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Abstract
The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste
products are filtered from the plasma by the kidney and excreted via the urine, while kidney
proteins may be secreted into the circulation or released into the urine. Shotgun proteomics
datasets derived from human kidney, urine, and plasma samples were collated and processed using
a uniform software pipeline, and relative protein abundances were estimated by spectral counting.
The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR
for the kidney, urine, and plasma proteomes, respectively—for kidney and plasma, the largest
high-confidence protein sets to date. The same pipeline applied to all available human data yielded
a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one
peptide for each of ~14,000 Swiss-Prot entries, an increase over 2012 of ~7.5% of the predicted
human proteome. We demonstrate that abundances are correlated between plasma and urine,
examine the most abundant urine proteins not derived from either plasma or kidney, and consider
the biomarker potential of proteins associated with renal decline. This analysis forms part of the
Biology and Disease-driven Human Proteome Project (B/D-HPP) and a contribution to the
Chromosome-centric Human Proteome Project (C-HPP) special issue.
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INTRODUCTION
Shotgun proteomics via tandem mass spectrometry (LC-MS/MS) is the most widely used
workflow for detecting proteins and measuring their abundances in biological samples.
PeptideAtlas1, 2 has become an important resource for defining the MS-detectable human
proteome3 by collecting and reprocessing a large number of publicly available shotgun
proteomics datasets. As a crucial component of the Human Proteome Project4–6,
PeptideAtlas is defining proteomes of important human tissues and biofluids. The Human
Plasma PeptideAtlas has been evolving for many years7–9, and recently several tissue/fluid-
specific builds have been created.
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Concurrently, the Human Proteome Organization (HUPO) has organized several initiatives
to study in depth many human tissue/biofluid-based proteomes, among them the Human
Kidney & Urine Proteome Project (HKUPP, www.hkupp.org) and the Human Plasma
Proteome Project (HPPP, www.peptideatlas.org/hupo/hppp). The kidney, urine, and plasma
proteomes are intimately related: proteins and metabolic waste products are filtered from the
plasma by the kidney and excreted via the urine. Further, some kidney proteins pass directly
into the urine, others are secreted or released into the extracellular fluid and the circulation,
eventually making their way to plasma, and still others remain expressed only in the kidney.
For the discovery of urine biomarkers for kidney diseases, knowledge of plasma and kidney
proteomes is important because in most kidney diseases plasma proteins larger than 40–60
kDa pass through the impaired glomerular filter and appear in urine. With current methods,
typically only albumin or total protein (or immunoglobulin chains) is assayed in urine.

Last year Cui, et al. published an analysis of the kidney glomerulus proteome10, represented
by a non-redundant dataset of 1817 proteins produced via a stringent re-analysis of an earlier
shotgun proteomics experiment11. These two publications comprise the only comprehensive
proteomics survey of human kidney.12

In contrast, surveys of both urine and plasma have been performed by many laboratories
over the years due to the perceived value of these body fluids as non-invasive specimens for
biomarkers. A comprehensive survey of the urine proteome was completed by the Mann
laboratory in 200613, identifying 1543 proteins. In 2009, the Steen laboratory reported 2362
proteins at <1% FDR14, and in 2011 the Pandey laboratory15 reported a list of 1823 proteins
at <1% FDR. In 2010, Li, et al. identified 1310 proteins and added a focus of
phosphoproteins and phosphorylation sites16. In 2011, Nagaraj and Mann investigated what
can be done in a high-throughput, unfractionated manner17. By studying 7 individuals over 3
days they identified a total of 808 proteins, 587 of which were found in all analyses and that
they called the “core urinary proteome”. In 2012, Zerefos, et al.18 reported 558 proteins,
with emphasis on experimental estimation of molecular weight and recognition of isoforms.
Urine, of course, contains many non-protein molecules; a survey of the human urine
metabolome was recently completed19 that mined the literature for 445 compounds detected
by a variety of methods including MS. (The same group had similarly compiled a list of
4229 serum compounds20.) Multiple web resources exist to support the study of the
molecular composition of urine, including urineproteomics.org (Kentsis and Steen), the
Urine Proteomic Website (UroProt, www3.niddk.nih.gov/intramural/uroprot) focused on
urinary biomarkers, and The Kidney and Urinary Pathway Knowledge Base (KUPKB,
www.kupkb.org) at the University of Manchester, implementing a multi-omics approach to
biomarker discovery and pathway modeling using Semantic Web technologies21.

For human plasma, the most prominent surveys have been those by the HUPO PPP22

(Omenn et al, Proteomics 2005; States et al, Nature Biotech 2006), yielding a set of 3020
protein identifiers, condensed to a nonredundant, high-confidence list of 889 after a more
sophisticated bioinformatics analysis23 including Bonferroni-type adjustment for multiple
comparisons; by the Mann lab in 200824, with a high confidence list, excluding
immunoglobulins, of 697 proteins; and by the PeptideAtlas team, combining 91 experiments
from various labs to produce a high confidence list of 1929 proteins8. See Table 1 for a
summary of all of the above studies.

In 2009, Jia and co-workers25 compared the urine protein list of the Mann lab with the
HUPO PPP plasma protein list22, 23 to learn about kidney protein processing. Proteins
known to be secreted by the prostate were subtracted from both lists. Three biofluid-based
proteomes were subjected to Gene Ontology and molecular weight analyses: urine-only,
urine and plasma, plasma-only. Cui, et al., in their 2013 glomerulus study, compared the
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kidney glomerulus proteome with previously published urine and plasma protein lists10.
This comparison suggested the extent and characteristics of proteins present in kidney via
plasma contamination and of those excreted into urine.

Here, we extend the previous comparative proteomics studies in several ways. First, we
include not only glomerulus data but data from other parts of the kidney, and include urine
and plasma datasets collected from many different laboratories for more complete tissue/
biofluid-based proteome coverage; each resulting PeptideAtlas build has as many or more
high confidence protein identifications than any report published to date for that tissue/
biofluid-based proteome. Second, we use a standardized bioinformatics pipeline for all
collated MS/MS data based on the Trans-Proteomic Pipeline26, 27 and at the core of the
PeptideAtlas build process8. Third, for each tissue/biofluid-based proteome we estimate
relative protein abundances using spectral counting, and normalize the abundances for
comparison between proteomes.

Finally, we implement a bioinformatics tool to perform pair-wise and multi-way protein
identification and abundance comparisons and perform Gene Ontology analysis on the
results. We apply the tool to kidney, urine, and plasma, and provide the results in an online
resource for examining proteome commonalities and differences, accessible at
www.peptideatlas.org/hupo/hkup. We complete our report by using this resource to explore
several biological questions.

EXPERIMENTAL PROCEDURES
Datasets from diverse experiments were collected for human kidney, urine, and plasma. See
Table 2 and Supporting Information Table S1 for details. Thirteen kidney experiments on
normal samples from cancerous nephrectomy were provided by T. Yamamoto; two from
glomerulus were previously published10, 11. Fifteen urine experiments on samples from
normal individuals were provided by five investigators. Finally, 127 experiments on
primarily normal plasma samples were provided by many investigators; 69 of these had been
included in the 2010 Human Plasma PeptideAtlas8. The 22 glycocapture enrichment
experiments used in the previous study were excluded from the current study in order to
obtain more accurate relative abundance estimations. For those interested in glycoproteins
and glycopeptides, please refer to the previous study8.

A PeptideAtlas build was constructed for each of the three sample types following a
workflow described previously8. Briefly, most datasets were searched twice: (1) with X!
Tandem33 + k-score34 against a target-decoy sequence database consisting of an Extended
Complete Proteome (UniProt Complete Proteome (Swiss-Prot plus Trembl) release 2012_10
including Swiss-Prot varsplic entries and with appended peptides representing SNPs and
other Swiss-Prot annotated variants, manuscript in preparation), about 500 sequences from
the International Protein Index database35 (IPI version 3.71) that contain peptides putatively
seen in previous PeptideAtlas builds yet not presently found in the Extended Complete
Proteome, and cRAP common contaminants (www.thegpm.org/crap), plus one decoy
sequence for each target entry, and (2) with SpectraST36 against NIST human ion trap
spectral library v.05-30-2012 (http://peptide.nist.gov) with one decoy spectrum added for
each library spectrum, or against a custom target/decoy spectrum library to accommodate
special modifications. A few very large plasma datasets had been previously searched
against IPI 3.71 with X!Tandem + K-score and also against NIST 2.0 with SpectraST; these
previous search results were used in the present study because there was not enough
compute time to search against the same database as the others. X!Tandem search
parameters were set to detect N-terminal acetylation and pyroglutamic acid, plus any
additional modifications expected according to the method of sample preparation for each
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specific sample. SpectraST searches detected the modifications included in the spectral
library searched; for the NIST library this is primarily carbamidomethylation and oxidation.
See Supporting Information, “Search parameters and modifications”, for further detail.
Results were processed using the Trans-Proteomic Pipeline26. Identified peptides were
mapped to a reference protein sequence database that included Extended Complete
Proteome, the complete IPI v3.71, Ensembl v67.3737, cRAP, and all searched decoys.
Redundancy was then removed from the resulting list of protein sequence identifiers as
described previously8, except that Swiss-Prot identifiers were preferred when selecting
among multiple similar sequences for canonical, NTT-subsumed, covering set, and protein
group representative, superseding other criteria (protein probability, PSM count, number of
distinct peptides, number of enzymatic termini). For each atlas build, this process was
attempted with various PSM FDR filter thresholds until a threshold was found that produced
a final list of canonical (nonredundant) proteins with a Mayu 38 decoy-estimated FDR
between 0.008 and 0.015. For builds where this PSM FDR threshold admitted PSMs of
probability < 0.9, a PSM probability threshold of ≥0.9 was applied to exclude low-
probability PSMs; in these cases the final protein FDR was less than 0.008. The distinct
peptides corresponding to the PSMs passing threshold comprise the final peptide list for the
atlas build, and Mayu was used to estimate the PSM and peptide FDR as well. Because the
total distinct peptide content of both the search database and the reference database is nearly
equal, and the ProteinProphet algorithm39 of the Trans-Proteomic Pipeline reduces the data
to nearly the same protein group count with both databases, the protein-level FDR can be
accurately estimated after mapping to the reference database. Please refer to our 2011
Human Plasma PeptideAtlas publication8 for greater detail on the PeptideAtlas build
process.

Additionally, using this same procedure, we created a fourth PeptideAtlas build containing
nearly all the publicly released human data available to us, including much of the urine and
all of the plasma data described above (the kidney data, and the Pandey, Steen, and Qian
urine data, were not included due to time constraints but will be included in the next release)
plus data from many other sample types totaling 515 experiments. This build is an extension
of, and includes all the data in, the human build we described last year.3

So that we could conduct our comparative study using only the concise Swiss-Prot database,
we then created two sets of Swiss-Prot identifiers for each atlas: complete mapping and
nonredundant. The complete mapping included all Swiss-Prot identifiers containing any
peptide in the final list of peptide identifications. Each PeptideAtlas build, following the
Cedar protein inference method8, already contains a nonredundant set of protein identifiers
called the canonical set. However, because this set contains some non-Swiss-Prot
identifiers, and we wanted in the present study to consider only Swiss-Prot identifiers, we
created a Swiss-Prot-only nonredundant set by starting with the complete mapping and
removing (a) all identifiers that were subsumed by another Swiss-Prot identifier (i.e. whose
peptides formed a proper subset of the peptides for another Swiss-Prot identifier), and (b) for
each set of Swiss-Prot identifiers subsumed by the same non-Swiss-Prot identifier, all but
the one with the most distinct peptides. This results in a set of Swiss-Prot identifiers nearly
all of which contain peptide evidence to distinguish them from all others in the set. Like the
PeptideAtlas canonical set, the Swiss-Prot non-redundant set is not to be considered a list of
definitively identified proteins, but rather a parsimonious set of Swiss-Prot identifiers that
explains all the peptide evidence.

When comparing atlas builds, we face the problem of how to decide which identifiers are
shared in common between two builds. This is a problem throughout the field of proteomics,
where multiple versions of multiple sequence databases make it very challenging to compare
protein lists resulting from diverse experiments with diverse search and protein inference
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protocols. We take care of a large portion of this problem by applying a uniform
bioinformatics pipeline to all three tissue/biofluid-based proteomes, resulting in protein lists
from the same version of the same database (Swiss-Prot October 16, 2012). However, there
is still the issue of peptides mapping to multiple sequences. When two nonredundant protein
lists are compared, they may seem to have few proteins in common when they do in fact
share identified peptides mapping to the same protein (see Supporting Information, “Finding
commonalities between two proteomics protein sets,” for illustration). For this reason, we
use the nonredundant set for the first proteome of any comparison and the complete
mappings for the other(s).

The human proteins in the Global Proteome Machine Database (GPMDB)40, another
repository of diverse proteomics datasets reprocessed through a uniform bioinformatics
pipeline, were mapped to Swiss-Prot to facilitate comparison against PeptideAtlas. Protein
identifiers were taken from the October 2013 GPMDB Guide to the Human Proteome
(http://www.thegpm.org/lists/index.html#201008121), a complete mapping of peptides
identified in GPMDB’s human datasets against the Ensembl37 database. The 69943
identifiers with Evidence Code = 4 (highest confidence) were submitted to PICR41 for
mapping against Swiss-Prot. 35821 of these were found to map identically to 14841 distinct
Swiss-Prot entries; these constitute a GPMDB EC=4 Swiss-Prot complete mapping.

A normalized spectral count (NSC) was computed for each Swiss-Prot identifier in each
atlas according to the following formula, a simplification of the APEX method described by
Lu and coworkers42:

NSCib: normalized spectral count for protein i in atlas build b

100,000=scaling factor to make NSC values fall into a convenient range of about 10−4

to 104 and to scale the numbers to a common size for a single dataset that identifies
100,000 PSMs with high confidence

n′ib: PSM count for protein i in atlas build b, adjusted for number of observable tryptic
peptides in protein

Nb: total PSMs in atlas build b

nib: number of PSMs for peptides mapping to protein i in atlas build b

pi: total observable tryptic peptides in protein i

25: mean potential tryptic peptides per protein across human proteome (rough estimate)

Each Swiss-Prot entry was assigned the maximum NSC value for all splice variants
observed (including the canonical form). NSC is a measure of the relative abundance of a
protein within a (sub)proteome. It is an estimated answer to the question, “for every 100,000
observed protein molecules in the sample, how many are protein X?” For low-redundancy
protein identification lists (the PeptideAtlas canonical lists and the nonredundant Swiss-Prot
lists), the sum of the NSC values will approximate 100,000.
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To gain insight into the relationships among the tissue/biofluid-based proteomes, 34
identifier sets were then compiled using NSC comparisons and set operations between sets
of identifiers. See Table S4 in Supporting Information.

To determine which Gene Ontology (GO) terms are enriched among various sets of proteins,
we employed the GOstats package43 (Bioconductor) running under the R statistical
software. UniProt accessions (Swiss-Prot is a subset of UniProt) were mapped to Entrez
gene IDs, and then the map was reversed and multiple mappings were resolved using the
org.Hs.eg.db annotation package. 1612 (8%) of the Swiss-Prot IDs were missing from the
map and thus were not included in this analysis. The analysis hyperGTest was run on each
protein set with a P-value cutoff of 0.05 and parameters conditional=TRUE and
testDirection=rep for all three GO ontologies. Enrichment for each protein set was measured
by comparison against a custom universe as listed in Table S4 (Supporting Information). For
each protein set, the (at most) 12 terms with the lowest P-values were output. See Figure 1
for a summary of the complete software pipeline.

RESULTS AND DISCUSSION
By combining LC-MS/MS data from diverse laboratories worldwide, we have created
PeptideAtlas builds containing high confidence peptide and protein identifications for each
of three important human tissue/biofluid-based proteomes: kidney, urine, and plasma. These
will be henceforth referred to as KidneyPA, UrinePA, and PlasmaPA. As seen in Table 3,
for kidney and plasma we have approximately doubled the number of high-confidence,
nonredundant protein identifications reported in any previous publication, while for urine we
have approximately equaled the previous number. Protein identifier lists are provided in
Supporting Information Table S2.

Additionally, we constructed an extension of the Human PeptideAtlas build we reported last
year3 by adding more data. This new build, HumanAllPA, incorporates all of the data in
KidneyPA and PlasmaPA, most of the data in UrinePA, plus data from many other diverse
sample types—515 experiments in all. In addition to the 52 sample types listed in Figure 2
of last year’s report 3, we included breast cancer and colorectal cancer data, both of which
yielded many thousands of protein identifications, plus four cell line sample types: LAPC4,
hESC-NSC, HCT 116, and SW480+SW620, the latter two of which are both colorectal
cancer cell lines. Of the 338,013 distinct peptides identified, 7.6% of them were found by
SpectraST but not by X!Tandem, illustrating the utility of combining spectral library
searching with sequence database searching44. The 2012 Human PeptideAtlas build
contained peptides mapping to 12,629 Swiss-Prot entries, 11,868 of them with unique
peptide evidence. This year, these numbers increase by about 1500 and 1000 respectively, or
7.5% and 5% of the predicted human proteome. About 1% of the identified peptides did not
map to Swiss-Prot and are being investigated for possible inclusion therein. The Swiss-Prot
complete mapping for HumanAllPA is provided in Supporting Information Table S3.

The Global Proteome Machine Database (GPMDB)40 is another repository of diverse
proteomics datasets reprocessed through a uniform bioinformatics pipeline. Whereas
PeptideAtlas contains only those peptides that support a nonredundant protein identification
list of 1% FDR, GPMDB contains all peptide and protein identifications output by its
pipeline, computing for each peptide a confidence (log(e)) value, and assigning to each
protein identification the highest confidence value of all peptides mapped to that protein.
Protein identifications are then assigned an evidence code (EC) of 1 (black), 2 (red), 3
(yellow), and 4 (green), with 4 being the highest confidence. We computed a Swiss-Prot
complete mapping for the EC=4 human proteins in GPMDB (see Experimental Procedures).
Of the 12,934 nonredundant Swiss-Prot entries in 2013 HumanAllPA, only 5% are missing

Farrah et al. Page 6

J Proteome Res. Author manuscript; available in PMC 2015 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from the GPMDB EC=4 Swiss-Prot complete mapping. Because GPMDB does not attempt
to remove redundancy from their protein lists, we cannot compare a GPMDB nonredundant
list against the PeptideAtlas complete mapping. However, only 12% of the 14,841 identifiers
in the GPMDB EC=4 Swiss-Prot complete mapping are missing from HumanAllPA Swiss-
Prot complete mapping. Thus, the sets of proteins observed in the two repositories are highly
overlapping. Combined, their Swiss-Prot complete mappings cover 15,912 identifiers, or
about 79% of the predicted human proteome as defined by Swiss-Prot, leaving 21% with no
reliable peptide identifications in either repository.

As seen in Figure 2, the numbers of PSMs, distinct identified peptides, and nonredundant
Swiss-Prot identifiers for each of the kidney, urine, and plasma atlases vary widely. Because
of the large amount of plasma data collected over the past decade, beginning with the
inception of the Human Plasma Proteome Project (HPPP)22 and subsequently from many
other sources, PlasmaPA has by far the most PSMs. It also has the most identified peptides.
KidneyPA has the second most PSMs, but leads with the largest number of proteins
identified, presumably because it is derived from tissue samples containing cellular-level
concentrations of proteins common to all cells. UrinePA has the fewest PSMs because it was
constructed from the smallest amount of data. It also has the fewest identified peptides and
proteins, partly because it has the fewest PSMs, and partly because the protein diversity at
higher concentrations is simply smaller for urine.

The nonredundant Swiss-Prot list for KidneyPA included 4287 identifiers (73 of them
immunoglobulin chains) with high enrichment (P-value < 1e-10) of many terms having to do
with fundamental cellular processes (nucleic acid metabolic processes, translational
elongation, small molecule catabolic process) relative to the entire set of proteins identified
in any of the three sample types (see http://www.peptideatlas.org/hupo/hkup). Viral process,
viral infectious cycle, and viral transcription are also enriched. In KidneyPA, 113 proteins
were identified as transporters, exchangers, carriers or their related proteins, which mediate
reabsorption or excretion of various molecules from or into urine, and 45 were
mitochondria-related proteins. Proteomics, at least without special enrichment for
membrane-embedded proteins, misses many proteins whose transcripts are highly expressed
in kidney.

Of the 5115 Swiss-Prot identifiers in the KidneyPA complete mapping, 4880 (95%) were
found in glomerulus data, either that of Miyamoto, et al.11 (reanalyzed by Cui, et al10) or
later experiments on samples containing glomerulus only. This includes nearly all (99%) of
the 1427 Cui, et al.10 proteins that could be mapped to Swiss-Prot (out of a total of 1817
nonredundant IPI identifiers appearing in 1478 genes). An additional 1206 Swiss-Prot
identifiers in the KidneyPA Swiss-Prot complete mapping were identified from the
Miyamoto data beyond what was identified by Cui, et al.; this can be attributed at least
partly to the redundancy in the complete mapping and to the application of multiple search
engines44. It is also possible that their protein FDR (not reported explicitly) is lower than
ours.

The nonredundant Swiss-Prot list for UrinePA includes 2598 identifiers, 107 of them
annotated in Swiss-Prot as immunoglobulin chains. The complete mapping (3175
identifiers) includes at least one identifier in each of 528 (90%) of the 587 protein groups in
the “core urinary proteome” reported by Nagaraj and Mann17 as detected in seven
individuals over three consecutive days. Seventeen of the groups we missed did not include
a current Swiss-Prot identifier and thus could not be matched to our list, leaving only 42
Swiss-Prot “core urinary proteome” identifiers missing from UrinePA (see Supporting
Information Table S5). Of the 1543 urine proteins found by Adachi, et al. in 200613, the 843
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that were listed with Swiss-Prot identifiers mapped to 697 distinct Swiss-Prot entries, 614
(88%) of which are in UrinePA.

A GO analysis of UrinePA shows moderate enrichment (P-value < 1e-5) of several terms
(see http://www.peptideatlas.org/hupo/hkup). In the molecular function ontology, enriched
terms include receptor activity, extracellular matrix structural constituent, serine-type
endopeptidase inhibitor activity, and child terms to binding and catalytic activity. This
reflects intensive enzymatic digestion of many complexed molecules engulfed in lysosomes
of the tubular cells. In the biological process ontology, enriched terms are associated with
wound healing, immune response, protein activation, cell motility, blood vessel
development, and negative regulation of endopeptidase activity, platelet degranulation, and
cellular iron ion homeostasis. In the cellular component category, enriched terms include
those relating to the extracellular region, the plasma membrane, the nucleosome,
melanosome, and lysosome. Serum albumin is the protein with the second highest NSC in
urine (3087, second to Ig kappa chain C region at 7479) at molecular weight 67 kDa. The
kidney glomeruli allow plasma proteins to pass to the glomerular filtrate; the cutoff is
thought to be around 40–60 kDa45. Only less than 1% of serum albumin is estimated to leak
in the glomerular filtrate and most of serum albumin is reabsorbed at proximal tubules in the
kidney. However, serum albumin is still a predominant protein in urine of healthy volunteers
when examined by gel electrophoresis.

The average calculated MW of all identifiers observed in urine is 62 kDa, just a bit lower
than the average of 68 kDa for all identifiers seen in any KUP atlas, and 476 (28%) of
observed urine identifiers exceed 60 kDa compared to 35% in all of Swiss-Prot and 37% of
all identifiers seen in any KUP atlas. In our study we use the MW reported by Swiss-Prot in
the SQ line, which is simply the sum of the molecular weights of its amino acid residues.
However, this can be a gross misestimate of the true molecular weight of the protein or
protein fragment that is actually present in the sample. Many proteins undergo post-
translational modifications; they can be glycosylated, phosphorylated, or have numerous
other molecules covalently attached to the amino acid side chains, increasing their molecular
weight. Proteins from a single gene may have sequence differences due to nonsynonymous
single nucleotide polymorphisms or ORF variants at the DNA level, alternative splicing at
the heterogeneous nuclear RNA level, and RNA editing before translation. Further, a protein
can be proteolytically cleaved to generate functional fragments, or can also be cleaved into
smaller fragments—after cell death, for example— and multiple fragments detected, giving
the appearance that the whole protein has been detected. Comparing the abundance of
peptides from different regions of the protein sequence can provide clues to presence of the
cleavage. Cui, et al.10 in their Figure 2 showed that the calculated MW of most glomerulus
proteins is significantly different from the experimental (actual) MW based on
electrophoretic gel mobility, and that except for large (>75–95 kDa) proteins the calculated
MW is usually an overestimate. N-terminal cleavage involving about 25 amino acids occurs
routinely in proteins with a secretion signal and many other variant N-termini are
generated46.

Finally, the peptides identified in plasma mapped to 3553 nonredundant Swiss-Prot protein
identifications (117 of them immunoglobulin chains)—by far the largest nonredundant list
of confidently identified plasma proteins to date. [See Experimental Procedures for the
expansion of the PlasmaPA since our previous report8.] Highly enriched (P-value < 10−7)
terms in the biological process ontology (see http://www.peptideatlas.org/hupo/hkup)
include humoral immune response, endocrine pancreas development, platelet degranulation,
translational elongation and termination, cellular component disassembly (and child terms
macromolecular complex disassembly, protein activation cascade, and lymphocyte mediated
immunity). The most highly enriched term (1.6e-85) is the cellular compartment term
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extracellular region – not surprising given that plasma is a collector of proteins that have
been secreted by or have escaped from cells.

Among the three nonredundant HKUP Swiss-Prot identifier lists, 289 identifiers are found
that were counted as “unseen” or “missing”5 (had no identified peptides) in our JPR 2013
report3 (Figure 3). The largest number of these is from urine. A total of 1216 identifiers
from the nonredundant Swiss-Prot list for HumanAllPA had likewise been counted as
“unseen” in 2012, representing about 6% of the estimated human proteome. A
disproportionate number of these are from chromosome 19 (figure 3B); a Gene Ontology
analysis shows these to be enriched in the P-value range 10−5 – 10−10 in terms related to
biological regulation: DNA-dependent regulation of transcription, regulation of
macromolecule biosynthetic process, regulation of cellular biosynthetic process, and
regulation of nucleobase-containing compound metabolic process; also in DNA binding and
metal ion binding (in particular, zinc ion binding). Also enriched among newly-detected
chromosome 19 identifiers is the term RNA biosynthetic process (P-value 10−8).

Comparability of result sets
Before comparing the proteins seen in each of these tissue/biofluid PeptideAtlas builds, let
us consider the criteria that proteomics result sets ideally should possess in order for such
comparisons to be meaningful.

1. Sample sources: Experiments should be conducted on samples collected from the
same individual or pool of individuals. Ideally, all samples collected from an
individual are collected at the same time.

2. Sample handling and LC-MS/MS technology: Experiments should be conducted
using the same sample preparation (enzymatic digestion, protein extraction) and
LC-MS/MS technology, ideally in the same laboratory.

3. Depth: Experiments should be conducted to comparable depth (comparable
numbers of LC-MS/MS runs; comparable technical sophistication), or comparison
informatics must account for variations in depth.

4. Search libraries/databases: Data should be searched against the same libraries and/
or databases so that, in each case, the universe of possible peptide identifications is
the same.

5. Search algorithms: Data should be searched using the same search algorithms.
Different search algorithms will identify different peptides44. However, the biases
do not appear to lead to inclusion or exclusion of specific proteins or classes of
proteins, so this criterion is not so important.

6. Modifications searched: Searches for amino acid modifications should be
conducted in a consistent manner. Otherwise, bias with regard to particular proteins
may result. For example, if N-terminal acetylation is searched for in one data
collection but not another, proteins with N-terminal acetylation will have higher
likelihood of being identified in the former vs. the latter.

7. Mapping to proteins: Most importantly, results must be mapped to the same protein
sequence databases using the same sequence identifiers.

8. Protein inference: The same protein inference method (i.e. method for removing
redundancy from the list of proteins with peptide evidence) should be used.

9. Error rate: Protein result sets should have well-defined and low (<= 1%) false
discovery rates.
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The present work fulfills criteria 3, 6, 7, 8, and 9.

Because each of our tissue/biofluid-based subprotome atlas builds is created from a different
pool of individuals, criterion 1 is not fulfilled and it is likely that certain proteins seen in one
build but not another are due to differences among phenotypes (including health states and
other temporary physiological conditions) rather than differences among the sets of proteins
commonly found in tissues/biofluids. Of course, for any atlas build, the more samples in
which a particular protein is observed, the smaller the likelihood that the protein is specific
to certain phenotypes.

It is likely that some small additional bias was introduced because a variety of sample
preparation and LC-MS/MS technologies were used, in a variety of laboratories (criterion
2).

For criterion 3, we adjusted for varying depths by estimating relative abundances using
spectral counting, then performing abundance-based comparisons, using psuedo-counts in
place of zero abundance values.

We fulfilled criteria 4 and 5 (search algorithms and libraries/databases) to the extent
possible, but, as described in Experimental Procedures, some few plasma datasets were
searched differently from the rest (SpectraST not used, SpectraST searched against in-house
library, SpectraST searched against an older NIST library, X!Tandem searched against an
older database). This likely resulted in fewer identified spectra from those datasets, and thus
fewer identified peptides and proteins for the final plasma atlas build, with a small bias
toward peptides discoverable in the older library or database. Because the proportion of
plasma data differently searched is small, and because the peptides covered by the different
releases of the library/database are largely the same, this bias is likely slight.

Cellular localization
Figure 4 shows the cellular localization of proteins in KidneyPA, UrinePA, and PlasmaPA,
as indicated by Swiss-Prot keywords. Plasma and urine have about three times the
proportion of secreted proteins as kidney, whereas kidney has more cytoplasmic, nuclear,
and mitochondrial proteins. More striking are the results for the various subsets of urine
proteins: “kidney-derived”, “plasma-derived”, and “neither” (note that the 57% of UrinePA
proteins seen in both KidneyPA and PlasmaPA—those that could derive from either kidney
or plasma—are not in any of these three subsets). A full 46% of the UrinePA proteins in the
“plasma-derived” set are annotated as secreted, compared to only 3% of “kidney-derived”.
Conversely, the proportions of plasma-derived urine proteins that are annotated cytoplasmic,
nuclear, or mitochondrial are much lower than those of kidney-derived urine proteins, with
an extreme low of only 2 plasma-derived urine proteins (0.3%) annotated mitochondrial.
Curiously, nearly 60% of UrinePA identifiers seen in neither PlasmaPA nor KidneyPA are
annotated as membrane proteins.

Distributions of relative abundances
The range of NSC values observed for each atlas is illustrated in Figure 5. The extent of the
left terminus of each curve in (A) is determined by the amount of data collected because the
lowest possible NSC value is proportional to 1 divided by the total number of PSMs in the
atlas. The extents of the right termini of the three curves in (A) are approximately the same:
the largest NSC values for the three atlases are, on a log scale, nearly identical. Had not
most of the plasma samples been subjected to routine depletion of the most abundant plasma
proteins, albumin would constitute about half the total protein concentration and would thus
have an NSC value of about 50,000, extending the plasma curve farther right to a value of
about 4.7 (=log10(50,000)), and also causing the non-depleted proteins to have lower NSC
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values, extending the plasma curve farther to the left as well. See Figure S1 (Supporting
Information) for a comparison of plasma curves over the history of the Human Plasma
PeptideAtlas.

Comparisons among tissue/biofluid-based proteomes
Our atlas comparison tool produces, for any three atlas builds, 34 sets of protein identifiers
that facilitate study of the similarities and differences among the corresponding proteomes.
Those for the current study are listed in Figure 6 and fully disclosed in Supporting
Information Tables S2 and S4. Figure 7 illustrates graphically the formation of the set, “seen
in all”. The identifier lists for each set, along with links to UniProt, can be browsed at
www.peptideatlas.org/hupo/hkup. Further, an analysis to determine enrichment of Gene
Ontology terms for each set was performed, and the 12 most enriched terms with p-value <
0.05 in each ontology (Biological Process, Cellular Component, Molecular Function) can be
viewed in either graphical or tabular format at www.peptideatlas.org/hupo/hkup. Together,
these resources provide a convenient way to investigate the relationships among the three
tissue/biofluid-based proteomes.

An identifier is considered enriched in one atlas compared to another if its NSC in the first is
at least 2σ times its NSC in the second, where σ is the standard deviation of the distribution
of the logarithms of the ratios between NSC values for the two atlases for all identifiers. Any
identifier not observed in a particular atlas is assumed to be present at a very low
concentration, so for the purpose of calculating enrichment we replace each zero NSC value
with a pseudo-count of half the smallest observed NSC value for that atlas. Note that,
therefore, any identifier that appears in atlas A but not in atlas B will be listed under A NOT
B no matter how small its NSC value in A, but it will only appear in A ENRICHED OVER
B if its NSC value in A is greater than 2σ times half the smallest NSC value in B. See Table
S4 (Supporting Information) for set definitions using set notation.

We made use of the analyses available at www.peptideatlas.org/hupo/hkup to investigate
three questions: to what extent is urine dilute plasma? What is the nature of four proteins
enriched at > 2σ in UrinePA relative to KidneyPA and PlasmaPA? What is the biomarker
potential for genetic loci associated with renal decline?

Urine as dilute plasma
The 61 highest abundance PlasmaPA identifiers (NSC>486) are all seen in UrinePA. The
calculated MWs of these proteins range between 9 and 187 kDa, with only nine above 60
kDa, suggesting that most if not all of them can pass through the glomerulus. For the 2330
identifiers in both PlasmaPA and UrinePA, the correlation coefficients for their abundances
are higher than for urine/kidney and plasma/kidney, reflecting the reality that urine is
primarily a filtrate of plasma wherein proteins smaller than 40–60kDa pass to the urine and
larger ones are retained in the plasma. (see Figure 8). When proteins with a calculated MW
larger than 40kDa are removed, the correlations increase somewhat. This may be the first
study to show statistically what can be inferred from the biological relationship between
these two body fluids: that their protein concentrations are proportional.

Urine proteins highly enriched relative to kidney and plasma
Three hundred ninety-two identifiers are seen in UrinePA but not in KidneyPA or
PlasmaPA. When we conservatively assume that these are actually present in both kidney
and plasma, just below the levels of detection, then only four are found to be enriched at >2σ
in UrinePA relative to the other two (Table 4). All four are glycoproteins and we examine
them below.
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Pro-epidermal growth factor (P01133, EGF) is seen in all 15 urine experiments. Whereas the
active form comprises only 53 residues, the pro-form is a membrane-spanning protein of
1185 residues, and the observed peptides cover the entire 1010 residue extracellular region.
EGF was discovered in salivary gland and is a major growth factor for wound healing tied to
inate responses such as licking of wounds 49. It is surprising that EGF is not seen in
KidneyPA, since EGF mRNA expression is highest in kidney of the 84 different tissues and
cell types in BioGPS50 —even higher than in salivary gland—or in PlasmaPA, given that
EGF was detected in platelet-rich plasma at least as early as 198351. The portions of the
kidney where EGF is produced are unclear; according to Harris 199152, the mRNA is
localized to the thick ascending limb of Henle and distal convoluted tubule. However, EGF
has been localized to the proximal tubules by immunohistochemistry 53. In HumanAllPA,
EGF is seen exclusively in urine, with the exception of a single observation in seminal
plasma. As EGF receptor was detected in glomeruli and tubules of the kidney by
immunohistochemistry 54, EGF may play an important role in regeneration of renal
epithelial cells.

Glutaminyl-peptide cyclotransferase (Q16769), a secreted enzyme, catalyzes the formation
of N-terminal pyroglutamic acid on peptides, and its mRNA is present most abundantly in
whole blood according to BioGPS. Although absent from PlasmaPA, it is found in
HumanAllPA in a single glycocapture-enriched plasma sample. (Enriched samples were
omitted from PlasmaPA to provide more accurate abundance estimations.)

Bile salt-activated lipase (BAL) (P19835) is an enzyme secreted by the pancreas and
mammary glands that aids digestion of fats. In the Human All PeptideAtlas it is seen only in
urine samples and in a very rich colorectal cancer sample. According to UniProt, mutations
are known to result in an autosomal dominant inheritance of early onset diabetes (by age
25). This enzyme was also detected in the urine of healthy subjects in a 2006 study55 which
cites previous work that demonstrated BAL reaches the blood from the pancreas via a
transcytosis motion through enterocytes. Leaving aside the question of how this protein of
~80 kDa can be filtered through the glomerulus, it appears that this enzyme should exist in
plasma, yet does not appear in PlasmaPA. Notably, BAL is absent from the 558 urine
proteins identified in Zerefos, et al18 and also from the urine survey of Li, et al.16

Olfactomedin-4 (Q6UX06), a 510 residue secreted protein, is known to play a role in cell
adhesion via interactions with cadherin and extracellular lectins, according to UniProt.
However, while known to be secreted, UniProt citations show it is also known to be present
in intracellular compartments, in particular in mitochondria. Interestingly, olfactomedin has
high mRNA expression in pancreas, small intestine and colon, and has been shown to be a
marker for both pancreatic and gastrointenstinal cancers56, 57. A recent glycocapture
proteomics study of >40 human tissues performed at the Institute for Systems Biology
(Watts, et al. and Harris, et al., in preparation) identifies olfactomedin in >20 of the tissues,
including bladder, kidney, and prostate, any or all of which could explain its appearance in
urine via secretion pathways.

Tissue/biofluid-based proteome analysis elucidates results of GWAS study and points to
potential biomarkers

Kottgen, et al.58 reported confirmation of five loci and discovery of 16 new loci statistically
associated with decline in kidney function (glomerular filtration rate, measured with
creatinine or cystatin C); they also found 7 loci associated with creatinine production and
secretion. We examined each of the 11 loci for which the SNP variant was actually in the
named gene, rather than somewhere nearby (their Table 2), as well as three of the creatinine-
associated loci; these 14 included all three that produced non-synonymous amino acid
substitutions in the corresponding protein. The results are summarized in Table 5 and
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detailed in Supporting Information (“Integrated Analysis of Genomic Variation and Protein
Detection in Kidney, Urine, and Plasma: Seeking Clues for New Biomarker Candidates”). In
brief, we found that of the 14 loci, one emerges as a strong candidate for biomarker studies:
DAB2, which, together with MYH9 and megalin, form a trio of loci whose protein products
are known to interact physically and have each been detected in KidneyPA as well as
UrinePA and/or PlasmaPA. Five additional loci have evidence in KidneyPA, but the
evidence for one (PRKAG2) is subsumed by a related protein, and none of the five is present
in PlasmaPA or UrinePA, the two biofluids most commonly used for biomarker detection.

CONCLUSION
We provide a year 2013 update to the Human All PeptideAtlas and present PeptideAtlas
builds containing high-confidence, nonredundant protein identifications for three important
human proteomes, kidney, urine, and plasma, for the ultimate goal of defining the human
proteome. By employing the standardized bioinformatics pipeline of PeptideAtlas to re-
analyze datasets from diverse sources, we produced protein lists which are easily
comparable. The resulting peptide and protein identifications can be mined at
www.peptideatlas.org using the Browse Proteins and Browse Peptides features that have
always been available at PeptideAtlas. In addition, a master spreadsheet of the Swiss-Prot
protein identification lists is provided (Supporting Information Tables S2 and S3), including
relative abundances (NSC values) for each proteome, proteome comparison results and a
wealth of associated information on each protein such as molecular weight, cellular
localization, HPA observations, BioGPS transcript localization, and PeptideAtlas samples
and sample types. Finally, we provide a Gene Ontology analysis for each tissue/biofluid-
based proteome comparison at www.peptideatlas.org/hupo/hkup, enabling investigation into
the nature of proteins shared or not shared among these proteomes.

We have made use of these resources to address three questions: What are the abundance
correlations between each pair of tissue/biofluid-based proteomes? What is the nature of
proteins highly enriched in urine over both kidney and plasma? Of genetic loci previously
associated with declining kidney function, which do we observe in kidney, urine, and
plasma, and at what relative abundances? These studies only scratch the surface of what can
be done with this PeptideAtlas tissue/biofluid-based proteome comparison. This work will
greatly benefit the HPP, supporting all groups performing research under the auspices of the
HPP including both the C-HPP (chromosome-centric) and B/D-HPP (biology-disease-
centric).

The results from each of the three PeptideAtlas builds presented here, along with the human
brain build, liver build, and “other” build have been merged into neXtProt59, and can be
explored in the context of many other annotations there. The “other” build contains all
samples that are not included in the kidney, urine, plasma, brain, and liver builds.
PeptideAtlas will continue to expand as more data are collected through
ProteomeXchange60 and collaborations, including the introduction of builds for other human
proteomes for other tissue types and biofluids.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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GO Gene Ontology

MW molecular weight
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HPA Human Protein Atlas
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Figure 1.
Software analysis pipeline used. See Experimental Procedures for details.
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Figure 2.
PSM, peptide, and protein counts for each of the three tissue/biofluid-based proteome
PeptideAtlas builds.
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Figure 3.
Nonredundant Swiss-Prot identifiers that were counted as “unseen” or “missing”5 (had no
identified peptides) in our JPR 2013 report3. (A) From each of the three KUP atlas builds.
Note that some are seen in multiple KUP atlas builds. (B) From KUP, HumanAllPA, by
chromosome.
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Figure 4.
For six identifier sets, the proportion of identifiers with various Swiss-Prot cellular
localization keywords. Some identifiers have multiple keywords.
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Figure 5.
(A) The normalized spectral counts (NSC) for each HKUP atlas, binned on a log scale. (B)
The same data are plotted with cumulative protein counts on the X-axis and log(NSC) on the
Y-axis to produce familiar dynamic range curves, showing more directly the varying
numbers of proteins identified in each atlas.
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Figure 6.
Thirty-four protein sets were derived from the original three using the redundancy reducing
method, NSC comparisons, and set operations described in Experimental Procedures and in
Table S4 (Supporting Information). All these sets, along with their GO analyses, can be
browsed at www.peptideatlas.org/hupo/hkup.
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Figure 7.
Nonredundant Swiss-Prot identifier set for KidneyPA intersected with the complete
mappings for UrinePA and PlasmaPA. Diagram created using BioVenn47
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Figure 8.
(A) NSC values for proteins shared between two tissue/biofluid-based proteomes are plotted
on a log/log scale. (B) Correlation coefficients (r) for (A). Urine/plasma is more strongly
correlated than the other two pairs. For urine/plasma, the Pearson correlation is stronger than
the Spearman, indicating that the relationship is fairly linear. In contrast, for plasma/kidney,
the Spearman correlation is stronger, indicating that the (weak) correlation is monotonic but
not linear. Restricting the analysis to small (<40kDa calculated MW) proteins strengthens
the Pearson correlation for urine/plasma and weakens it for urine/kidney.
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Table 2

Sample information for the Human Kidney, Urine, and Plasma PeptideAtlas builds used in the present study.
In row Experiments, references are provided for data previously published (in whole or in part). See
Supporting Information Table S1 for further detail

Kidney Urine Plasma

Laboratories T. Yamamoto, Niigata U. T. Yamamoto, Niigata U.
Y.A. Goo, U. Washington
A. Pandey, Johns Hopkins
H. Steen, Boston Children's
W. Qian, PNNL

Hoffmann-La Roche
S. Hanash, MD Anderson
M. Snyder, Stanford
D. Smith, PNNL
HUPO PPP-I
and many others

Samples Normal samples from
cancerous nephrectomy

Samples from normal
volunteers

Primarily normal, plus 5
from graft-vs.-host disease
and 10 from other disease
samples.

Experiments 9 glomerulus11

1 renal cortex
1 renal medulla
2 combined glomeruli,
collecting ducts, distal
tubules, and proximal
tubules

8 Yamamoto
4 Goo
1 Pandey15

1 Steen14

1 Qian32

127 various8
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Table 3

Tallies for PeptideAtlas builds for the three tissue/biofluid-basedsubprotomes, plus a build containing all
available human data. The HumanAllPA numbers are an update over the values presented last year in the C-
HPP special issue5 and are broken down by chromosome in Hancock, 2014 (this issue). The total of 14,133
identifiers in the Swiss-Prot complete mapping differs slightly from the total given for the neXtProt complete
mapping in Marko-Varga, et al., 2014 (this issue) because the two databases, while containing nearly the same
protein sequences, are not identical. (Each neXtProt release synchronizes with the most recent Swiss-Prot
release and contains the same identifiers excluding 132 entries for immunoglobulin and T-cell receptor
variable regions and the Ig mu heavy chain disease proteins (private communication with neXtProt); the
Marko-Varga, et al. report in this issue uses a neXtProt release several months newer than the Swiss-Prot
release used here and so contains further differences beyond the 132.)

KidneyPA UrinePA PlasmaPA HumanAllPA

PSMs 9.4 × 105 4.3 × 105 3.1 × 107 6.1 × 107

Distinct peptides 3.9 × 104 2.4 × 104 5.2 × 104 3.3×105

Nonredundant proteins
(PeptideAtlas canonical)

4005 2491 3553 12,644

  Swiss-Prot 3782 (94%) 2325 (93%) 3228 (91%) 11,481 (91%)

  Other 223 166 325 1163

PSM filter threshold P<=0.9 P<=0.9 FDR=0.00005 FDR=0.0002

Decoy-estimated protein
FDR

0.2% 0.08% 1.5% 1.1%

Swiss-Prot entries with
independent peptide
evidence (nonredundant)

4287 2598 3677 12,934

Swiss-Prot complete
mapping

5115 3175 4098 14,132

Dynamic range measured 5 × 105 5 × 105 8 × 107 N/A

Largest NSC 4647 7046 7646 N/A

Smallest NSC 0.010 0.013 0.00009 N/A

Maximum non-redundant
proteins identified in
previous studies at FDR
<= 1%

181710 236214,
182315

19298 not evaluated
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Table 5

Fourteen loci found by Kottgen, et al. 58 to be associated with chronic kidney disease, plus three related loci.
All are discussed in detail in Supporting Information. Among these, the trio DAB2/MYH9/megalin emerge as
promising biomarker candidates, as there is evidence that the protein products for all three exist in kidney (are
all seen in KidneyPA) and additionally in plasma and/or urine.

Gene ID SwissProt
accession

Description KidneyPA
NSC

UrinePA
NSC

PlasmaPA
NSC

kidney
PSMs

kidney
peps

kidney sample
types

SHROOM3 Q8TF72 Protein Shroom3 0.15 0 0 11 5 glomerulus

GCKR Q14397 Glucokinase regulatory
protein

0 0 0

NAT8 Q9UHE5 Probable N-
acetyltransferase 8

1.78 0 0 144 5 cortex &
medulla

ALMS1 Q8TCU4 Alstrom syndrome
protein 1

0 0 0

DAB2 P98082 Disabled homolog 2 1.78 0 0.007 36 8 cortex, glom,
mixed, medulla

MYH9 P35579 Myosin-9 194 6.1 0.29 all

Megalin P98164
(LRP-2)

LDL receptor-related
protein 2

6.67 67 0 1369 73 all

SLC34A1 Q06495 Sodium-dependent
phosphate transport
protein 2A

0 0 0

PRKAG2 Q9UGJ0 5'-AMP-activated
protein kinase subunit
gamma-2

0.081 0 0 3 1 glomerulus

PIP5KIB O14985 Mucin-5B 0 0 0

ATXN2 Q99700 Ataxin-2 0 0 0

DACH1 Q9UI36 Dachshund homolog 1 0.32 0 0 4 2 glomerulus

UBE2Q2 Q8WVN8 Ubiquitin-conjugating
enzyme E2 Q2

0 0 0

SLC7A9 P82251 B(0,+)-type amino acid
transporter 1

0 0 0

CPS1 P31327 Carbamoyl-phosphate
synthase [ammonia],
mitochondrial

0 0 0.012

SLC22A2 O15244 Solute carrier family
22 member 2

3.1 0 0 44 2 cortex, medulla

SLC6A13 Q9NSD5 Sodium- and chloride-
dependent GABA
transporter 2

0 0 0 14 2
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