were included in the cocktail to achieve the O-mediated reprogramming of adult human
epidermal keratinocytes.41

In one recent report, TFs were completely replaced with chemicals.42 Based on their
previous findings that four small molecules (VPA, CHIR, E-616542, Parnate) enabled the
reprogramming of MEF under Oct4 only conditions,43 the authors sought to replace that last
TF with chemical compounds. They found that the combination of the compounds with
Forskolin enabled the dedifferentiation of MEFs during the early phase of reprogramming,
as indicated by the increased expression of E-cadherin, as well as the pluripotency-related
genes Sall4 and Sox2. At the late stage, 3-Deazaneplanocin A, a global histone methylation
inhibitor,44 was added to activate Oct4 expression and furnish the fully reprogrammed cells.
In this study, 0.2% of the starting MEFs were converted into iPSCs (Table 1 and 2).

Facilitating hPSC Maintenance
hPSCs can potentially supply an unlimited number of cardiomyocytes for cell-based
therapy.45 Ever since hESCs were first established in 1998,2 tremendous efforts have been
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dedicated to improving the culture conditions for these delicate cells. 46 In the early
developed culture conditions, sophisticated media containing mouse feeder cells and/or
xenogeneic components were used.2 Subsequently, modified conditions still involved ill-
defined, expensive human feeders and/or serum derived-components.47 Better-defined,
feeder free conditions were later developed.48, 49 hPSCs are intrinsically prone to apoptosis
upon cell dissociation, representing a major hurdle for their preparation and manipulation.
hESCs could be maintained in a healthier state by treatment with Rho-associated protein
kinase (ROCK) inhibitors, such as Y-7632 and Fasudil.50 Vitamin A promotes self-renewal
of human ESCs in feeder-free conditions.51 Studies from this lab further unveiled an
adhesion signaling pathway regulating hPSC survival and pluripotency. 52 By high-
throughput phenotypic screening, two novel small molecules were identified that promoted
hESC survival after trypsin dissociation, namely, Thiazovivin (Tzv) and Pyrintegin (Ptn).
Target identification revealed that Tzv inhibits ROCK and thus stabilizes E-cadherin and
enhances cell-cell interaction. ROCK inhibitors have been incorporated into simplified,
chemically defined conditions for the culture of hPSCs.53, 54

CARDIAC DIFFERENTIATION AND GRAFTS
Improving Cardiac Differentiation

The bona fide cardiomyogenic differentiation potential of human PSCs has long been
recognized.55, 56 Human PSCs differentiate into cardiomyocytes only when guided by
appropriate extrinsic influences. Substantial efforts have been made to develop conditions
that induce cardiac differentiation from human PSCs in an efficient, reproducible and simple
manner. Approaches using small molecules will be discussed in the following sections.
Phenotypic cell-based screening has been applied to discover small molecules that promote
cardiac differentiation of mouse or human PSCs. Ascorbic acid was among the earliest
chemicals identified to increase cardiogenic differentiation of ESC (Table 3).57 It also
rescues cell line–dependent cardiogenic deficiency of iPSCs.58 The applications of high-
throughput screening also led to discoveries of other cardiogenic small molecules, including
cardiogenols,59 isoxazolyl-serine-based agonists of peroxisome proliferator-activated
receptors (PPARs), 60 verapamil, 61 SB203580, 62 sulfonylhydrazones,63 and cinchona
alkaloid derivatives (Table 3).64 While active, cardiogenic small molecules discovered in
phenotypic screening assays will continue to serve as immensely useful tools, efforts to
elucidate their cellular targets, although challenging, will shed more light on the biology
underlying cardiac differentiation.

Aiming to recapitulate embryonic cardiac development, chemical approaches that
systematically target the core signaling pathways involved in each step of cardiogenesis
turned out to be extremely successful. Embryonic cardiac development is a well-organized
process, involving the sequential formation of mesoderm, cardiac progenitors and
cardiomyocytes.3 This stepwise process is finely regulated by multiple signaling pathways.
Precise signaling control with appropriate timing using small molecules is critical to the
success of chemically guided cardiac differentiation. A number of small molecules that
selectively target BMP,65 TGFβ,66, 67 and Wnt, 68, 69, 70 when applied at appropriate time-
window, enabled the efficient cardiac differentiation of PSCs, especially those of the human
origin. Knowledge gained from these discoveries, in turn, enriches our understandings about
the logic of cardiac development.

Chemically Defined Conditions for Cardiac Differentiation
The identification of robust cardiogenic chemicals that increase differentiation efficiency
and replace complex, ill-defined components (i.e., serum, growth factors, hormones, and
extracellular matrix) has allowed for a simple, reliable and cost-effective protocol to
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chemically induce cardiac differentiation from PSCs. Gonzalez et al. designed a stepwise
protocol to generate cardiomyocytes from hESCs (>50% efficiency) in serum and growth
factor-free conditions. 71 By systematic screening of 300 known signal transduction
modulators, they identified IWR-1-endo (Wnt antagonist), purmorphamine (Sonic
Hedgehog signaling agonist), and SB431542 as small molecules that promote differentiation
of hESCs into cardiomyocytes (Table 3). Although the system they used was not completely
chemically defined (i.e., using MEF conditioned medium and Matrigel), this study
demonstrates that exogenous growth factors can be replaced by small molecules for efficient
cardiac differentiation. Recently, Lian et al. developed a chemically defined cardiac
differentiation system. 72 They showed that timely modulation of Wnt signaling (activated
by CHIR during the first 24 hours and then blocked by IWP-2 or IWP-4 during days 3–5) is
sufficient and necessary for efficient cardiac induction of hPSCs (up to 98% efficiency)
under defined, growth factor–free conditions (Table 3). Similarly, Minami et al. identified a
potential Wnt inhibitor KY02111 that, when used in combined with other Wnt modulators,
induced robust cardiac differentiation of hPSCs (up to 98% efficiency) in a xeno-free
medium devoid of serum, recombinant cytokines or hormones (Table 3).73 While the
robustness and reproducibility of these protocols need to be tested on more cell lines and
may require further modifications, these significant advancements paved the way to safe,
efficient and cost-effective protocols for de novo cardiomyocyte production from hPSCs on
a clinically relevant scale.

Reducing Heterogeneity of Cardiomyocytes
Despite the great progress in developing efficient and defined methods for cardiac
differentiation of PSCs, methods are still lacking that enrich a specific subtype
cardiomyocyte, such as atrial-, ventricular-, or nodal-like cells. Common hPSC
differentiation methodologies give rise only to a mixture of all three major subtypes of
cardiomyocytes.3 A heterogeneous cellular composition, unfortunately, hampers its
utilization in medical research and cell-based therapies. In recent years, several
breakthroughs in the field of selective cardiac differentiation conditions were made using the
pharmacologic approaches. Kleger et al. found that 1-ethyl-2-benzimidazolinone (1-EBIO),
an agonist of Ca2+-activated potassium channels, induces cardiogenesis of murine ESCs and
strongly enriches nodal-like cells (from 7.2 to 57.8%) (Table 3).74 By using direct action
potential phenotyping, activation of genetic label, and subtype-specific marker expression,
Zhu and colleagues demonstrated that NRG-1β/ERBB signaling regulates the ratio of nodal-
to ventricular-type cells in hESC-derived cardiomyocytes. Inhibition of NRG-1β/ERBB
signaling by its antagonist AG1478 significantly enriched the nodal-like cells (21 to 52%)
(Table 3).75 Similarly, Zhang et al. found that retinoic acid (RA) signaling regulates atrial
versus ventricular specification during the cardiac differentiation of hESCs. When the RA
receptor antagonist BMS-189453 was added to cultures, 83% of the cardiomyocytes showed
ventricular-like features, whereas 94% of the cells displayed atrial-like phenotypes when RA
was applied (Table 3).76 Overall, these findings highlight the potential of small-molecule-
based approaches in directed differentiation of PSCs into specific cardiac subtypes. To
efficiently and selectively generate cardiomyocytes of high qualities, it is necessary to
further elucidate the mechanisms of cardiac subtype specification and to identify additional
chemicals that further improve these methods.

Improving Cardiac Grafts
Besides the production of sufficient amounts of cardiomyocytes of high quality, the
integration of transplanted cells into tissues imposes a challenge of no less significance.
Several encouraging studies have engrafted and integrated hESC-derived cardiomyocytes
into rodent and pig hearts.77, 78 Nevertheless, most cardiomyocytes were lost shortly after
transplantation. A large proportion of the cells remaining in the infarcted myocardium also
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underwent programmed cell death soon afterwards.79, 80 The poor survival of transplanted
cells represents a major obstacle for the delivery of long-term value of PSC-derived
cardiomyocytes to regenerative therapy.

Attempts with small-molecule approaches to improve graft survival of cardiomyocytes have
been conducted. Survival improved in transplanted cells pre-treated with diazoxide, a drug
that opens mitochondrial ATP-dependent potassium channels (mitoKATP) in a myocardial
infarction (MI) model (Table 3).81 A small molecule pioglitazone, an activator of PPAR-γ
signaling, significantly enhanced the viability of transplanted mesenchymal stem cell-
derived cardiomyocytes in experimental animals (Table 3).82 Moreover, small-molecule
inhibitors of the Rho-associated kinase83 and p38 MAPK84 improve the survival rate of cells
before and/or after transplantation.

Besides small molecules, growth factors such as IGF1,85 TGFβ2,86 and erythropoietin87

were also brought into play to protect transplanted cells. Laflamme et al. designed a ‘pro-
survival cocktail’ consisting of Matrigel, IGF1, a Bcl XL peptide (to block mitochondrial
death pathways), pinacidil (to open mitoKATP), peptide cyclosporin A (to attenuate
cyclophilin D–dependent mitochondrial pathways) and the caspase inhibitor ZVAD-fmk
(Table 3).77 Employing this combination of multiple pro-survival factors, 7-fold increase in
graft size in a rat MI model was achieved.78 Future efforts to further enhance graft survival
will most likely involve searching for novel combinations of small molecules and pro-
survival factors as well as other strategies, such as pre-conditioning, immunosuppressing,
and bioengineering.

IN SITU HEART REPAIR AND REGENERATION
While addressing challenges that cell transplantation therapy is currently faced with,
researchers have sought to develop new strategies for in situ heart repair and regeneration.
The advantages and drawbacks of a variety of therapeutic strategies for cardiac regenerative
medicine are listed in Table 4. Progress in emerging, promising strategies in this direction
will be the focus of the following sections. Potential applications of small-molecule
approaches in these strategies will be tentatively suggested.

Cardiomyocyte Dedifferentiation and Proliferation
During mammalian embryonic development, the heart grows through the proliferation of
cardiomyocytes but switches to hypertrophic growth soon after birth. As cardiomyocytes
exit the cell cycle at this point, further increases in cardiac mass are mainly due to the
increase in cardiomyocyte size instead of number.88 In contrast to hearts of some lower
organism, such as zebrafish, which have a robust regenerative response upon injury mainly
through cardiomyocytes dedifferentiation and proliferation, an adult mammalian heart
typically has extremely limited renewal capacity and is incapable of restoring the damaged
myocardium after injury. 89 Nonetheless, mammalian cardiomyocytes can slowly self-renew
and turnover under physiological condition,90, 91 presumably through the division of pre-
existing cardiomyocytes instead of differentiation of residue progenitor cells,92 even
although this multiplication capacity is clearly not sufficient to repair a damaged heart.
Genetic93, 94 and pharmacological95 strategies to enhance the intrinsic renewal capacity
have improved cardiac function after infarction. With the rapid progress in stem cell biology
and high-content screening platform, systematic screenings have been performed to identify
chemicals inducing cardiomyocyte proliferation.96 Future efforts to continually identify
novel small molecules that robustly induce dedifferentiation and proliferation of
cardiomyocytes will be of great value to fulfill the potential of this regenerative strategy.
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Direct Cardiac Conversion of Non-Myocytes
The establishment and advances in iPSC technology have re-galvanized research on direct
reprogramming somatic cells from one lineage into another without entering the pluripotent
stage, a process conventionally known as transdifferentiation.14 Transdifferentiation of
endogenous or explanted fibroblasts represents a fascinating, novel regenerative approach.
Fibroblasts account for up to 50% of all cells in an adult human heart. After cardiac injury,
fibroblasts are hyper-proliferated and lead to fibrosis and scar formation within the damaged
area. 97 Properly reprogrammed into cardiomyocytes, the ample fibroblasts can serve as an
attractive cell source to replenish the myocardial muscle. Proof-of-principle demonstration
of the successful cardiac reprogramming of fibroblasts has been achieved by ectopic
induction of multiple cardiac-enriched transcription factors (Gata4, Mef2c and Tbx5). 98 On
the other hand, Efe et al. established the cell-activation and signaling-directed (CASD)
cardiac reprogramming, which involves transient expression of the Yamanaka factors in
conjunction with cardiogenic signal simulation.99 The success of CASD lineage conversion
reveals a common paradigm for both transdifferentiation and reprogramming towards
pluripotency. Cardiogenic transdifferentiation was also accomplished by transfection of
cardiac fibroblasts with microRNAs (miR-1, miR-133, miR-208 and miR-499).100

Impressively, in vivo delivery of reprogramming factors into infarcted mouse hearts
regenerated the post-infarcted, damaged myocardial muscle in situ by converting resident
cardiac fibroblasts into cardiomyocytes.100, 101, 102 The induced cardiomyocytes generated
in their native environment displayed mature, adult-like phenotype and improved heart
function.101, 102 Evidence of electrical coupling to the host myocardial tissue was also
observed.101 Despite the encouraging results observed, several safety concerns need to be
addressed, including the viral delivery of transgenes and partially reprogrammed cells that
potentially disturb the cardiac rhythm. Small molecules that can avoid the usage of
transcription factors and/or enhance the in situ transdifferentiation will have tremendous
impact on the successful translation of this attractive strategy from bench to beside.

Activation of Endogenous Cardiac Progenitor Cells
The existence of resident cardiac progenitor cells (CPCs) in the adult rodent and human
heart has been well demonstrated over the last decade.103 Although many efforts have been
made on the identification, in vitro expansion and subsequent differentiation of these cells,
little is known about their roles and behaviors within the naïve heart niche under
physiological and pathological conditions. In view of their well-characterized cardiogenesis
potential both in vitro and in vivo,103 it is reasonable to envisage a CPC-based therapy that
allows the proper mobilization of resident CPCs to replace the lost or damaged cells in situ,
avoiding the problems of limited graft survival, restricted integration to the host tissue, and
potential immune rejection. The feasibility of this approach has been established in recent
years. Using genetic fate mapping, Loffredo et al. demonstrated that exogenously delivered
bone marrow–derived cells could stimulate resident CPCs and promote the endogenous
cardiomyocyte refreshment.104 Remarkably, Smart et al. described that thymosin β4, a
known pro-angiogenic peptide, mobilized an epicardial origin of progenitor population,
induced concomitant cardiac differentiation and regeneration of myocardial tissue, and
ultimately improved heart function post-infarction.105 Similarly, Zangi et al. found that
intramyocardial injection of synthetic modified RNA encoding human VEGF-A resulted in
the expansion and directed differentiation of endogenous CPCs, and markedly improved
heart function in a mouse MI model.106 An attempt to target CPCs using small molecules
has recently been reported.107 Russell et al. found that a 3,5-disubstituted isoxazole, Isx1,
could activate cardiac genes expression in residential, multipotent Notch-activated
epicardium-derived cells in vivo and induced the generation of CPCs (Table 3).107

Unfortunately, MI abrogated Isx1’s cardiogenic effects and led to fibrosis.107 Nonetheless,
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the possibilities to develop novel small-molecule tools to achieve safe, robust and cost-
effective activation of CPCs for heart regeneration are undoubtedly alluring.

CONCLUSIONS AND OUTLOOK
The discovery and improvement of iPSC technology, as well as the development of efficient
cardiac differentiation system offer tremendous hope for novel cell replacement therapies to
improve cardiac function in compromised individuals. The eventual success of complete
small-molecule-based reprogramming through activation of endogenous expressions of
genes enabling pluripotency will greatly propel the realization of the clinical potentials of
iPSCs.

Multiple concerns still hinder the applications of cardiac cell transplantation therapy,
including insufficient quantities and qualities of cardiomyocytes, ineffective delivery and
retention, acute graft death and rejection. The tremendous potentials of small molecules to
address these issues have been well recognized. Since a broad spectrum of small molecules
have been identified that can replace factors during iPSC generation and facilitate the
transition of partially reprogrammed cells into ground state pluripotency,41 it may be
possible to eliminate the risk associated with editing of host genome by viral genes, increase
the overall efficiency of cardiac reprogramming, and improve the functional integrity of
induced cardiomyocytes using pharmacological approaches. The in vitro generated
cardiomyocytes might be further engineered pharmacologically and serve as suitable
materials for direct transplantation. Methods for temporal- and spatial-controllable in vivo
delivery of small molecule must be developed to achieve their therapy values. Hopefully,
drugs that facilitate the transplantation can be developed based on small molecules that
improve the survivals and functions of transplanted tissues.

In contrast to the significant achievement of small molecules approaches made on
modulating cardiac cell fate and function, their potential in in situ heart repair is yet to be
explored. The possibilities to convert resident non-cardiomyocytes into myocardium,
activate and/or enhance the intrinsic regenerative capacity of cardiac cells by pharmacologic
means will provide alternative, fascinating options for regenerative therapy. Towards these
ultimate goals, high-throughput screening will continue to serve as a powerful strategy to
discover more novel chemicals with desired properties. Applications of combinations of
small molecules to garner their synergistic effects have already proven advantageous.
Efforts will be continuously made to search for the optimal cocktails for specific therapeutic
purposes. Last but not least, better understanding of these cell reprogramming and
developmental processes will ultimately benefit stem cell biology as well as regenerative
therapy.
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KEY WORDS

Small Molecule a defined chemical entity, often an organic compound with a
molecular weight smaller than 900 Daltons
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PSC pluripotent stem cell, a stem cell possessing the potential to
differentiate into all cell types in the body

Cell Reprogramming the artificial conversion of one particular cell state and/or fate
into another, often referring to the generation of stem cells from
more differentiated cells

TF transcription factor, a protein, either on its own or in complex
with other proteins, which binds to specific DNA sequences and
thereby controls the transcription of genes

Signaling Pathway the relaying of signals among a group of molecules which
ultimately triggers cellular responses

Differentiation a cellular process in which stem cells become more specialized
cell types

Transdifferentiation the conversion of one type of somatic cells into another cell type
without passing through the pluripotent state

Cardiac Regeneration a process to replenish lost myocardial tissues and restore cardiac
function in post-injured hearts
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Table 1

Representative Small Molecules Used to Reprogram Cells and Maintain hPSCs

Name Structure Known function(s)

A83-01 TGFβ receptor ALK4/5/7 inhibitor

AMI-5 Protein arginine N-methyltransferase inhibitor

(±)BayK 8644 (BayK) L-type calcium channel agonist

BIX-01294 (BIX) Histone methyltransferase G9a inhibitor

CHIR99021 (CHIR) Glycogen synthase kinase 3β inhibitor

3-Deazaneplanocin A (DZNep) Histone methylation inhibitor

Forskolin PKA activator

ACS Chem Biol. Author manuscript; available in PMC 2015 January 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xie et al. Page 17

Name Structure Known function(s)

Kenpaullone GSK3 and CDK1/cyclin B inhibitor

Parnate Lysine specific demethylase 1 inhibitor

PD0325901 (PD) MEK inhibitor

PS48 PDK1 activator

E-616452 TGFβ Receptor I kinase inhibitor

RG108 DNA methyltransferase inhibitor

SB431542 Activin receptor-like kinase 4/5/7 inhibitor

Sodium butyrate (NaB) Histone deacetylase inhibitor

Thiazovivin (Tzv) ROCK inhibitor

Pyrintegrin (Ptn) Unknown
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Name Structure Known function(s)

Valproic acid (VPA) Histone deacetylase inhibitor
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Table 2

Small Molecules Replacing TFs in the Reprogramming of Somatic Cells

Small molecules combination Starting cells TFs required Ref.

VPA MEFs OSK Huangfu et al., 2008

BIX, BayK or RG108 MEFs OK Shi et al., 2008

Kenpaullone MEFs OSM Lyssiotis et al., 2009

E-616542 MEFs OKM Ichida et al., 2009

A83-01, AMI-5 MEFs O Yuan et al., 2011

VPA, CHIR, E-616542, Parnate MEFs O Li et al., 2011

VPA, CHIR, E-616542, Parnate, Forskolin, DZNep MEFs none Hou et al., 2013

VPA Primary human fibroblast OS Huangfu et al., 2008

CHIR, Parnate Human keratinocytes OK Li et al., 2009

NaB, A83-01, PS48, PD Neonatal human epidermal keratinocytes O Zhu et al., 2010
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Table 3

Representative Small Molecules Enhancing Cardiac Differentiation, Graft Integration, and Heart Regeneration

Name Structure Molecular Function(s) Ref.

AG1478 EGFR tyrosine kinase inhibitor Zhang et al., 2011

Ascorbic acid Multiple Takahashi et al., 2003
Cao et al., 2012

BMS-189453 Pan-retinoic acid receptor antagonist Zhang et al., 2011

Cardiogenol C Unknown Wu et al., 2004

Cinchona alkaloid derivative Unknown Berkessel et al., 2010

Diazoxide ATP-sensitive activator K+ channel Niagara et al., 2007

1-EBIO Agonist of Ca2+-activated K+ channels Kleger et al., 2010
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Name Structure Molecular Function(s) Ref.

Isoxazolyl-serine derivative PPAR agonist Wei et al., 2004

Isx1 (isoxazole) Cardiac muscle gene activator.
Neuronal reporter genes activator. Russell et al., 2013

IWR-1-endo Wnt inhibitor Gonzalez et al., 2011

IWP-2 Wnt inhibitor Lian et al., 2012

IWP-4 Wnt inhibitor Lian et al., 2012

KY02111 Wnt inhibitor Minami et al., 2012

Pinacidil ATP-dependent K+ channel opener Laflamme et al., 2007

Pioglitazone PPAR-γ activator Shinmura et al., 2011

Purmorphamine Sonic Hedgehog signaling agonist Gonzalez et al., 2011

RA Natural ligand of RA receptors Zhang et al., 2011
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Name Structure Molecular Function(s) Ref.

SB203580 p38 MAPK inhibitor Graichen et al., 2008

Shz-1 (sulfonylhydrazone) Activator of gene Nkx2.5 Sadek et al., 2008

Verapamil L-type Ca2+ channel blocker Sachinidis et al., 2006

ZVAD-fmk Caspase inhibitor Laflamme et al., 2007
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Table 4

Comparison between PSC-based Cardiac Cell Therapy and in situ Heart Regeneration

Issues PSC-based Cardiac Cell Therapy in situ Heart Regeneration

Therapeutic mechanisms Replacing the damaged myocardium through
transplantation of in vitro generated cardiac cells
into the heart

Modulating the heart’s own regenerative
response by simulating or reprogramming
endogenous cells

Cell sources Theoretically unlimited amounts. Well-controlled
cell type and quality.

Cell type, quality and amounts typically
restricted and context-dependent.

In vitro bioengineering Applicable Not applicable

Cellular maturation Fetal or neonatal cardiomyocytes-like features Often adult cardiomyocyte-like features

Risk of tumor formation Possible due to residue pluripotent cells Possible due to modifying host genome by
transgenes and uncontrollable transgene
expression

Risk of immune rejection Possible but ameliorable with iPS technology Unlikely

Risk of arrhythmias Possible due to autorhythmicity, immaturity and
inorganization of graft cells

Possible due to potentially unpredictable and
incomplete reprogramming

Graft survival and host-graft
integration

Challenging Not necessary

Ease of implementation Low Relatively high

Cost Relatively high Relatively low
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