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and cellular resilience has been particularly highlighted in 
depression studies. Examination of the cellular response 
to stress has documented a reduction in BDNF levels and 
dysregulation of neurotrophic signaling, which could be 
reversed by antidepressant administration. These findings 
led to the formulation of the neurotrophic factor hypothesis 
of depression and antidepressant action [1]. Gene expression  
studies aimed at examining the potential involvement of 
other classes of trophic factors in antidepressant action 
revealed several additional trophic molecules and suggested 
that both vascular and neuronal factors are likely to be 
involved [2]. Subsequent studies validated the role played by 
multifunctional growth factors such as vascular endothelial  
growth factors (VEGF-A through D), erythropoietin (EPO) 
and basic fibroblast growth factor (bFGF) have both angio-
genic and neurotrophic effects.

A clinical observation that has been known for at least 3 
decades is that a bi-directional relationship exists between 
vascular disease and depression [3–5]. Depression is an 
independent risk factor for the occurrence of cerebrovas-
cular and cardiovascular events, and conversely, vascular 
disease elevates rates of depression [6, 7]. In fact, depres-
sion is the predominant psychiatric disorder associated 
with cerebrovascular diseases [8]. A vascular hypothesis of 
depression that has helped guide clinical research is based 
primarily on the high incidence of cerebrovascular lesions 
observed in imaging studies of late-life depressed patients 
[9]. However, recent clinical imaging studies have reported 
impaired cerebrovascular perfusion in depressed middle-
age patients, which was normalized by antidepressant treat-
ment [10, 11]. This suggests that the association between 
vascular dysfunction and depression could be mechanisti-
cally coupled. Interestingly, stress-based rodent behavioral 
models of depression have shown a reduction in hippocam-
pal microvessel density, providing additional support for a  
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link between depression and the cerebral vasculature [12, 13].  
The potential involvement of neuronal and vascular defi-
cits in depression points toward vascular growth factors as  
candidate molecules worthy of investigation. This review 
will focus on the role of VEGF-A (the prototypic vascu-
lar growth factor) and EPO in depression and treatment 
response.

Role of vascular growth factors in brain function

Vascular growth factors serve key roles in the brain by 
influencing both neuronal and vascular function. VEGF is 
expressed at high levels and performs critical functions dur-
ing development, guiding neuronal migration, blood vessel 
growth and branching [14]. Loss of VEGF in the developing 
brain impairs vascularization and causes neuronal apoptosis,  
hippocampal atrophy and microcephaly [15]. Transgenic 
mice with reduced levels of VEGF have reduced brain 
blood circulation, which could predispose them to neuro-
degenerative defects as a result of deficits in oxygen and 
metabolic support [16]. In addition to indirectly influencing 
neurons via its vascular actions, VEGF also has direct neu-
ronal effects, enhancing survival and neurite outgrowth in 
cultured neurons and elevating neurogenesis when adminis-
tered intracerebroventricularly (ICV) [17–21].

Conditional deletion of EPO in the brain decreases neu-
rogenesis, particularly in the subventricular zone, resulting 
in smaller brain size [22]. These mice also exhibited atrophy 
of the choroid plexus, which constitutes the major blood-
CSF barrier and is also the site where CSF and several 
neuroprotective polypeptides are produced. Lack of EPO 
receptor signaling also affects brain development by elevat-
ing apoptosis and limiting proliferation of neural progenitor 
cells [23]. In contrast, systemic delivery of EPO increases 
neurogenesis in the hippocampal subgranular zone [24, 25]. 
The mitogenic actions of EPO and VEGF on endothelial 
cells and neurons are indispensable for brain growth, devel-
opment and function. Dysregulation in their level of expres-
sion adversely affects brain function and homeostasis.

Trophic factor-mediated neuroprotection

In addition to their mitogenic effects on neural cells, trophic 
factors possess neuroprotective actions that preserve neu-
ronal function by opposing the harmful effects of cellu-
lar insults. Both VEGF and EPO are strongly induced by 
hypoxia because of the presence of transcription factor-
binding sites for the hypoxia inducible factor (HIF) in 
their gene promoter regions [26, 27]. Both factors exhibit 
robust protection against neuronal damage associated with 
hypoxia and ischemia. Systemic administration of EPO has 
been shown to exhibit anti-apoptotic activity in protecting 

neurons from cell death after cerebral ischemia [28]. In vitro 
studies indicate that EPO is also protective against neuronal 
death arising from glutamate toxicity [29]. The release of 
excitotoxins, NMDA-induced apoptosis and free radical 
damage caused by proinflammatory cytokines was effec-
tively blocked by pretreatment with EPO in cellular mod-
els of neurodegeneration [30]. The EPO receptor (EPOR) 
is expressed in adult rat dopaminergic neurons [31], and 
viral overexpression of EPO reverses the degeneration of 
dopamine neurons in rodent models of Parkinson’s disease  
[32, 33].

Endogenous VEGF induced by epileptic seizures was 
shown to be protective against neuronal loss in the hip-
pocampus as selective blockade of VEGF signaling by infu-
sion of a soluble receptor abolished neuroprotection with a 
two-fold increase in cell death [34]. A mild preconditioning 
exposure to hypoxia, which induces VEGF, is neuroprotec-
tive against subsequent ischemic insults, while also elevat-
ing neurogenesis and producing antidepressant-like effects 
[35]. VEGF plays a central role in mediating the neuropro-
tective mechanism of hypoxic preconditioning via its sign-
aling actions [36]. An acute neuroprotective effect of VEGF 
accompanied by improvement in neurological parameters, 
reduction in infarct size and elevated angiogenesis was noted 
after cerebral ischemia [37]. The timing of VEGF admin-
istration significantly influences its efficacy in ischemia  
models, as early post-ischemic (within 1 h) delivery increases  
BBB leakage because of its inherent vascular permeabiliza-
tion property, whereas later (48 h) administration reduces 
neuronal deficits and improves functional recovery [38].

In examining the neuroprotective activities of VEGF and 
EPO in conditions of oxygen and glucose deprivation, it can 
be noted that there is considerable overlap in their actions. 
This functional similarity could be mediated by signal-
ing crosstalk between these trophic factors and integration 
of signaling at tumor necrosis factor receptor I (TNFRI), 
which sensitizes injured neurons and enables them to effi-
ciently utilize EPO and VEGF for survival and restoration 
of function [39]. The potency of these molecules to protect 
and rescue neuronal function could be due to their ability to 
simultaneously influence both neurons and endothelial cells.

Integrating the neurovascular unit in neuropsychiatric 
disorders

There has been a tendency in the investigation of neuropsy-
chiatric disorders to focus primarily on neurons and pay  
little attention to the other cell types in the brain. It is important  
to recognize that neurons do not function in a network 
consisting only of other neurons but are intricately linked 
in a dynamic neurovascular network with other cell types 
including endothelial cells, astrocytes and perivascular 
cells (Fig. 1). The mammalian brain is highly vascularized, 
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and neurons are dependent on the cerebral vasculature for  
oxygen and metabolic and trophic support. Therefore, even 
transient disruptions in brain blood flow adversely impact 
brain function. Furthermore, recent developments in the  
etiology of neuropsychiatric illnesses, such as Alzheimer’s 
disease, where mechanistic insight into vascular involvement  
is being obtained [40], and the failure of neuron centric 
approaches to treat stroke [41] indicate that it is necessary to 
develop a neurovascular framework to improve our under-
standing of neuropsychiatric disorders and develop efficacious  
therapies. With accumulating evidence suggesting that  
vascular function is impaired in depression [10, 42], it will 
be beneficial to consider therapeutic approaches that can 
promote both neuronal and vascular health.

Expression and regulation of EPO and VEGF  
in the neurovascular unit

Neurons, vasculature and astrocytes exist in a close anatom-
ical and functional relationship that governs critical aspects 
of brain function and modulate blood flow in response to 
metabolic demands (Fig. 1). Communication between these 
cell types occurs by the action of signaling molecules that 
facilitate crosstalk and adaptive cellular regulation. VEGF 
and EPO are expressed in the three major cell types, which 
comprise the neurovascular unit, and it is therefore useful to 
examine cell-specific activity and regulation.

Neuronal

The expression of EPO and EPOR mRNA was shown in 
mouse brain, including specific binding sites of radiolabeled 
EPO [43]. EPO mRNA was detected in the hippocampus, 
amygdala and cortex of biopsied human brain tissue from 
epilepsy patients and several regions of monkey brain [44]. 
Neuronal expression of EPO was demonstrated using sin-
gle-cell PCR in dissociated mouse cortical neurons and was 
elevated after systemic administration of cobalt chloride or 
hypoxia via a mechanism that includes transcriptional acti-
vation of hypoxia-inducible factor 1 (HIF-1) [45]. Examin-
ing EPO at the transcript level has been suggested to be more 
conclusive than immunohistochemical analysis because of 
concerns about the specificity of some commercial antibod-
ies [45]. EPOR is expressed at higher levels in neuronal 
progenitors than mature neurons. Expression in neural cells, 
even at low levels, appears to have protective functions as 
cells that lack EPOR are vulnerable to hypoxia and gluta-
mate toxicity [46]. During development, EPO facilitates the 
generation of neuronal progenitors from neural stem cells 
by functioning as an autocrine–paracrine factor [47].

Vascular endothelial growth factor is also highly expressed 
in developing and mature CNS tissue [48, 49]. Neuronal 
VEGF plays a key role in brain angiogenesis [50] and  
neuronal patterning during development [51]. At birth, VEGF 
production from neurons switches to astrocytes causing  
neuronal VEGF to be reduced to very low levels in the 

Fig. 1  Model of the neurovas-
cular niche. Neurons, vascu-
lature and astrocytes exist in a 
close anatomical and functional 
relationship that governs 
critical aspects of brain function 
and modulates blood flow in 
response to metabolic demands. 
Communication between these 
cell types occurs by the action 
of signaling molecules that 
facilitate cross talk and adaptive 
cellular regulation
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mature neurons once angiogenesis has ceased [52]. However, 
VEGF expression is strongly upregulated in both neurons 
and glia following hypoxic and excitotoxic events [53, 54].  
VEGF binds to three main subtypes of receptor tyrosine 
kinases—fetal liver kinase (Flk-1 or VEGFR-2), fms-like 
tyrosine kinase 1 (Flt-1, VEGFR-1) and fms-like tyrosine 
kinase 4 (Flt-4 or VEGFR-3)—as well as to a family of 
co-receptors called neuropilins (NRP). In adult brain, Flt-1 
is predominately expressed by endothelial cells and astro-
cytes, whereas Flk-1 is expressed by mature neurons, neu-
ronal progenitors and endothelial cells [55]. Interestingly, 
Flk-1 is more highly expressed among neuronal progeni-
tors than mature neurons, highlighting the important role of 
VEGF/Flk-1 signaling in regulating neurogenesis [21, 37, 
56, 57]. Of the multiple VEGF receptors found in CNS tis-
sue, Flk-1 appears to mediate almost all of the known cel-
lular responses to VEGF. However, expression of the VEGF 
receptor Flt-1, which is not normally observed in mature 
neurons, can be strongly upregulated after CNS ischemia, 
suggesting a role in brain injury [58–60].

Endothelial

It is well known that VEGF exerts potent effects on the survival  
and proliferation of endothelial cells, and it is the predominant  
cellular function that has been extensively investigated 
(Fig. 1). Although the endothelial actions of EPO are not 
as widely studied as VEGF, the angiogenic potential of 
EPO has been reported to be similar [61]. However, it is 
likely that they differ in their mechanism of action as EPO 
lacks the vascular permeabilization property of VEGF. Two 
forms of EPOR, the membrane spanning receptor and an 
intron-containing soluble form, were observed in rat and 
mouse endothelial cells, eliciting dose-dependent mitogenic 
actions upon treatment with EPO [62]. The endothelial and 
angiogenic functions of EPO can also provide an indirect 
neuroprotective effect by inducing the secretion of trophic 
factors from the vasculature [57]. EPO is known to cause 
vasodilation of capillaries by elevating endothelial nitric 
oxide synthase (eNOS) and production of nitric oxide [63]. 
It is interesting to note that the EPO-induced elevation of 
nitric oxide requires interaction between heterodimeric 
EPOR and beta-common receptor with the VEGFR-2 recep-
tor, indicating interactive coupling of EPO–VEGF signal 
transduction in endothelial cells [64].

In endothelial cells, binding of VEGF triggers rapid phos-
phorylation of VEGFR-2, which in turn allows the receptor 
to be associated with various effector molecules, including 
phosphatidylinositol 3-kinase (PI3K)–Akt, Raf–MAPK and 
phospholipase Cγ-protein kinase C (PLCγ–PKC). Important 
endothelial functions, including proliferation (via activation 
of the Raf–MAPK signaling cascade), survival (via activa-
tion of PI3K–Akt) and vasopermeability and angiogenesis 

(via PLCγ–PKC), have been shown to be regulated through 
VEGF/Flk-1 signaling [65]. Although the effects of EPO 
stimulation in endothelial cells have not been well described, 
in neurons, EPOR has been shown to transduce signaling via 
the Jak 2 and NF-κB pathways [23, 30]. However, the induc-
tion of other neurotrophic factors, such as BDNF, GDNF and 
neuritin by EPOR [66, 67], is likely to involve the MEK–Erk 
and PI3K–Akt signaling cascades [66].

Astrocytic

The strongest induction of EPO and VEGF has been 
observed in astrocytes following exposure to hypoxic condi-
tions [68]. Cultured astrocytes exposed to low oxygen levels 
(1 %) exhibit a 100-fold elevation in EPO [44]. Breathing a 
gas mixture that contained 8 % oxygen (20 % is normoxic) 
elevated EPO levels in monkey brain threefold, and this 
increased to 20-fold when exposed to 0.1 % carbon mon-
oxide, demonstrating that the degree of EPO induction in 
astrocytes is dependent on the severity of hypoxia [44, 69]. 
This is similar to the hypoxia-induced elevation of VEGF 
that is acutely dependent on oxygen levels. VEGF contrib-
utes to new blood vessel formation at 10 % oxygen, but at 
levels below 8 %, blood vessels become leaky, suggesting 
thresholds for beneficial and detrimental effects [70]. The 
high levels of inducible EPO expression in astrocytes have 
been suggested to serve paracrine functions by acting on 
neurons and protecting against neuronal damage [69, 71]. 
VEGF and EPO can also act on astrocytes in an autocrine 
manner to enhance astrocyte proliferation and also promote 
maturation of immature oligodendrocytes (Fig. 1) [51, 72]. 
Moreover, expression of VEGF receptors Flt-1 and Flk-1 is 
strongly expressed in the astroglial endfeet that closely sur-
round the nearby endothelium. Astroglia treated with EPO 
were protected against apoptotic cell death caused by expo-
sure to cellular stressors [73]. EPO prevents astrocytes from 
swelling-induced injury during conditions of brain edema 
by regulating water permeability via the aquaporin 4 water 
channel [74].

Role of VEGF and EPO in depression and stress 
responses

Increasing evidence suggests that vascular dysfunction 
plays a critical role in the etiology of depression [75–78]. 
For example, decreased cerebral blood flow and metabo-
lism in the hippocampus and prefrontal cortices are fre-
quently observed in patients with depression [79–83]. 
Moreover, decreased levels of circulating bone-marrow 
derived endothelial progenitor cells have been reported 
in patients with depression compared to healthy controls 
[84, 85]. Treatment with antidepressants can influence 
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endothelial function [86], and several drugs used to manage 
vascular disease (e.g., calcium-channel blockers, statins, 
angiotensin-converting enzyme inhibitors) were able to 
reduce depressive symptoms in preclinical studies [87–91]. 
Because VEGF and EPO act as key signaling molecules in 
the CNS, being involved in neuroprotection, neuronal sur-
vival and synaptic plasticity, altered expression and/or func-
tion of these vascular factors could contribute to the cellular 
and morphological changes observed in animal models of 
depression and in patients with depression. Below we will 
summarize the clinical literature highlighting the relation-
ship between VEGF and EPO-signaling in depressive ill-
ness and antidepressant action.

VEGF in depression

Over the last few years, the relationship between VEGF 
and stress-related disorders, including depression, in clini-
cal populations, has been extensively examined. For exam-
ple, VEGF mRNA expression in peripheral leukocytes was 
found to be elevated in patients with depression compared 
to healthy controls, and this difference was normalized 
after 8-weeks of antidepressant treatment and was associ-
ated with clinical improvement [92]. In addition, increased 
serum levels of VEGF have been reported in depressed 
patients with comorbid borderline personality disorder [93] 
and bipolar disorder [94]. On the contrary, other groups have 
noted significant decreases in peripheral VEGF/Flk1 levels 
with depression [85, 95–97], and a recent study showed 
higher plasma VEGF levels in 16 major depressive disor-
der patients who were in partial or full remission compared 
to controls [98]. Moreover, preclinical studies (described 
below) have typically observed decreases in brain VEGF 
and Flk-1 expression with exposure to chronic stress.

Although it is not clear what might account for the diver-
gence across these studies, clinical factors such as such as 
age, gender, treatment history, depressive episodes (recur-
rent vs. acute), comorbidity with other health conditions 
(e.g., heart disease) and small patient group sizes could be 
important contributors. Another possibility is that there may 
be differences between blood and brain levels of VEGF in 
patients with depression. Indeed, recent data indicate that 
while serum VEGF levels remain unchanged, VEGF levels 
in the hippocampus and frontal cortex were significantly 
lower in a genetic rat model of depression [99]. Nonethe-
less, further work is necessary to develop the diagnostic and 
prognostic value of peripheral VEGF as a biomarker for 
clinical depression and antidepressant efficacy.

EPO in depression

Erythropoietin has been tested in several human imaging 
studies for its ability to modulate brain function and behavior. 

A single high dose of EPO reduced neuronal response to 
fear 1 week after administration in healthy volunteers, with-
out evoking any erythropoietic alterations [100]. A specific 
reduction in blood oxygen level-dependent (BOLD) signal 
change in response to fearful stimuli was noted in the cor-
tex of the EPO group in comparison to placebo treatment.  
A short-term effect of improved mood was reported in the first 
3 days following EPO administration along with increased 
neural and cognitive processing of facial expressions [101]. 
Interestingly, the acute effects of EPO included heightened 
recognition of happiness and fear in a manner comparable to 
that of serotonin-reuptake inhibitors and similarly reversed 
after 1 week [101–103]. In a double-blind study comprising  
19 acutely depressed patients, EPO was found to reduce left 
amygdala-hippocampal response to fearful stimuli [104]. 
This could reflect an ability to reverse negative emotional 
bias in this group of patients. Additional studies in larger 
clinical groups and later testing time points with conven-
tional rating scales are awaited as phase II trials are ongoing.

Regulation of VEGF and EPO by stress and antidepressant 
treatments

Vascular endothelial growth factors and Flk-1 expression in 
the hippocampus and frontal cortex are lower with expo-
sure to chronic stress or stress hormones [105–107]. In one 
study, Bergstrom and colleagues [107] showed a significant 
reduction of VEGF mRNA in the ventral hippocampus—
a region with strong input to the amygdala and prefrontal 
cortex—following exposure to chronic mild stress. Interest-
ingly, this decrease in VEGF expression only occurred in 
stress-sensitive rats; a subpopulation of stress-resistant rats 
did not show a similar reduction in VEGF after chronic mild 
stress. These findings suggest that VEGF signaling may play 
an important role in stress adaptability. Consistent with this 
view, corticosteroids are well-known inhibitors of angiogen-
esis, and previous work has shown that chronically stressed 
mice have decreased capillary density in the hippocampus 
[12]. Given the importance of VEGF in regulating neuro-
genesis and angiogenesis in the adult brain [21, 108], there 
has been interest in determining whether stress-induced 
changes in VEGF contribute to the decreases in hippocam-
pal neurogenesis seen in depression. Indeed, stress-induced 
reductions in adult hippocampal cell proliferation are more 
pronounced near blood vessels than in areas not covered by 
blood vessels [105], indicating that VEGF is a key factor for 
promoting neurogenesis that is secreted from the vascular 
niche [108]. For further discussion on the effects of stress 
on VEGF and neurogenesis, the reader is directed to [109].

Early microarray experiments from our laboratory iden-
tified VEGF as a possible target of antidepressant action. 
We showed that electroconvulsive seizure (ECS), which is 
one the most effective options for the treatment of refractory 
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depression, resulted in a rapid and robust upregulation of 
VEGF expression in the rat dentate gyrus [2]. Extending this 
early work, multiple antidepressants, including selective 
serotonin reuptake inhibitors, noradrenalin-serotonin reup-
take inhibitors and tricyclic antidepressants, have now been 
shown to increase VEGF mRNA and protein expression in 
rat hippocampus [2, 110–112]. The induction of VEGF by 
chemical antidepressants requires chronic administration 
(~2 weeks), whereas ECS produces rapid changes in VEGF 
expression along a much shorter time frame (~48 h). This 
differential profile of VEGF induction closely overlaps with 
the onset of clinical effects associated with these treatments. 
Interestingly, chronic treatment with fluoxetine upregulated 
VEGF mRNA expression in neuronal and endothelial cells, 
but not in astrocytes, suggesting that antidepressant treat-
ment might preferentially stimulate VEGF production and 
possibly release from different cell sources [105]. Other 
treatments known to produce an antidepressant response, 
such as exercise and sleep deprivation, also increase VEGF 
expression [113, 114]. Interestingly, a recent genetic study 
examining a functional polymorphism of the VEGF gene 
(2578 C/A) revealed that this allele was more frequent in 
patients with treatment-resistant depression than in healthy 
controls or a population of treatment-responsive patients 
[115]. These findings underscore the importance of VEGF 
as a common downstream target of antidepressant action 
and highlight this growth factor as an important mediator in 
the therapeutic response of antidepressant treatment.

While EPO has been shown to possess antidepressant-
like activity in rodent models and clinical studies, regulation 
by chemical antidepressants is yet to be examined. How-
ever, robust induction of EPO gene expression was observed 
specifically in the rat dentate gyrus after ECS [67]. This is 
similar to the induction pattern of VEGF after ECS [2]. 
Clearly, further work is necessary to identify the full role of 
EPO in the therapeutic action of antidepressant treatments.

Vascular growth factors in pre-clinical behavioral 
models of depression and cognition

Studies of VEGF in models of depression and cognition

Vascular endothelial growth factor induces antidepres-
sant and anxiolytic effects in various animal models. For 
example, mice overexpressing VEGF in forebrain neurons 
show reduced immobility in the forced swim test and make 
a greater number of open arm entries in the elevated plus 
maze [116]. In addition, ICV infusions of VEGF also mimic 
the action of antidepressant drugs in several behavioral 
tests, such as the forced swim test, learned helplessness and 
novelty-suppressed feeding tests [110]. In the forced swim 
test, VEGF increased swimming, but not climbing behavior. 

This is noteworthy given that swimming behavior in this 
test is influenced by SSRI antidepressants [117]. Interest-
ingly, 5-HT1a receptor antagonists block both the increase 
in VEGF and the behavioral effects induced by the SSRI 
fluoxetine in chronically stressed rats, indicating that VEGF 
may exert its antidepressant actions through modulation of 
the serotonergic system [112]. Finally, central administra-
tion of VEGFR-2 (Flk-1) inhibitors (SU5416, SU1498) has 
revealed that the behavioral and neurogenic effect of chemi-
cal antidepressants and ECS appears to require VEGF/Flk-1 
signaling [110, 112, 118]. However, there is some question 
regarding the specificity of the applied Flk-1 inhibitors since 
these compounds can exert effects on other growth factor 
such as FGF-2 and BDNF.

These findings provide important information regarding 
the role of VEGF in the behavioral and cellular actions of 
antidepressants. However, one major challenge of pharma-
cological studies is that they are complicated by issues of 
specificity, short ligand half-life, solubility, accessibility of 
the ligand to target tissues and side effects; problems that 
are compounded when chronic, rather than acute effects, 
need to be investigated. One strategy to circumvent many of 
the problems inherent in behavioral pharmacology is to use 
transgenic or knockout approaches. This powerful approach 
permits the study of single gene function in the nervous sys-
tem and offers a high degree of molecular specificity over 
pharmacological blocking agents to probe important brain-
behavior relationships. Through utilizing a conditional gene 
knockout strategy to achieve inactivation of the VEGF gene 
in neurons of the murine forebrain, we are currently examin-
ing the contribution of neuronal VEGF in depressive behav-
ior and antidepressant response.

The effects of VEGF are not limited to depressive behav-
ior. For example, hippocampal VEGF levels are increased 
with water maze training [119], and administration of 
VEGFR-2 inhibitors directly into the hippocampus fol-
lowing spatial training impairs long-term memory [120]. 
These findings raise the possibility that VEGF may play 
an important role in processes related to neuronal plasticity  
and behavior. Indeed, field recording studies in hippocampal  
slices revealed that direct application of recombinant human 
VEGF165 prior to high-frequency stimulation increases 
long-term potentiation [121]. Consistent with the idea that 
VEGF promotes synaptic plasticity and boosts memory  
performance, previous work has shown that overexpres-
sion of VEGF through either AAV-mediated gene transfer 
in the rodent hippocampus or globally in the forebrain of 
transgenic mice increases associative learning and spatial  
memory tasks [122, 123]. Finally, an elegant study by 
Licht and colleagues [124] recently showed that VEGF can  
modulate neuronal plasticity in the hippocampus and 
improve learning through a process that was independent of 
changes in either vascular perfusion or neurogenesis. These 
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findings underscore the diverse pleiotropic actions of VEGF 
on brain function, although the exact receptors mediating 
these diverse effects have not been characterized.

Studies of EPO in models of depression and cognition

The antidepressant-like effects of EPO and non-erythropoi-
etic variants have been tested in rodent behavioral models. 
Three days of EPO administration yielded a positive effect 
in the widely used forced swim model of antidepressant 
activity [67]. The reduction in immobility time was mainly 
due to increased swimming rather than climbing behavior, 
similar to the actions of VEGF in this test (see above), and 
to SSRI antidepressants [117]. Administration of EPO for 
4 days decreased novelty-induced hypophagia in mice, 
measured as a reduction in the latency to approach the food 
source in the novel cage environment [67]. The effect was 
comparable to that obtained by chronic treatment (3 weeks) 
with SSRI antidepressants [125]. A biochemically modi-
fied (carbamoylated) form of EPO (CEPO) that is devoid of 
erythropoietic activity [126] reduced despair behavior in the 
tail suspension test, indicating that the antidepressant effects 
of EPO are independent of hematopoietic properties [25].

In addition to antidepressant-like efficacy, EPO has been 
successfully tested in models of neurocognition. Both EPO 
and CEPO improved performance in the spatial and object 
recognition tasks [25]. These effects are likely to be medi-
ated by modulation of hippocampal plasticity and long-term 
potentiation [127]. The memory effects are selective and not 
accompanied by increases in spontaneous activity, explora-
tory behavior or motor performance [127]. Although EPO 
was dosed for 3 weeks and elevated hematocrit in the Adam-
cio study, the cognitive effects are not likely to be associated 
with erythropoiesis as the behavioral improvement persisted 
for an additional 3 weeks after the last EPO dose, a time 
point when the elevated hematocrit would have normalized. 
Conclusive evidence that the cognitive-enhancing effects 
are unrelated to hematopoiesis was provided by the use of 
a short 11-amino acid peptide that was derived from a por-
tion of the three-dimensional structure of EPO. This non-
erythropoietic peptide increased performance in the novel 
object recognition task with equivalent efficacy to the drug 
galantamine despite a plasma half-life of only a few minutes 
[128]. The behavioral actions of EPO and other EPO-like 
molecules and derivatives suggest that vascular trophic fac-
tors are worthy of further investigation as candidate mol-
ecules for treatment of psychiatric disorders.

Therapeutic potential

The ability to alter signaling in multiple brain cell types and 
produce trophic effects that lead to modulation of behavior 

in the setting of neuropsychiatric disorders qualifies vascu-
lar growth factors as potentially unique therapeutic agents 
with a novel mechanism of action. However, an important 
parameter that has to be addressed for CNS use is the issue 
of transport across the blood-brain barrier (BBB). While 
biologics are advancing as attractive candidates for drug 
development because of their specificity of action, resulting 
in higher rates of FDA approval than small molecules, their 
utility in treating CNS diseases can be challenging. Sys-
temically administered EPO has been shown to traverse the 
BBB via a potential receptor-mediated translocation [129]. 
The efficacy of systemic administration in eliciting cellu-
lar and behavior effects is reflected by substantial literature 
of EPO use (over 350 papers) for CNS cytoprotective and 
neurotrophic activity. Nevertheless, the efficiency of CNS 
transport is far below that of small molecules, and hence 
large doses are needed to produce appreciable efficacy. This 
results in higher cost of treatment and can eventually limit 
applicability in the field. Strategies to address this challenge 
include producing recombinant molecules in alternate hosts 
such as plants, bacteria [130, 131] and chemical synthesis of 
peptides [128] with similar activity.

Structure-based design of biomimetics

The availability of high-resolution crystallographic struc-
tural information [132–134] and receptor affinity data [135] 
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Fig. 2  Crystal structure of EPO and EPOR (1EER, protein data 
bank). EPOR dimer is colored gray, and helices of EPO are shown 
multi-colored and bound to EPOR. The two active sites, site 1 and 
site 2, are indicated by orange boxes. Potential sites of carbamylation 
are indicated by red atoms, yellow arrows and residue number of the 
amino acid sequence
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has enabled modeling approaches to design molecules that 
activate receptor-mediated cell signaling (Fig. 2). Initial 
studies were performed using phage display methodology to 
identify peptides that exhibited strong EPO mimetic actions 
[136]. Interestingly, these peptides did not correspond to the 
primary sequence of EPO and yet produced the entire spec-
trum of biological activity with regard to erythropoiesis.  
A short peptide derived from surface-simulation analysis 
and composed of adjacent amino acids that represent the 
aqueous face of helix B, one of the four (A–D) helices of 
EPO, reproduced the neuroprotective actions of EPO both in 
vitro and in vivo, without any effect on erythropoiesis [128].

The success of this approach paved the way for the 
synthesis of additional biomimetic peptides. A non-
erythropoietic tetrameric peptide corresponding to the 
C helix of EPO and the low-affinity site of EPOR pro-
duced neurite outgrowth in cultured neurons, effectively 
crossed the BBB and reduced kainic acid-induced toxicity  
in the brain [137]. Precisely how short peptides are able 
to activate signaling via receptor binding is currently 
unclear. The authors tested monomer, dimer and tetramer 
versions of the peptide and found that only the tetramer 
acquired an aqueous solution conformation that resembled  
EPO’s C-helix. It is useful to note that although the neu-
rotrophic effects were comparable to EPO and required 
the EPO receptor, they were obtained only at doses that 

were 103 higher than full-length EPO [137]. The same 
group also generated another tetrameric, non-erythro-
poietic peptide toward the high-affinity receptor site 
using publicly available x-ray crytallography structural  
information [138]. This peptide had twofold lower affin-
ity for EPOR than recombinant EPO, which could be due 
to partial coverage (428 Å) of the total intermolecular 
contact area (920 Å) of the high-affinity binding site. The 
fact that peptide agonists of the EPOR remain a useful 
avenue for CNS drug development is most likely due to 
their short plasma residence time, which precludes hema-
tological consequences.

Downstream signaling molecules as drug candidates

Cellular signal transduction modulated by EPO starts with 
binding to the membrane-bound receptor, dimerization 
and activation of the Janus protein tyrosine kinase 2 (Jak2) 
(Fig. 3). Jak2 then phosphorylates multiple tyrosine resi-
dues in the cytoplasmic region of EPOR [139]. This causes 
phosphorylation and activation of the transcription factor, 
signal transducer and activator of transcription 5 (STAT5), 
which subsequently translocates into the nucleus and binds 
to specific promoter elements to initiate transcription of  
target genes. The Jak-STAT pathway is considered the 
canonical EPO signaling cascade; however, it is not 

Fig. 3  Schematic of EPO and VEGF receptor signaling pathways. 
Intracellular cascades are shown activated by EPO and VEGF bind-
ing to EPO receptor (EPOR) and VEGF receptor 2 (VEGFR-2), 
respectively. Janus kinase 2 (JAK 2), signal transducer and activator 
of transcription 5 (STAT 5), phosphatidylinositol 3-kinase (PI3K), 
protein kinase B (AKT/PKB), mitogen activated protein kinase 
(MAPK), Src homology 2 domain containing transforming protein 

(Shc), growth factor receptor- bound protein 2 (Grb2), sons of sev-
enless (Sos), rat sarcoma GTPase (Ras), rapidly accelerated fibrosar-
coma kinase (Raf), mitogen-activated protein kinase kinase (MEK), 
Src homology region 2 domain containing phosphatase-1, 2 (SHP1, 
SHP 2), phosphoinositide phospholipase C (PLC), phosphatidylinosi-
tol 4,5-biphosphate (PIP2), inositol triphosphate (IP3), diacylglycerol 
(DAG), protein kinase C (PKC) and nitric oxide synthase (NOS)
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activated by carbamylated EPO, which lacks erythropoi-
etic activity [126] but retains the neurogenic and angio-
genic properties of EPO [140]. In addition to the Jak-STAT 
pathway, EPO can also signal via the PI3kinase–Akt and 
MAPK–ERK pathways [141]. In a similar manner, VEGF-
signaling also promotes activation of the PI3-kinase–Akt 
and MAPK–ERK pathways [65]. Activation of the MAPK 
and Akt pathways is well known to mediate important 
trophic effects related to synaptic plasticity, neuronal sur-
vival/protection and neurogenesis [20, 21, 37, 121, 142, 
143]. However, the precise involvement of these signaling 
pathways in the behavioral actions of EPO and VEGF is yet 
to be elucidated and is an interesting and important field 
of investigation. Dissecting these pathways and identify-
ing the particular signaling molecules that contribute to 
functional output in cellular and behavioral assays can pro-
vide key targets for drug development and also help reduce 
undesirable side effects.

Summary and conclusions

The neuronal and vascular actions of growth factors such as 
VEGF and EPO are intricately intertwined to the extent that 
a new term “angioneurin” was coined to highlight their dual 
functionality [144]. The robust induction of these molecules 
in the brain in response to insults such as stroke or hypoxia 
and their ability to provide robust protective effects against 
cellular damage reveal that they are key endogenous com-
ponents of homeostasis and survival strategies employed by 
the mammalian brain. The fact that these growth factors act 
on multiple cell types suggests that simultaneously exerting 
trophic actions on neuronal and vascular cells could provide 
superior efficacy in producing regenerative effects. Substan-
tial evidence accruing from clinical and pre-clinical studies 
indicates that cellular atrophy is an important element in the 
pathophysiology of neuropsychiatric illnesses. The ability 
to reverse cellular and behavioral deficits by trophic factor 
administration reinforces support for testing this class of 
growth factors, their derivatives and biomimetics as novel 
therapeutic compounds for the treatment of psychiatric and 
neurodegenerative diseases. However, it will be critical to 
address the erythopoietic activity of EPO and the vascular 
permeability effect of VEGF as they can have detrimental 
hematological and BBB weakening consequences. Inter-
estingly, another member of the VEGF family, VEGF-B, 
also possesses neurogenic and neuroprotective properties 
but does appear to exert vasopermeability effects [145]. 
However, whether VEGF-B expression and/or signaling are 
adversely affected in neuropsychiatric illness or upregulated 
by treatments will require further investigation. In conclu-
sion, advancing our understanding of vascular, glial and 
neuronal mechanisms of action can enable us to develop 

safe angioneurin-based treatment strategies that maximize 
the clinical benefit of vascular trophic factors and preclude 
adverse effects when applied for the treatment of neuropsy-
chiatric or neurological disorders.
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