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Abstract

Self-reported race is generally considered the basis for racial classification in social surveys,

including the U.S. census. Drawing on recent advances in human molecular genetics and social

science perspectives of socially constructed race, our study takes into account both genetic bio-

ancestry and social context in understanding racial classification. This article accomplishes two

objectives. First, our research establishes geographic genetic bio-ancestry as a component of racial

classification. Second, it shows how social forces trump biology in racial classification and/or how

social context interacts with bio-ancestry in shaping racial classification. The findings were

replicated in two racially and ethnically diverse data sets: the College Roommate Study (N =

2,065) and the National Longitudinal Study of Adolescent Health (N = 2,281).
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Introduction

For more than 200 years, the measurement of race has been a major component in the

United States (U.S.) decennial censuses (Hirschman et al. 2000). Race and ethnicity are

standard items in all contemporary population and social surveys. Since the passage of civil

rights laws in the 1960s, this information has been used for monitoring racial and ethnic

differences in areas such as equal opportunity, affirmative action, the redistributing

provisions of the Voting Rights Act, access to health care, exposure to environmental

hazards, and medical prevention and treatment strategies. The information is crucial for

enforcing policies developed to reduce and eliminate racial and ethnic differences in these

areas.

Contemporary surveys and the U.S. censuses since 1960 ask respondents to self-report their

race/ethnic category or categories. The U.S. censuses ask household heads to report on other

family members’ racial/ethnic category/categories. Farley (1991) interpreted self-report as

ethnicity rather than ancestry. Perez and Hirschman (2009) did not consider the census

responses on race and ethnicity as measuring ancestry, either, because these responses

measure theoretically distinct identities. The consensus is that these measures are without an

objective basis beyond self-report (Hirschman et al. 2000:390; Rosenberg et al. 2003:157).

As Perlmann and Waters (2002:11) suggested, “the great irony is that the American

government gathers data on people’s race through a more or less slippery and subjective

procedure of self-identification and then must use these counts as the basis of legal status in

an important domain of law and administrative regulation—namely, civil rights.”

The “scientific” racism of the early twentieth century, which held that races were

biologically distinct peoples with differential abilities and behaviors, has long been

discredited by the scientific community (Gould 1981). However, a socially influenced

definition of race need not preclude any logical basis for race/ethnic classifications. Over the

past two decades, advances in molecular genetics have yielded a body of evidence showing

genetic clustering across geographically separated human populations (Li et al. 2008;

Rosenberg et al. 2002). These developments present a prime opportunity to examine the

links between bio-ancestry and survey measures of race/ethnicity and to study how bio-

ancestry interacts with social factors to shape how individuals respond to survey questions

on race/ethnicity.

Our overarching goal is to seek fresh insights into the understanding of racial classification

in the contemporary United States by combining a social science perspective with recent

advances in human molecular genetics. We aim to (1) establish geographic bio-ancestry as a

component of racial classification, and (2) use bio-ancestry measures to examine whether,

how much, and how racial self-classification departs from bio-ancestry because of social-

contextual influences.

We demonstrate that bio-ancestry (the geographic origin of an individual based on genetic

data) and social context interact to influence the classification of race and ethnicity. In other

words, the effect of bio-ancestry depends on social, historical, and cultural context. To our
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knowledge, no social scientist has considered bio-ancestry when studying racial

classification, and geneticists do not investigate social context that influences racial

classification above and beyond bio-ancestry.

Our contribution is threefold. First, we replicate the match between genetic bio-ancestry and

self-reported race across a number of independent data sources (two U.S. and two

worldwide sources). We estimate bio-ancestry using saliva DNA in two racially and

ethnically diverse data sets from the United States: the College Roommate Study (ROOM, N

= 2,065) and the National Longitudinal Study of Adolescent Health (Add Health, N =

2,281).

A general match between genetic bio-ancestry and race has been shown using worldwide

populations (Cavalli-Sforza et al. 1994; Li et al. 2008; Rosenberg et al. 2002) and clinical

convenience samples in the United States (Fyr et al. 2007; Parra et al. 1998; Reiner et al.

2005; Tang et al. 2005; Yaeger et al. 2008). Others have concluded that the physical

characteristics distinguishing East Asians were an adaptive response to living in the

Mammoth Steppe environment in Central Asia (Guthrie 1996). However, a number of

important differences exist between our work and previous research. Earlier studies focused

mostly on the study of human migration spanning the past 50,000 to 100,000 years and

population admixture in medical genetic association studies. Integrating bio-ancestry into a

study of race and ethnicity requires data sources representative of U.S. ethnic and racial

minorities and a social science perspective.

Tang et al. (2005) is a case in point. This study used a large data set of 3,636 U.S. patients

with high blood pressure, and showed a 99.86 % match between cluster-analysis assignment

and self-classification into white, African American, East Asian, or Hispanic. The study did

not consider a social science perspective and did not use a diverse and representative

sample. The study treated Hispanics as a race along with blacks and whites; however,

Hispanics are considered an ethnicity in the current U.S. census and social surveys.

Hispanics can be black, white, and/or Asian. The study obtained a “perfect” match, most

likely because all Hispanics in the study are from Starr County, Texas. The Hispanic

population in the United States, though, is much more heterogeneous than Hispanics from a

single county in Texas. Tang and colleagues did not examine multiracial individuals. As

mentioned earlier, the individuals in their study were assumed white, African American,

East Asian, or Hispanic. Comparatively, our findings using U.S.-based, nationally

representative, and racially and ethnically diverse population samples suggest that a

substantial proportion of individuals in the United States is multiracial and cannot be readily

assigned to a single racial category.

Second, we show in a test of the “one-drop rule” (the century-old U.S. social and legal

practice of treating individuals with any amount of African ancestry as black) that the

influence of bio-ancestry on racial classification depends on how black and white are

historically and socially defined. In the absence of bio-ancestry, the “one drop” cannot be

measured, and thus the rule cannot be tested directly and generally.
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Third, we examine the fluidity of racial classification, providing evidence that social context

influences whether individuals “change” their racial classification above and beyond bio-

ancestry. A common finding in previous work is that multiracial individuals are more likely

to change their reported race than mono-racial individuals across occasions (Hitlin et al.

2006) and under different social circumstances (Harris and Sim 2002). Adding the control of

bio-ancestry enables us to conclude that given the same proportion of African or Caucasian

ancestry, social contextual factors—such as the racial composition of youths’ friendship

networks and neighborhoods—contributes to the fluidity of racial classification. Without

taking bio-ancestry into account, these social influences cannot be isolated from the

influences of bio-ancestry.

Why does bio-ancestry match self-classification of race? After all, individuals typically do

not have access to their genetic information. An argument can be made that bio-ancestry

underlies phenotypic features (e.g., skin tone, hair color, hair texture, and facial features)

and family ancestral history (e.g., race of parents, grandparents, and great grandparents), and

that genetic bio-ancestry can be more of a summary measure of bio-ancestry than a measure

of phenotypic features and family history. Family history and phenotypic features are

usually not measured or are crudely measured in social science studies. This reasoning

explains why inaccessible bio-ancestry can be highly correlated with self-report of race.

Background

Social Construction of Racial Classification

Race is much more than human phenotypic or biological characteristics. The meanings of

race are grounded in historical, cultural, social, and legal processes (Bonilla-Silva 2001;

Davis 1991; Lopez 1996; Omi and Winant 1994; Williamson 1980). The role of bio-

ancestry in racial classification must be understood in this larger sociohistorical context. In

contemporary perspective, race is widely accepted as predominantly a social, rather than a

biological, concept.

The One-Drop Rule or the Rule of Hypodescent—The one-drop rule, which

originated in the American South, denoted that one drop of African blood or any amount of

African ancestry would define an individual as black (Berry and Tischler 1978:97–98; Davis

1991:5; Myrdal 1944:1–2; Williamson 1980:1–2). The rule implied that even a small

amount of black ancestry contaminates, thus disqualifying an individual from being

classified as white. Historically, the one-drop rule lay at the heart of socially constructed

race for African Americans and, together with anti-miscegenation laws, was designed to

preserve racial hierarchy. If all progeny of a black-white union were considered black, and

thus those black-white (mixed) individuals could only ever bear (by definition) black

children, a sharp color or racial line could be maintained. The one-drop rule was practiced

widely in the decades following the Civil War. The rule was further entrenched in the first

half of the twentieth century with legalized racial segregation under the Jim Crow system in

the South and de facto racial segregation and discrimination in other parts of the United

States.
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Only individuals with African ancestry are subject to the one-drop rule (Davis 1991;

Rockquemore and Brunsma 2001). In the United States, those with one-fourth or less

American Indian, Mexican, Chinese, or Japanese ancestry are considered assimilating

Americans. The one-drop rule does not apply as strictly to these individuals, and their

nonwhite racial backgrounds become ethnic legacies. The one-drop rule is uniquely

American. Other countries usually conceptualize race and ethnicity differently, resulting in

different systems that determine race based not only on physical characteristics but also on

social status, class, and other social circumstances (Surratt and Inciardi 1998; Telles 2006).

Traditional racial and ethnic boundaries have been blurred by the enormous gains in civil

rights since the mid-century, by interracial marriage, immigration, and social mobility, and

by the new options of multiracial categories introduced in the 2000 U.S. census (Hirschman

et al. 2000; Perez and Hirschman 2009). Despite these developments, it remains an open

question whether and to what extent the one-drop rule is still observed.

Without measures of bio-ancestry, previous empirical studies of the one-drop rule used

“multirace” to measure “one drop” (Fairlie 2009; Roth 2005). Roth’s study examined the

race-labeling patterns of black-white married parents for their children ages 15 and younger

using the 5 % Integrated Pubic Use Microdata Series (IPUMS) of the 2000 U.S. census

(2005). The study considered only the special case in which the “one drop” is approximately

50 % African ancestry.

In this study, we investigated whether the one-drop rule is still observed by respondents in

social surveys in the contemporary United States and the amount of African ancestry

“required” for an individual to self-classify or be classified by interviewers as black. We

also examined the amount of European ancestry required to self-classify or be classified by

interviewers as white. Bio-ancestral measures allow a quantitative empirical test of the one-

drop rule. Our analysis examined various proportions of African ancestry, including those

with 50 % African ancestry as a special case.

It is important to consider external classification when examining the one-drop rule (Penner

and Saperstein 2008). Our analysis included an external interviewer-classification of race/

ethnicity. We also examined self-reports because they illuminate the historical consequences

of the one-drop rule as both a process of external racial ascription and self-identification.

One’s self-report is not independent of social settings. The classic social psychological

concept of the “looking-glass self” is often invoked in the discussion of the fluidity of racial

identity. Specifically, the concept states that an individual’s self-perception is shaped by

others’ perception, and one learns to see oneself as society does (Cooley 1902). Previous

work on racial identity has also considered self-reports (Harris and Sim 2002).

The Fluidity of Racial Classification—The fluidity of racial classification refers to the

changeability of racial classification across cultures, historical periods, and everyday social

contexts. Even the same individual may assume multiple racial classifications under

different social circumstances. Racial fluidity is influenced and constrained by historical and

contemporary political, legal, and other societal forces that tend to use racial grouping to

maintain and perpetuate social stratification (Bonilla-Silva 2001; Gould 1981).
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The fluidity and arbitrariness of racial boundaries have been a central theme in the literature

on the social construction of race (Brown 1992; Brunsma 2006; Campbell and Troyer 2007;

Hahn et al. Teutsch 1992; Harris and Sim 2002; Herman 2010; Khanna 2004, 2010; Nagel

1994; Penner and Saperstein 2008; Saperstein 2006; Tashiro 2002; Thornton et al. 2000;

Waters 1990). A respondent’s self-classification in social surveys may be shaped by the

purpose of the survey, the explicit or implicit expectation of the circumstances surrounding

the survey, and the characteristics of the interviewer (Harris and Sim 2002; Hill 2002). A

number of studies have empirically investigated the fluidity of racial classification in the

contemporary United States. For example, Harris and Sim (2002) reported that interview

contexts when responding to the race/ethnicity questionnaire were related to whether mixed-

race individuals rejected or accepted the one-drop rule. Hitlin et al. (2006) reported that

multiracial youths were four times more likely to change their reported race between two

interviews about eight years apart.

In this study, we empirically investigated social forces associated with a change in racial

classification for youth in the United States between an occasion when they were allowed to

mark more than one racial category and an occasion when they were asked to mark only

one. The analysis controlled for bio-ancestry.

Race and Genetic Clustering Across Geographically Separated Human Populations

Analyzing data from 17 genetic loci, Lewontin (1972) discovered that 94 % of human

genetic variations across individuals occurs within a racial group, while the remaining 6 %

occurs among the racial groups of Caucasian, African, Mongoloid, South Asian Aborigines,

Amerinds, Oceanians, and Australian Aborigines. He concluded that racial classification

was of no genetic or taxonomic significance. Lewontin’s pioneering work on the distribution

of genetic variance within a population and between populations was confirmed by work

using more recent data and statistical methods (e.g., Rosenberg et al. 2002).

Without contradicting Lewontin’s findings, recent work reported that the main genetic

clusters occur among Europeans/West Asians, sub-Saharan Africans, and East Asians/

Pacific Islanders/American Indians (Li et al. 2008; Rosenberg et al. 2002). The genetic

clustering or the structure of various populations today is largely a result of the history of

human migration (Cavalli-Sforza et al. 1994). Starting about 100,000 years ago, humans

migrated out of Africa and established themselves in new environments. The migrants

possessed only a subset of the alleles of the parent population. The smaller the founder

population or migrant group, the larger the genetic disparity from the parent population.

Furthermore, the reproductive isolation among populations caused by geographical barriers

ensures that any differences arising from genetic drift be maintained. As a result, the genetic

differences across geographically separated populations would solidify into structured

differences between populations.

Relevant to this body of work is the neutral theory of molecular evolution (Kimura 1968,

1983). The theory states that most mutations at the molecular level are selectively neutral or

nearly neutral rather than Darwinian-selective. These selectively neutral mutations do not

confer functions that increase or decrease evolutionary fitness. The theory is supported by

evidence in molecular genetics, which allows comparative studies of amino acid change
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rates in evolution across related organisms. Frequently, random genetic mutations did not

change the amino acid for which a given codon triplet was coding. The majority of mutant

polymorphisms could not be functional polymorphisms; otherwise, the stable change rates in

amino acids would be much higher. The recognition of a large number of such neutral

polymorphisms led to increased attention to the role of random genetic drift in shaping

population structure.

The recent work on human migration and the neutral theory together suggest that a small

amount of genetic data, which can be much lower than 6 % of the total genetic differences

across individuals, is sufficient to predict the continental origins of a person with reasonable

accuracy. These genetic differences, however, are largely due to random drift and unrelated

to human phenotypes.

For the recent work on human migration, skepticism in social science circles exists with

regard to the representativeness of the analyzed samples (Duster 2005; Rotimi 2003, 2004)

and whether the way ancestral informative markers (AIMs) are selected might have

predetermined the results (Duster 2005). Our replication using the same set of AIMs across

four independent data sets addresses the sample representativeness and the potential problem

of predetermined results.

Europeans, Africans, and East Asians are important categories because they represent a

majority of the human population and because they are the root categories of a great number

of subpopulations (Li et al. 2008). However, these population categories are neither the only

set nor the most important set of genetic classifications. Given a proper set of genetic

markers, genetic clustering can be deciphered within Africans and African Americans

(Tishkoff et al. 2009), Europeans (Novembre et al. 2008), Pacific Islanders (Friedlaender et

al. 2008), and American Indians in both North and South America (Wang et al. 2007). Most

importantly, genetically, although every individual is unique, we all belong to the same

human species. All individuals are, to various extents, admixed or genetically mixed from

previously isolated human populations.

Data, Measures, and Methods

Data Sources

Our project tapped a total of four data sources. The main analysis was performed on two

U.S. data sets: ROOM and Add Health. The panel of ancestral informative markers was

selected from the HapMap project (2005). The estimated bio-ancestry using the U.S. data

was compared with that from the worldwide Human Genome Diversity Project (HGDP).

ROOM, carried out in the spring semester of 2008 at a large public university, was designed

to investigate joint peer and genetic effects on health behaviors on a college campus. The

study consisted of a survey component and a saliva-based DNA component; 2,664 (79.5 %)

students in the targeted sample completed a Web-based survey, and 2,080 (78.7 % of the

survey completers) provided a saliva sample.
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Add Health is a nationally representative longitudinal study of the health-related behaviors

of about 20,000 U.S. adolescents in grades 7–12 in 1994–1995 (Harris et al. 2009). Our Add

Health analysis sample consisted of 2,281 individuals with valid genotype data from the

Illumina 1,536 array, including a panel of 186 AIMs and valid survey data from Wave I.

These 2,281 individuals represent 87 % of 2,612 individuals whose saliva DNA was

collected in 2002 at Wave III. We also analyzed self-report of race and ethnicity from

Waves II and III. The findings are similar and not presented. Table 1 shows that the DNA

sample characteristics are similar to those in the full Add Health sample at Wave I,

suggesting that the DNA sample is also representative of the U.S. population.

To cross-check our estimates of bio-ancestry, we reanalyzed the more than 1,000 individuals

from 52 worldwide populations in HGDP and compared the estimates of bio-ancestry in

HGDP with our estimates from the U.S. data. The HGDP populations spread over most of

the inhabited continents (Cann et al. 2002). The same set of AIMs that was genotyped in

HGDP was also genotyped in our U.S. data sets. The HapMap project has yielded genotype

data for 90 Caucasian individuals from Utah with ancestry in Northern and Western Europe,

45 Han Chinese from Beijing, 44 Japanese from Tokyo, and 90 Yoruban individuals from

Ibadan, Nigeria on >6 million single nucleotide polymorphisms (SNPs) located across the

genome.

Measures

Genotype—In ROOM, DNA was extracted according to the manufacturer’s instructions

from 2ml of saliva (containing buccal epithelial and white blood cells) collected from

participants in an Oragene DNA collection kit (DNA Genotek; Ottawa, Ontario, Canada).

DNA was plated for Illumina genotyping at 30 μl at >50 ng/μl. Our median DNA yield was

27.33 μg, with a minimum of 0 μg (six individuals) and a maximum of 71.32 μg.

For ROOM, we designed an Illumina GoldenGate assay for 384 candidate SNPs, including

186 ancestral informative markers. Hardy-Weinberg equilibrium tests were performed on

each SNP within each race and ethnicity. Less than 1 % of the SNPs yielded a p value

smaller than .001. The genetic analysis was based on the 162 of 186 AIMs that were

successfully genotyped.

In Add Health, genomic DNA was isolated from buccal cells at the Institute of Behavior

Genetics at the University of Colorado, Boulder. The average yield of DNA was 58 ± 1 μg.

We designed and genotyped an Illumina GoldenGate assay for 1,536 candidate SNPs,

including the same 186 AIMs genotyped in ROOM. In Add Health, 121 of 186 AIMs were

successfully genotyped. The literature (briefly described herein) on AIMs suggests that 121

are still likely sufficient for differentiating the continental groups, given our sample sizes.

Race, Ethnicity, and Other Sample Characteristics

ROOM has two sets of self-reported race and ethnicity: one from the housing application

form submitted by students when requesting a dorm room to the university housing

department before their freshman year, and the second from an online survey. The university

housing form allowed students to self-classify as only one of six racial/ethnic groups: white,
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black, Hispanic, Asian and Pacific Islander, Native Indian, and Other; comparatively, the

online questionnaire allowed respondents to mark one or more races.

At Wave I, Add Health’s main race/ethnicity questions predate the format followed in the

2000 U.S. census, allowing identification of more than one racial group. When a respondent

selected more than one race during the home interview, the respondent was asked to indicate

a single race category that would best describe him or her. Importantly, interviewers were

instructed to record the single-best race of the respondent from their observations—not from

what the respondent reported. The categories available for interviewers included only single-

race categories of white, black, American Indian or Alaska Native, and Asian or Pacific

Islander; Hispanic was not an option for interviewers.

The single-race responses in ROOM were recorded from housing application forms

submitted to the university’s housing department before the freshman year. In ROOM, the

race questionnaire allowing multirace categories was filled out in the spring of 2008. In Add

Health, the single-race responses and the multirace responses were recorded in the same

survey almost immediately one after the other.

In Add Health, “Southern States” was coded as 1 for individuals who lived in one of the

following states at Wave I: Maryland, Virginia, Delaware, Tennessee, Arkansas, Louisiana,

Missouri, North Carolina, South Carolina, Mississippi, Alabama, Georgia, Florida, Texas,

Oklahoma, West Virginia, and Kentucky. In ROOM, “Southern States” was coded as 1 for

those whose permanent address on the housing application form is one of the

aforementioned states. The much higher percentage (89 %) of Southern States in ROOM

than in Add Health (36 %) is due to the location of the study university (Table 1).

Analytical Strategies

Bio-Ancestry

Our estimation of bio-ancestry relies on a panel of AIMs (rather than one or two

distinguishing genetic variants) to estimate bio-ancestry or detect genetic differentiation

across human populations. AIMs are sets of genetic polymorphisms whose allele

frequencies differ significantly across populations (Frudakis et al. 2003; Parra et al. 1998;

Shriver et al. 1997). Our panel of AIMs consists of 186 SNPs and was developed to detect

and correct population stratification for genetic association studies (Enoch et al. 2006). The

AIMs were selected according to four criteria:

1. Each AIM differed in allele frequency by a range of 0.7–10 times between at least a

pair of continental populations of Europeans, sub-Saharan Africans, and East

Asians.

2. The absolute value of log (RAF1/RAF2) was >1, where RAF1 and RAF2 are the

reference allele frequency in continental populations 1 and 2, respectively.1

1See Rosenberg et al. (2003) for a technical justification.

Guo et al. Page 9

Demography. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Each AIM was a genetically independent HapMap SNP with a minimum distance

from any other AIM of at least 100 kilo-base pair (kb) to ensure that the AIMs were

not in linkage disequilibrium.

4. The AIMs were evenly distributed throughout the genome for the three continental

populations.

The AIM selection was based on the observed reference allele frequencies of the European,

African, and Chinese/Japanese populations of the HapMap Project (HapMap data release

#16c.1, June 2005). The AIMs were specifically designed for detecting continental

populations. As such, these AIMs are much less effective in detecting substructures within a

continental population of Europeans, Africans, or East Asians.

Factors such as the minimum number of markers and sample size also affect an AIM panel’s

accuracy and informativeness. Bamshad et al. (2004) found that African American

populations had roughly 4,700 SNPs that were potentially private to the population (and thus

potential AIMs), while Europeans had 580 such SNPs. Rosenberg et al. (2002) found that

100– 160 SNPs were sufficient when the sample size was roughly 1,000; other studies have

generally used 150–200, with samples of at least 400 (Halder et al. 2008; Smith et al. 2001;

Yang et al. 2005).

We used the AIM panel to estimate biogeographical ancestry via three statistical procedures:

PLINK-based cluster analysis (Purcell et al. 2007), STRUCTURE-based cluster analysis

(Pritchard et al. 2000), and principal components analysis implemented in the software

EIGENSTRAT (Price et al. 2006). All three procedures estimated ancestral population

membership without using information from self-report of race.

Cluster analysis has been used to infer population structures and to assign individuals to

clusters or groups according to the degree of similarity of genetic data between individuals.

Individuals within each cluster share more genetic variants than those in different clusters.

However, the traditional cluster analysis assumes that each individual comes from only one

population. Pritchard et al. (2000) proposed a method that allows each individual’s ancestral

composition to represent a mixture of multiple unobserved populations. This method has

been implemented in the software package STRUCTURE.

The particular PLINK procedure we used sets a fixed cluster size or the fixed number of

ancestral populations. It assigns individuals into one and only one ancestral population, and

the individuals assigned to the same ancestral population are relatively homogeneous with

respect to AIM frequencies. To estimate the precision of our PLINK estimates, 95 %

bootstrapping confidence intervals (Efron and Tbshirani 1993) were calculated.

The STRUCTURE analysis considers each individual’s genome having potentially arisen

from an admixture of multiple populations; it also estimates relative contributions to each

individual from multiple ancestral populations. The STRUCTURE analysis assumes a K

value that represents the hypothesized number of ancestral populations. It then uses the

differences in allele frequencies in the AIMs to predict how much each ancestral population
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contributed to the genetic ancestry of a given individual. The K contributions from K

ancestry populations for each individual sum to 1.

Each STRUCTURE run used a burn-in period of 10,000 iterations, followed by 20,000

iterations from which estimates of bio-ancestry were obtained. To take into account

precision of estimates, we performed 20 replicate STRUCTURE runs. All pairwise

symmetric similar coefficients (SSC) are greater than 0.995. A SSC measures the similarity

of two sets of population structure estimates. Our final figures for bio-ancestry were

averaged over the results of the 20 sets of estimates. Our approach is similar to that used in

studies of genetic structure among American Indians (Wang et al. 2007) and Pacific

Islanders (Friedlaender et al. 2008).

Both the PLINK and STRUCTURE procedures assume that the individuals in the analysis

have originated from K populations. K is was chosen for each analysis run, but it can be

varied across different runs. Because our panel of AIMs was designed to differentiate

continental populations of Europeans, Africans, and East Asians, we set K = 3. However, to

test the robustness of our results to choice of K, we performed analyses assuming K = 3, 4,

5, 6, and 7.

The third method, implemented in the software EIGENSTRAT (Price et al. 2006), identifies

bio-ancestry through principal components (PCs). Principal component analysis is one of the

most widely used techniques to reduce the dimensionality while retaining most of the

variation in a data set. In other words, the technique summarizes a large number of variables

by a small number of new linearly independent variables. Principal component analysis

ranks the relative importance of those components in a descending way, so that the first

component contains the largest variation of the original variables. A large number of AIMs

provide rich and detailed ancestry-related information for each individual. However, such

high-dimensional data make it difficult to visualize the patterns of genetic distances between

individuals. When we plot the first and second principal components, genetic distances

between individuals (thus genetic clusters) are displayed. The first two principal components

represent a significant portion of ancestral information contained in the set of AIMs.

Social Construction of Race

To examine the practice of the one-drop rule, we calculated the percentage of the sample

with a proportion of African ancestry that reports itself as black and the percentage’s 95 %

bootstrapping confidence interval. We expect that the higher the proportion of African

ancestry, the more likely it is that individuals will self-classify or be classified by an

interviewer as black. However, the important question is, at what proportions of African

ancestry do substantial percentages of individuals begin to self-classify or be classified by an

interviewer as black? We also calculated percentage of the sample with a proportion of

European ancestry that reports itself as white as well as the percentage’s 95 % bootstrapping

confidence interval. Comparing black and white calculations would reveal the likely

asymmetry between these two groups: that is, does it take a much higher proportion of

European ancestry to self-classify or be classified as white than the proportion of African

ancestry needed to self-classify or be classified as black?
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Our analysis also takes into consideration three factors expected to affect the practice of the

one-drop rule: an individual’s ancestral composition, whether a race questionnaire contains a

multiracial option, and/or whether an individual self-classifies or is classified by an

interviewer. Our main analysis sample on the one-drop rule included only individuals who

self-reported as non-Hispanic black, white, or black-white. A separate analysis using only

Hispanics was performed so that Hispanics and non-Hispanics were compared.

For ROOM, we calculated two sets of percentages and their confidence intervals: one set

using the self-reported race on the college housing application form that did not have

multirace categories; and the second set using the online survey responses, which did allow

selection of multiple race categories. For Add Health, we analyzed two samples: the first

sample included non-Hispanics, and the second included only Hispanics. Using the first

sample, we calculated three sets of percentages and their confidence intervals: the first used

self-reported single race, the second used single race recorded by interviewers, and the third

used the 2000 U.S. census self-reported questionnaire that allowed the selection of multiple

races.

To examine the fluidity of racial classification, we restricted our analysis sample to

individuals who were classified by our PLINK analysis as blacks and whites; Hispanics

were excluded. First, we investigated the extent to which these individuals “switch” to a

multirace category when presented with this option; second, we explored which social

circumstances might make individuals more likely to switch racial classification than others.

In all the analysis, we controlled for bio-ancestry.

Results

Bio-Ancestry

Table 2 presents results from PLINK cluster analysis, showing both the percentage and case

distribution of self-reported race by PLINK-estimated genetic cluster or bio-ancestry. These

PLINK estimates (as well as other estimates based on genetic data) are placed in quotation

marks to differentiate them from self-reports. The samples were assumed to have derived

from three ancestral populations (K = 3). We repeated the analysis, assuming K = 3, 4, 5, 6

and 7, and using a fuller range of self-reported racial classification groupings. The findings

from these additional analyses are substantively identical to those in Table 2 and are also

available upon request.

In ROOM, of those who self-reported as white, 99.5 % were assigned into the “white”

category by the cluster analysis. Of those who self-reported as black, 99.3 % were classified

as “black.” We separated South Asians from non–South Asians; previous work suggests that

South Asians share substantial bio-ancestry with Europeans (e.g., Rosenberg et al. 2002). Of

those self-classifying as non–South Asians (including Chinese, Japanese, Koreans, Filipinos,

and Vietnamese), 97.7 % were assigned as “non–South Asians.” Three of the four self-

reported American Indians were classified as “white.” The bootstrapping 95% confidence

intervals for the three key groups of whites, blacks, and non–South Asians were [99.0, 99.9],

[94.7, 100], and [89.5, 100], respectively, indicating that the correspondence between bio-

ancestry and self-reports for the three main racial groups is estimated with precision.
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The results from Add Health are comparable. Of individuals who self-classified as white,

black, or non–South Asian, 99.4 %, 100.0 % and 93.7 %, respectively, were assigned by

cluster analysis into the “white,” “black,” and “non–South Asian” categories. The only two

self-reported South Asians in Add Health were excluded from the analysis. All self-reported

American Indians were classified as “white.” The three confidence intervals for Add Health

were [97.7, 99.9], [96.9, 100], and [88.1, 97.5], respectively.

Assuming three ancestral populations, we performed a STRUCTURE analysis (Pritchard et

al. 2000) on data from ROOM and Add Health (Fig. 1). This analysis allows each individual

to have memberships in as many as three ancestral populations. The horizontal bar graph

shows ancestral proportional composition for each individual. Each individual is represented

by a vertical line partitioned into as many as three segments; the length of each segment is

the measure of each ancestral contribution to an individual’s genome from three ancestral

groups. The three continental ancestries are European (red in Fig. 1), black (blue in the

figure), and Asian (yellow in the figure). The labels of self-reported race/ethnicity were used

to order the individuals or vertical lines in the graph and were added only after each

individual’s ancestry had been estimated. There are two sets of labels for white, black,

Hispanic, Asians, and so on, with one set above the graph and the other below. The two sets

of labels indicate the self-reported single-race and mixed-race individuals.

The results from the STRUCTURE analysis not only confirm the findings described in

Table 2 but also demonstrate a close match between the estimated bio-ancestry and self-

reported race of multiracial individuals. For example, the bar graph for ROOM shows that

the vertical lines for individuals who self-reported as black-white are mostly composed of

blue and red colors; the lines for those who self-reported as East Asian-white are largely

composed of yellow and red colors. In Add Health, there are fewer respondents who are

black-white; the lines of these individuals are composed of red and blue colors. Panel 3 of

Fig. 1 magnifies the section of Hispanics in Panel 2, showing that Cubans in Add Health

contain a high percentage of European ancestry, that Puerto Ricans contain a significant

portion of African ancestry, and that Chicanos are similar in ancestral composition to

Mexicans.

Table 3 gives the distribution of average ancestry for each self-reported race/ethnicity

assuming three ancestral populations. The results in Table 3 were averaged over the

estimates presented in Fig. 1. The results across ROOM and Add Health are consistent. For

example, in the two studies, respectively, the average percentage of Caucasian ancestry

among self-reported whites is 98.1 % and 98.3 %; the percentage of African ancestry among

self-reported blacks is 89.7 % and 93.2 %; and the percentage of East Asian ancestry among

self-reported East Asians is 95.5 % and 92.7 %. The ancestry distribution for subgroups

within Hispanics in Add Health is also presented.

Figure 2 displays the genetic distances among the individuals in ROOM (Panels 1a–1d) and

Add Health (Panels 2a–2d) in the context of 52 world populations consisting of more than

1,000 individuals from HGDP. We analyzed the U.S. participants and reanalyze the HGDP

study participants in order to compare the two sets of results. Each panel plots the two

largest principal components obtained from analyzing the same set of AIMs, and the
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resulting figure reveals patterns of genetic distances among individuals. Panel 1a plots bio-

ancestral distances among the HGDP individuals only. Africans and East Asians are the

furthest from each other; American Indians and individuals from Oceania are much closer to

East Asians than to Europeans and Africans; and Central Asians and Middle Eastern

individuals are closer to Europeans than to East Asians.

In Panels 1b–1d, the HGDP map of ancestral locations in Panel 1a is used as a backdrop

with the U.S. sample (black symbols) imposed onto the HGDP map. The U.S. sample self-

classified as African Americans (Panel 1b), East Asians (Panel 1c), and Europeans (Panel

1d). Self-classified East Asians and Europeans in the U.S. sample overlap almost completely

with the HGDP East Asians and Europeans, respectively, while self-classified African

Americans are located slightly away from the HGDP Africans and closer to the HGDP

North Africans and Europeans, which is consistent with the presence of some European

ancestry in African Americans. The Add Health results (2a–2d), based on a smaller set of

AIMs (121 vs. 162 for ROOM) are similar to those in ROOM. These findings have thus

established an agreement among our bio-ancestral results from the PLINK, STRUCTURE,

and EIGENSTRAT analyses. We also demonstrate an agreement among the findings based

on the U.S. data (ROOM and Add Health), the HGDP, and HapMap.

The One-Drop Rule

Table 4 shows the percentage of a sample with a proportion of African ancestry that reports

itself as black for ROOM and Add Health. The related 95 % bootstrapping confidence

intervals are given in parentheses. The point estimates are boldfaced to highlight the general

patterns across the proportion of African ancestry. We display the information in deciles, but

we collapse several deciles where sample sizes are small.

In ROOM, when only a single race was allowed to be self-reported on the housing

application, individuals with 30 % to 40 % or more African ancestry always self-classified

as black. After the questionnaire in the online survey allowed multiracial categories, the

percentages that self-classified as black lowered considerably in comparison with those in

the housing form. The lowering or the weakening of the one-drop rule is particularly

conspicuous near the 50 % African ancestry mark. Among those with 40 % to 70 % African

ancestry (N = 39), when single race was the only choice, 100 % self-identified as black;

when offered multiracial options, 24 of the 39 did not self-classify as black in the online

survey (column 3 vs. column 2). The 95 % bootstrapping confidence intervals for the online

estimates are almost always below those for the housing form (column 3 vs. column 2). On

the other hand, the point estimates and confidence intervals in column 3 show that large

proportions of individuals with 40 % to 70 % African ancestry still self-classified as black,

indicating a cultural influence of the one-drop rule in spite of multiracial options.

The non-Hispanic data from Add Health Wave I displayed a similar pattern as those from

ROOM. The large majority of individuals with >30 % African ancestry self-classified as

black. The percentages of individuals who self-classified as black also dropped considerably

when multiracial categories were an option (column 7). Interviewer-classification did not

differ markedly from self-classification. The Hispanic data from Add Health have a small
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number of persons with >30 % African ancestry—too few to be informative on the one-drop

rule (columns 9–11).

Table 5, a mirror image of Table 4, gives the percentage of a sample with a proportion of

European ancestry that reports itself as “white” for both ROOM and Add Health. The

contrast between Tables 4 and 5 among non-Hispanic individuals is evident. A much larger

proportion of individuals with 30 % to 70 % African ancestry self-classified as black (Table

4: 100 % and 38 % in response to a single-race question and a multirace question for

ROOM; 82 % and 42 % for Add Health) than the proportion of individuals with 30 % to 70

% European ancestry self-classified as white (Table 5: 3 % and 0 % in response to a single-

race question and a multirace question for ROOM; 27 % and 13 % for Add Health). The

asymmetry between Tables 4 and 5 is that it takes a higher proportion of European ancestry

to self-classify or be classified by an interviewer as white than the proportion of African

ancestry needed to self-classify or be classified as black. When multiracial categories come

into play, some individuals with a high proportion of European ancestry (columns 3 and 7)

switched classification from white to multiracial. Again, interviewer classification does not

differ from self-classification noticeably.

The Hispanics from Add Health in Table 5 show a distinct pattern. Those with 30 % to 60 %

European ancestry are more likely than non-Hispanics with African ancestry to self-classify

as white (column 9 vs. column 5). For example, about 45 % of Hispanics with 40 % to 50 %

European ancestry self-classified as white, compared with about 14 % of non-Hispanics with

40 % to 50 % European ancestry. Hispanics with >60 % European ancestry were less likely

to self-classify as white and more likely to self-classify as multiracial (column 9 vs. column

5). For example, only about 50 % of Hispanics with 80 % to 90 % European ancestry self-

classified as white, compared with 100 % of non-Hispanics who self-classified as white and

who have 80 % to 90 % European ancestry.

Tables 4 and 5 record another asymmetry from both ROOM and Add Health. In the column

of the number of individuals by proportion of African ancestry in Table 4, individuals with

10 % to 50 % African ancestry (N = 14 for ROOM and N = 26 for Add Health) are

considerably less numerous than individuals with 50 % to 90 % African ancestry (N = 131

for ROOM and N = 94 for Add Health).

The Fluidity of Racial Classification

Table 6 shows the number and percentage of blacks and whites who switched racial

classification between the single-race and multirace options. In ROOM, 16.8 % and 2.6 % of

blacks and whites, respectively, switched racial classification. The black switchers and

nonswitchers scored .76 and .91, respectively, on African ancestry. The white switchers and

nonswitchers scored .96 and .98, respectively, on European ancestry. In Add Health, 5.03 %

and 2.8 % of blacks and whites, respectively, changed their racial classifications. The

changers and nonchangers scored, respectively, .68 and .93 on African ancestry among

blacks and .94 and .98 on European ancestry among whites. Among individuals who

changed racial classification, more than 70 % of both blacks and whites switched to a

multiracial category. Overall, those who changed classification scored higher on bio-

ancestry than the nonswitchers within both the African and European samples. The higher
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probability of classification switching among blacks than whites could be partially attributed

to bio-ancestry, suggesting that bio-ancestry needs to be accounted for when examining

sociocontextual sources of classification switching.

Logistic regression was used to examine the sociocontextual sources of classification

switching (Table 7). The descriptive statistics of the variables used in the regression models

are given in Table 8. The outcome variable was coded as 1 for classification-changers and 0

for nonchangers. In ROOM, Model 1 (which is based on the combined sample of blacks and

whites) contains a statistical significance test for the exploratory results described in Table

6, indicating that blacks were about seven times as likely to switch racial classification as

whites. This finding is highly statistically significant. However, after primary ancestry—that

is, an individual’s most prominent ancestry (African, Caucasian, or Asian bio-ancestry)—is

controlled, the odds ratio is reduced from 7.33 to 2.94 (Model 2). Primary ancestry has

proved important; an increase of 1 % bio-ancestry reduces the likelihood of classification

change by (1 – .94) = 6 %. This result applies to those whose primary ancestry is African

and those whose primary ancestry is European. Model 3 shows that students from the South

are about 42 % as likely or 58 % less likely to change racial classification as the non-

Southern students. Age and gender are not related to classification switching. The findings

were obtained after African ancestry was controlled.

For self-reported white participants in ROOM (Model 4), an increase of 1 % European

ancestry reduced the likelihood of classification switching by 12 %. Model 4 indicates that

in addition to bio-ancestry, social environment also influences classification switching

among white students. Those whose neighborhoods were mostly white were 77 % less likely

to switch racial classification than those whose neighborhoods were completely or mostly

nonwhite. The coefficient estimate for those whose neighborhoods were completely white is

similar (.25), but the estimate is statistically significant at the .10 level. White participants

whose friends were 76 % to 100 % white were 70 % less likely to change racial

classification than those whose friends were 0 % to 50 % white. The neighborhood and

friend effects were estimated in the same model.

In Add Health, black adolescents were about twice as likely to switch racial classification as

white adolescents when bio-ancestry was not controlled. The black and white difference

disappeared after bio-ancestry was included in the model (Model 6). Among blacks,

“Southern State” as measured in Add Health was not related to classification switching.

Among both blacks and whites, living in a census block group in which the mode of racial

composition was the same as one’s own race was associated with a 70 % lower likelihood of

racial classification switching. We replaced the measure of neighborhood racial composition

by a measure of racial heterogeneity in respondent’s friendship networks created from

nominated friends in the in-school study at Wave I (Models 9 and 10). The racial

heterogeneity ranges from 0 (where all in the networks are of the same race/ethnicity) to .8

(where all five racial/ethnic groups (black, Asian, Hispanic, white, and other) are equally

presented). Higher racial heterogeneity is associated with a higher likelihood of

classification change for both blacks and whites. The marginal significant result for blacks

could be due to the reduction in sample size.
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Discussion and Conclusion

Our research demonstrates a close match between estimated bio-ancestry and self-reported

race among self-reported blacks, whites, and East Asians in ROOM and Add Health. Our

overall analytical strategy for estimating bio-ancestry resembles that used for estimating the

links between genetic variations and human traits. That strategy is composed of two

essential components. The first is an association between a genetic variant and a human trait,

and the second is a replication in one or more independent data sets. This strategy was used

in a number of influential publications that identified genetic variants associated with human

diseases (e.g., Frayling et al. 2007). In this project, the same panel of AIMs that differentiate

European, African, and East Asian populations were first selected in the HapMap data set

and then replicated in three independent data sets: the U.S. ROOM, the U.S. Add Health

study, and the worldwide HGDP. If either sample representativeness or result

predetermination were a serious threat, the replication of these findings across four

independent data sources would be unlikely. Our results were also replicated across three

different methods (as implemented in PLINK, STRUCTURE, and EIGENSTRAT) that

estimate genetic clustering across continental populations.

The extent to which bio-ancestry matches self-classification of race, however, varies across

social and cultural contexts. The one-drop rule represents an important case in which social

context trumps bio-ancestry. When asked to classify into a single race, most individuals with

30 % to 60 % African ancestry self-report as black; virtually all respondents with >60 %

African ancestry self-classify as black. In contrast, a substantially higher proportion of

European ancestry is “required” to self-classify or to be classified by an interviewer as white

than the proportion of African ancestry necessary to self-classify or be classified as black.

However, when given the option of identifying as multiracial, the majority of individuals

with 40 % to 60 % African ancestry in both ROOM and Add Health and substantial

proportions of individuals with >60 % African ancestry in ROOM stopped self-classifying

as only black and primarily chose a multiracial classification.

In summary, although the cultural legacy of the one-drop rule is still evident among the

youth in survey responses, the practice has been eroded by recent modifications in survey

questions of race and ethnicity. Given the choice of multiracial categories, large proportions

of black-white mixed individuals self-classify as multiracial rather than black. This tendency

to follow the one-drop rule is observed only among non-Hispanic white, black, and black-

white individuals—not among Hispanics. This observation is consistent with the black-

nonblack divide discussed recently by Bean et al. (2009) and Lee and Bean (2007). The

recent nonwhite racial/ethnic diversity from immigration, the growth of intermarriage, and

the rise of multiracial births have not erased the traditional black-white color line. Instead,

the United States may simply be redrawing a color line that divides blacks from other racial/

ethnic groups.

The fluidity in racial classification represents another major case in which social forces

interact with bio-ancestry to shape racial classification. In both ROOM and Add Health, the

racial composition of an individual’s social environment is important. In ROOM, white

students from a mostly white neighborhood and with mostly white friends are less likely to
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change racial classification from white to a multiracial category. In Add Health, both black

and white students from neighborhoods composed mostly of own-race residents are less

likely to change racial classification. Replacing racial composition in neighborhoods by

racial composition in one’s friend networks yielded similar results.

After bio-ancestry is adjusted for, blacks are more likely than whites to opt for another racial

classification when multiracial categories were an option. This finding was found only in

ROOM, not in Add Health. In ROOM, black students from a southern state were less likely

than those from other parts of the country to change racial classification. This result may be

explained by the observation that the American South is the region where the one-drop rule

first originated (Davis 1991) and where racial discrimination and segregation were practiced

legally and overtly.

A cautionary note should be made about the comparison between the housing form and the

online survey in ROOM, and between ROOM and Add Health. The different responses to

the two surveys in ROOM could have resulted from factors other than differences in the

questions. Factors such as college education could play a role. Similarly, the differences in

the results between ROOM and Add Health could be due to the differences in how responses

on racial classification were obtained in the two studies. Students ages 12–18 in Add Health

might have treated a race/ethnicity question in a survey less seriously than incoming college

freshmen treated a similar question on a housing application form. The information on the

housing form would be part of the official university database. Even though the university

housing authority did not use race and ethnicity for assigning a dormitory room, students

may not have known this. In addition, students may be concerned about whether the

expectation created by self-reported race and ethnicity on the housing form would be in

agreement with their prospective roommates’ conceptualization of race and ethnicity.

Another case in which self-reports did not match bio-ancestry occurred among those who

self-classified as American Indian. Averaging a European ancestry of 67 % and 63 %,

respectively, in ROOM and Add Health, and with distal ties to American Indians, these

individuals were predominantly of European ancestry. These findings explain the drastic rise

in the number of American Indians reported in the U.S. census over the past few decades as

a result of ethnic re-identification (Eschbach 1993; Kelly and Nagel 2002; Nagel 1995).

The analysis reveals many fewer individuals with an African ancestry of 10 % to 50 % than

individuals with an African ancestry of 50 % to 90 %. This imbalanced distribution is

unlikely to result from the fact that there are many more whites than blacks. As long as a

mixed union requires a white person and a black person, the marginal distribution in terms

of the number of persons (not the proportions) should be balanced. This imbalanced

distribution is likely a result of the one-drop rule and/or the minimal miscegenation between

African and European Americans since 1865 (Davis 1991: chapters 3–4; Williamson

1980:188). For many decades, mixed-race individuals with one black parent and one white

parent were treated as blacks rather than mixed-race individuals. Under such racial

exclusion, these mixed-race individuals partnered predominantly with other mixed-race or

black individuals rather than whites. These patterns of marriages redistributed the European
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ancestry in the original mixed-race individuals, “whitening” the general black population

and yielding few individuals of more than 50 % European ancestry.

Our findings apply only to the contemporary United States. The dynamics of racial

classification in other countries could be quite different. Race is fluid. The racial and ethnic

categories as we know them in the contemporary United States are constantly changing.

Ongoing immigration, intermarriage, and social mobility are likely to blur contemporary

racial and ethnic divisions and boundaries (Perez and Hirschman 2009); therefore, the racial

categories we use today may no longer be relevant, or as relevant, in the future.

Our work has a larger theoretical significance on identity studies. Brubaker and Cooper

(2000) criticized the overproduction of the word of “identity” in the social analysis of such

concepts as race, gender, and sexual orientation in social sciences, cultural studies, ethnic

studies, literature, and political philosophy. They argued: “… that the prevailing

constructivist stance on identity—the attempt to ‘soften’ the term, to acquit it of the charge

of ‘essentialism’ by stipulating that identities are constructed, fluid, and multiple —leaves us

without a rationale for talking about ‘identities’ at all and ill-equipped to examine the ‘hard’

dynamics and essentialist claims of contemporary identity politics” (p. 1). For example, they

asked, “If [identity] is constructed, how can we understand the sometimes coercive force of

external identifications?” (p. 1).

Brubaker and Cooper were not opposed to social construction per se. In the particular case

of “race” in the United States, for example, they promoted a detailed analysis of how

particular forms of social construction of race “emerge, crystallize, and fade away in

particular social and political circumstances” (p. 30). They maintained that construction

analysis should not be reduced to an oversimplified and flattened identity account.

Our work demonstrates that in the case of race, social construction could be analyzed and

examined against a measurable continental and biological ancestry. Race is, indeed, multiple

and fluid, but not all identifications of race are equally constructed. Some deviate more and

some less from bio-ancestry. Capitalizing on bio-ancestry, social construction analysis can

lay bare whether, how much, and under what social circumstances racial identification

departs from bio-ancestry.
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Fig. 1.
The proportional composition in bio-ancestry for each individual based on the

STRUCTURE analysis. Each individual is represented by a vertical line partitioned into as

many as three segments, with their lengths corresponding to ancestral contribution to an

individual’s genome from up to three ancestral populations of Europeans (red), Africans

(blue), and East Asians (yellow). The labels of self-reported race/ethnicity were used to

order the individuals or vertical lines in the graphs and were added only after each

individual’s ancestry had been estimated. There are two sets of labels of self-reports. The set

above a graph is based on responses to a question that instructs a respondent to identify with

a single race; the set below is based on a question that allows a respondent to identify with

more than a single race.
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Fig. 2.
Eigenstrat-generated ancestral distances among U.S. study participants in ROOM (1a–1d)

and Add Health (2a–2d) in the context of 51 world populations from the Human Genome

Diversity Project (HGDP). The U.S. participants represented by black dots are self-reported

blacks (1b and 2b), non–South Asians (1c and 2c), and whites (1d and 2d)
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Table 1

Sample characteristics: ROOM, Add Health Wave I genetic sample, and Add Health Wave I full sample

ROOM Add Health Wave I
Genetic Sample

Add Health Wave I
Full Sample

Sample
Freshmen, Sophomores,
and Juniors in a Large

Public University

U.S. Representative
Sample Aged 12–18

U.S. Representative
Sample Aged 12–18

Time of Survey Spring 2008 1994–1995 1994–1995

Age of Respondents 18–20 12–18 12–18

Male (%) 39.81 47.32 45.18

Southern States (%) 89.01 36.09 37.11

Race/Ethnicity (%)

 White 65.19 56.31 50.39

 Black 13.39 17.35 20.88

 East Asian 4.18 6.67 6.03

 South Asian 2.00 0.11 0.32

 Hispanic 7.40 15.42 17.05

 American Indian o.19 0.18 0.55

 Other 1.02 0.78 0.91

 Multiracial 6.62 3.18 3.86

Mother’s Education (%)

 Less than high school 1.51 16.94 18.16

 High school graduate or GED 7.58 39.57 39.12

 College 53.23 35.66 33.79

 More than college 37.68 7.83 8.92

European Ancestry (%) 77.03 70.67 – –

African Ancestry (%) 15.79 18.70 – –

Asian Ancestry (%) 7.18 10.63 – –

Sample Size 2,065 2,281 20,745
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Table 2

Percentage distribution (number of individuals) of self-reported race by genetic markers-based ancestral

population membership (three ancestral populations are assumed)

Ancestral-Informative-Marker-Based Genetic Cluster

Self-report “White” “Black” “Non–South
Asian” Total

ROOM

 White 99.5(1,399) 0.28(4) 0.21(3) 100(1,406)

 Black 0.71(2) 99.3(279) 0.0(0) 100(281)

 South Asian 100.00(41) 0.0(0) 0.0(0) 100(41)

 East Asian 2.33(2) 0.0(0) 97.7(84) 100(86)

 American Indian 75.0(3) 0.0(0) 25.0(1) 100(4)

 Others 80.7(50) 12.9(8) 6.45(4) 100(62)

 Multiracial 52.9(91) 36.1(62) 11.1(19) 100(172)

 Total 1,586 353 111 2,052

Add Health Wave I

 White 99.4(1,429) 0.42(6) 0.14(2) 100(1,437)

 Black 0.00(0) 100.0(381) 0.00(0) 100(381)

 East Asian 6.29(10) 0(0) 93.7(149) 100(159)

 American Indian 100.0(19) 0(0) 0 (0) 100(19)

 Others 91.1(163) 5.03(9) 3.31(7) 100(179)

 Multiracial 72.0(67) 26.9(25) 1.08(1) 100(93)

 Total 1,699 429 160 2,268

Notes: For ROOM, the bootstrapping 95 % confidence interval for “white,” “black,” and “non–South Asian” are, respectively, [99.0, 99.9], [94.7,
100], and [89.5, 100]. In Add Health, the three confidence intervals are, respectively, [97.7, 99.9], [96.9, 100], and [88.1, 97.5].
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Table 3

Distribution of average ancestry for each self-reported race/ethnicity, assuming three ancestral populations

ROOM Add Health Wave I

Self-report European African Asian N European African Asian N

White 98.1 0.8 1.1 1,338 98.3 0.7 1.0 1,303

White, Black 42.4 54.7 2.9 25 51.1 46.0 2.9 14

White, Asian 57.3 0.8 41.9 34 52.8 0.9 46.3 12

White, Indian 95.2 2 2.8 27 94.3 2.0 3.7 36

White, Other 97.2 1.7 1.1 13 86.6 3.8 9.6 11

Black 8.7 89.7 1.7 279 5.92 93.15 0.93 378

Black, Indian 17.3 81.3 1.4 17 8.9 82.2 8.9 5

Black, Other 8.8 88.3 2.9 12 0.8 95.3 3.9 2

Hispanic White 86.3 6 7.7 101 75.4 7.0 17.6 133

Hispanic Black 30.7 61.4 7.9 8 28.0 63.3 8.7 3

Hispanic Other 70.8 10.2 18.9 41 63.2 9.4 27.4 157

East Asian 4.0 0.5 95.5 90 6.4 0.9 92.7 159

South Asian 68.4 5.1 26.5 41 39.6 1.8 58.6 2

American Indian 66.5 17.5 16.0 5 62.9 5.2 31.9 19

Other 66.7 25.7 7.6 21 61.2 10.2 28.6 34

Missing 81.5 17.4 1.1 13 53.2 38.6 8.2 13

Total 2,065 2,281

Non-Hispanic 70.21 20.14 9.65 1,946

Hispanic 67.73 8.53 23.74 329

Mexican 63.54 5.56 30.91 197

 Chicano 59.92 5.96 34.12 16

 Cuban 90.36 7.07 2.57 30

 Puerto Rican 75.52 20.22 4.26 39

 Central/South
  American 66.61 11.69 21.70 33

 Other 64.42 14.53 21.05 34

Total 2,272
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Table 6

The number and percentage among blacks and whites who switched racial classification from a survey in

which only a single race is allowed to a survey in which a multiracial classification is optional: ROOM and

Add Health Wave I genetic sample

Black Sample White Sample

Self-reported Racial Classification N or % Mean African
Ancestry N or % Mean European

Ancestry

ROOM

 Housing form as black or white 328 1,320

 Online survey same as housing 273 0.91 1,286 0.98

 Online survey changed from housing 55 0.76 34 0.96

 % changed 16.77 2.58

Add Health Wave I

 Best single race as black or white 398 1,337

 Multirace optional, black or white 378 0.93 1,299 0.98

 Multirace optional, multiracial 20 0.68 38 0.94

 % changed 5.03 2.84
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Table 8

Descriptive statistics for the data used in the logistic regression analysis of the fluidity of racial classification

ROOM Add Health Wave-I

African
Americans

European
Americans

African
Americans

African
Americans

European
Americans

European
Americans

Southern States (%) 90.3 90.8 72.2 77.8 29.4 30.02

Racial Composition in
Neighborhood (%) – – – –

 Completely or mostly
  nonwhite 38.9 2.7 – – – –

 Half nonwhite 20.1 6.7 – – – –

 Mostly white 35.6 62.5 – – – –

 Completely white 5.5 28.1 – – – –

Black Neighborhood (%) – – – – 53.1 53.5

White Neighborhood (%) – – – – 97.0 97.15

% Same-Race Friends – – – –

 0 % to 50 % 31.3 6.6 – – – –

 51 % to 75 % 19.8 26.9 – – – –

 76 % to 100 % 48.9 66.5 – – – –

Racial Heterogeneity of
 Respondent’s Friend
 Network (%)

0.27 0.21

African Ancestry (%) 88.0 91.2 90.8

European Ancestry (%) 98.3 96.5 97.3

Age 19.4 19.5 15.9 16.0 16.0 16.0

Male (%) 29.5 41.3 47.4 44.01 47.8 48.68

Sample Size 328 1,311 383 284 1,311 946
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