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Abstract
The developing fetus must actively learn to tolerate benign antigens, or suffer the consequences of
broken tolerance. Tolerance of self-antigens prevents development of autoimmune diseases, and is
achieved by both deletion of autoreactive T cell clones in the thymus (central tolerance) and by the
suppressive influence of CD4+CD25+FoxP3+ regulatory T cells (Tregs) in the periphery. Fetal
CD4+ T cells have a strong predisposition to differentiate into tolerogenic Tregs that actively
promote self-tolerance, as well as tolerance to non-inherited antigens on chimeric maternal cells
that reside in most fetal tissues. As the fetus nears birth, a crucial transition must occur between
the tolerogenic fetal immune system and a more defensive adult-type immune system that is able
to combat pathogens. This paper will review the unique tolerogenic nature of the human fetal
immune system and will examine evidence for a novel model of fetal immune development: the
layered immune system hypothesis.
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Introduction
A developing mammalian fetus expresses a set of polymorphic major histocompatibility
complex (MHC) molecules inherited from both its mother and father, meaning that up to
half of those MHC molecules can potentially be recognized by the maternal immune system
as allogeneic foreign tissue. A great deal of attention and thought has been given to the
quandary of how the immune system of the mother deals with this antigen mismatch to
avoid immune rejection of her developing fetus [recently reviewed by Chaouat et. al.]1–10.
Less scrutiny has been devoted to the reciprocal problem: how does the immune system of
the fetus deal with the equally monumental challenge of developing in a semi-allogeneic
host? One potential answer to this question is that the fetal adaptive immune system avoids
rejection of the mother because it is inert, functionally impaired, and/or compromised due to
limited antigen experience and a resultant insufficient cache of immunological memory. A
historic and growing body of evidence that is discussed in this review argues that this
hypothesis is not sufficient to explain fetal non-rejection of the maternal host. It is now clear
that the human fetal immune system is highly active11–20 but its activity cannot be defined
entirely by traditional metrics of sterilizing immunity. Rather, we must consider the
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developmental state of the fetus to understand that its primary goal of its immune system is
quite different: to achieve tolerance. The developing mammalian fetus exists in a relatively
pathogen-free environment compared to the diverse microbial environment it will encounter
after birth. This is not to say, however, that it is not exposed to or responsive against
antigens. The fetal immune system must develop in such a way that it learns to tolerate
benign and/or necessary antigens, including self-antigens, as well as environmental and food
antigens that are transferred across the placenta. It is also now clear that hematopoietic cells
of maternal origin are commonly found in tissues of the developing fetus, and several
studies have shown persistence of maternal microchimerism even into adulthood19, 21–25.
Given the genetic diversity of the polymorphic MHC locus, this means that up to half of the
MHC antigens borne by maternal cells are different than those inherited by the fetus. If the
fetus were to respond to these non-inherited maternal alloantigens (NIMAs) by generating a
cytotoxic response, the result could theoretically be disastrous in that it could lead to fetal-
anti-maternal alloimmune rejection and loss of pregnancy. To the contrary, however, there is
now evidence that the fetus actively generates tolerance to these antigens, thereby avoiding a
rejection response19. This review will focus on the best-defined mediator of this response,
the fetal CD4+CD25+FoxP3+ regulatory T cell (Treg), how it contributes to the fetal
tolerance of NIMA, and what has been learned about fetal immune development from the
study of fetal-maternal tolerance.

Mechanisms of fetal immune tolerance: central and peripheral
Throughout life, the acquired immune system must operate in balance between aggressive
defense against potentially harmful invading pathogens and the tolerance of self-antigens
and non-harmful commensal organisms. Furthermore, once a defensive immune response is
initiated, mechanisms must come into effect to temper and eventually terminate that
response lest it cause damage to host tissues resulting from ongoing and uncontrolled
activation. A large body of literature demonstrates the unique nature of the developing fetal
immune system and the importance of its unique ability to generate tolerance. In 1945, Ray
Owen’s studies in dizygotic freemartin twin cattle (which exchange blood during
development in utero via placental anastomoses) provided early evidence that fetal exposure
to non-self antigens results in enduring tolerance to those antigens. Though these twins are
genetically non-identical, both autologous and non-self (twin-derived) erythrocytes can be
persistently detected throughout the life of the animal, indicating an established
immunological tolerance for the foreign antigens specific to the twin26. This observation
was then extended to demonstrate that these animals are tolerant to post-natal transplantation
of the twin’s skin27. Experiments described by Billingham, Brent and Medawar in their
seminal 1953 work, “Actively Acquired Tolerance of Foreign Cells” then went on to
demonstrate that fetal exposure to antigenically dissimilar cells in fetal chicks and mice
resulted in acquisition of enduring post-natal immune tolerance to tissues of the mismatched
antigenic background. They showed that fetal exposure to foreign antigen lead to the
absence of cells that would mount such an immune response, suggesting that elimination of
such cells during development was the major mechanisms for establishing immune
tolerance27.

Central immune tolerance is orchestrated by the culling of autoreactive T cell precursors
during differentiation in the thymus. Stochastic somatic rearrangement of T-cell receptor
(TCR) genes in developing immature thymocytes results in a staggering diversity of
potential T cell antigen specificities, many of which have potential to react against self-
MHC or crucial structural, developmental, and/or functional proteins (e.g. insulin or
collagen). To prevent these autoreactive cells from developing to maturity and causing
damage, immature thymocytes traffic through the thymic medulla where they encounter
self-antigen and other cross-presented antigens in the context of self-MHC. Those cells
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whose TCRs bind avidly to self-antigen/MHC and transmit a strong signal through their T
cell receptor then undergo apoptosis, leading to deletion of potentially autoreactive T cells.
This process, known as clonal deletion, is also complemented by other mechanisms of
eliminating autoreactive clones, including clonal diversion, TCR editing, and induction of
anergy28. These first-line mechanisms to prevent anti-self immune reactions and
autoimmune disease are crucial but not perfect, and autoreactive T cells can and do escape
the thymus, as is evident in the case of autoimmune diseases that are driven by these cells. It
is now clear, however, that periodic escape of autoreactive clones from thymic negative
selection is likely the rule rather than the exception, even in the absence of clinical
autoimmune disease. This is clearly demonstrated by experiments in which tissue-specific
transgenic expression of co-stimulatory molecules and cytokines can result in antigen-
specific immune attack of those tissues, meaning that mature lymphocytes escape clonal
deletion and are capable of mediating reactions against self-antigen29. To deal with these
rogue cells, a secondary line of defense exists in the form of active peripheral tolerance that
is enforced by populations of regulatory cells with the ability to suppress potentially harmful
autoimmune responses. The most extensively studied, and best understood, of these is the
CD4+CD25+FoxP3+ Treg. In the following section, their role in establishing and
maintaining tolerance will be explored, including evidence that they contribute to prevention
of autoimmune diseases.

Tregs and peripheral tolerance
Tregs play a crucial role in immunity as a ‘rheostat’ of the immune response: both
preventing autoimmunity by inhibiting anti-self responses and also acting to suppress
defensive immune responses at an appropriate stage to prevent host tissue damage. Basic
molecular mechanisms governing the differentiation and function of Tregs have been
recently reviewed by other authors and will not be discussed at length30–36. Is is important,
however, to consider the role of Tregs in establishing and maintaining peripheral tolerance
in order to understand their participation in fetal immunity. The existence of regulatory cell
populations was suspected and pursued for many years, and the concept of the T suppressor
cells was originally proposed and championed by Gershon and colleagues37–40. It is only in
the last 10–15 years, however, that CD4+CD25+FoxP3+ Tregs have been accepted as a
crucial controller of the immune response. The initial discovery of Tregs came from
experiments in which a specific population of CD4+ cells that also highly express the high-
affinity interleukin (IL)-2 receptor α-chain, CD25, were found to be protective in mouse
models of autoimmunity41–44. It was subsequently shown that the transcription factor
forkhead box P3 (FoxP3) was not only a specific marker for CD4+CD25+ Tregs, but was
also crucial for their development, maintenance of phenotype, and function45–51. The
importance of this factor came to light from both human clinical observations and genetic
mutant mouse models which together demonstrated that disruption of the FoxP3 gene results
in an absence or paucity of regulatory cells leading to autoimmunity45–58. In 1982, a human
syndrome was described that was defined by early neonatal onset in males of autoimmune
disease in multiple organs, including thyroid, pancreas, gut, and skin52. The manifestations
of the disease included type I diabetes, thyroiditis, inflammatory enteropathy, atopic
dermatitis, and death from overwhelming infection, and the syndrome was named IPEX (for
Immune Dysregulation, Polyendocrinopathy, Enteropathy, and X-linked). The syndrome
was initially described as universally fatal, with decreased fetal viability or death within the
first year of life52. Meanwhile, a mouse strain called scrufy was identified as a
spontaneously arising mutant with a strikingly similar phenotype to patients with
IPEX54–56, 58. Hemizygous scurfy males die within the first three weeks after birth with
disease characterized by T cell over-proliferation and extensive multi-organ leukocyte
infiltration and autoimmunity53–56. The gene defective in the scurfy mouse was mapped to
the FoxP3 locus, and genetic complementation with FoxP3 rescued the scurfy phenotype46.
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It was subsequently demonstrated that induced disruption of FoxP3 resulted in the absence
of Tregs and reproduced the characteristics of the scurfy phenotype48. FoxP3 is strongly
conserved between mice and humans, and subsequent studies confirmed that FoxP3
disruption and the consequent absence of Tregs is the primary immune lesion in
IPEX45, 57, 58.

The mechanisms by which Tregs function to suppress immune responses have been
intensely studied, and there seem to be diverse Treg responses that come into play
depending on the context of activation and the environment in which they are
operating59, 60. Specifically, the mechanisms of Treg-mediated suppression seem to be
determined at least in part by whether they are maintaining immune quiescence to prevent
immune activation in the physiological homeostatic steady state or are responding to
dampen an active inflammatory response61. The mechanisms used by Tregs to suppress
immune responses include: transmission of inhibitory signals via cell-cell surface
interactions or secreted cytokines, diminishing conventional T cell activation or fitness by
limiting growth factors like IL-2 or essential amino acids, direct target-cell cytotoxicity, and/
or modulation of antigen presenting cell function36, 59–61. Like other αβ TCR-utilizing T
cells, Tregs have a diverse TCR repertoire and can respond to a wide range of antigens.
Though they do not seem to have an absolute requirement for recognition of specific self-
antigens to mediate suppression, clonal Treg pools responding against a specific antigen
recognized by their TCRs seem to be more effective suppressors than polyclonal populations
mediating non-specific suppression62–65.

In the years since their discovery and acceptance as being functional regulatory cells, it has
become clear that Tregs play a crucial role in maintaining peripheral tolerance and immune
homeostasis. Insufficient or dysfunctional Treg responses are thought to contribute to the
pathogenesis of several disease states resulting from broken self-tolerance, including Type I
diabetes63, 65–67. Not only are Tregs a dominant mediator of peripheral self-tolerance, they
also appear to be important in modulating the innate and acquired immune responses to
foreign antigen68–71. Most circulating Tregs differentiate from T cell precursors in the
thymus, and are thereafter phenotypically and functionally distinctive compared to
conventional FoxP3−CD4+ T cells36, 72. These ‘thymic’ or ‘natural’ Tregs (nTreg) likely
play a crucial role in maintenance of tolerance to self-antigen, and to other antigens
presented in the thymus. Tregs can also, however, be generated under specific circumstances
from FoxP3−CD4+ conventional T cells after thymic egress73–82. These cells have been
called ‘peripheral’ or ‘induced’ Treg (iTreg), and may play a role more in the tempering of
responses to antigens not encountered in the thymus, including pathogen-related antigens.
One of the best-studied iTreg populations resides in the colon, develops in response to
commensal bacteria, and is thought to be important for maintenance of tolerance to these
commensals68, 70. Differentiation or ‘conversion’ of conventional Tregs into iTregs is
dependent on several factors, including the strength of antigen signal, specific signals from
antigen presenting cells, and the nature of the local cytokine milieu. In particular, activation
of T cells under the influence of transforming growth factor-β (TGF-β) and IL-2 can induce
naïve CD4+ T cells to induce FoxP3 expression and adopt a regulatory phenotype83–85. The
role of Tregs in promoting both solid organ and hematopoietic transplantation tolerance has
also been of great interest71. Infusion of Tregs that are polyclonally expanded ex vivo is now
being studied in phase I and II clinical trials of hematopoietic stem cell transplantation, and
demonstrates great promise as a strategy to reduced graft-versus host disease69, 71, 86, 87.
This begs the important question whether Tregs might play a role in establishing and
maintaining tolerance to the only naturally occurring allograft encountered by the immune
system: the fetus.
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Tregs contribute to maternal tolerance of the fetus
First clearly demonstrated by Alexander Betz, and colleagues a significant body of evidence
from mouse models now demonstrates that maternal Tregs that are induced by, and are
reactive against, paternal alloantigen contribute to successful implantation and maintenance
of pregnancy7, 88–98. Though challenging to demonstrate definitively, it also now seems that
maternal Tregs also play a similar role in protecting the fetus from rejection during human
pregnancy93, 95, 99–102. During normal early (5–9 gestational weeks) human pregnancy,
Sasaki et al. observed that suppressive CD4+CD25high T cells are enriched in the decidua,
and that this enrichment was not found in cases of spontaneous abortion100. Similarly, the
frequency of CD4+CD25high T cells was found to increase in the peripheral blood of
pregnant women at increasing frequencies that peaked in the second trimester and declined
after birth99. More recent evidence suggests that maternal failure to increase circulating Treg
frequency is correlated with pregnancy loss102. It has also been shown that in preeclampsia
there is also a relative failure to increase circulating Tregs, leading to a relative imbalance of
regulatory and inflammatory cells compared to normal pregnancy101. Together, these
observations suggest that maternal Treg responses in humans also contribute to maternal
tolerance of fetus. The mother may also be primed toward tolerance by exposure to paternal
antigens in the context of immunomodulatory factors in semen or at the utero-placental
interface1–6, 103–108. It is also clear, though, that cells from the fetus transit into the mother,
establishing residence in maternal tissues and resulting in microchimerism that can last for
many years22, 24, 25. These microchimeric cells likely provide a stimulus for initiation and
generation of the tolerogenic Treg response demonstrated in pregnancy. Immune chimerism
also occurs in the opposite direction, and maternal cells have been found to routinely (if not
universally) reside in fetal tissues19, 21–25. This begs the question: why does the fetus not
reject the mother? Work by many investigators has demonstrated that the human fetal
peripheral immune system is highly active, and that fetal T cells are intrinsically capable of
becoming activated in response to foreign antigen11–20. Could this then suggest that active
peripheral tolerogenic mechanisms might contribute to the physiological absence of fetal
anti-maternal rejection?

Part of the challenge in studying fetal immunity has to do with the diversity and variability
in immune development between species, and especially the difference between humans and
laboratory mice. Inbred mouse strains commonly used in the laboratory begin to populate
the thymus with T cell precursors at about 12 days of gestation109. The developing fetal
mouse does not start to populate secondary lymphoid structures until near the end of
gestation, making the newborn mouse more closely resemble a human at a much early fetal
developmental stage110, 111. T cells are absent in the newborn mouse spleen and are very
sparse in the lymph nodes, where they have a primitive, simplified spatial organization110.
During the first week of life, lymph node T cells become more abundant and adopt a more
mature architecture, while the spleen becomes populated with T cells110. Tregs typically do
not exit the thymus in mice until at least three days after birth, and increase to adult levels
over three weeks112. This developmental schedule would lend support to the assumption that
the fetus was not significantly challenged by maternal antigen in the immune periphery, and
that tolerance of self-antigen in the developing fetus was entirely due to central deletion of
autoreactive cells. The human fetal schedule of immune development is highly distinct from
the mouse however, and suggests the need for active peripheral tolerance mechanisms. In
the human fetus, T cell precursors transit to the thymus by 9 weeks of gestation14. Mature
naïve and memory αβ T cells are readily found by 12–14 weeks in spleen and lymph nodes,
and are abundant by the end of the second trimester11–14, 18, 19. Impaired fetal survival and
early demise in IPEX syndrome clearly demonstrates the clinical importance of a peripheral
tolerogenic mechanism in human immune development. Another compelling hint that the
human fetal immune system may actively generate tolerance came from the studies of
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Burlingham and colleagues, who demonstrated that long-term survival of kidney grafts was
enhanced when the donor carried mismatched human leukocyte antigens (HLA) that were
the same as non-inherited alleles from the recipient’s mother (i.e. NIMAs)113. Although the
recipient had no opportunity to generate post-natal tolerance to these unshared maternal
antigens, there was nevertheless some factor preventing their rejection that was likely to
have arisen during the period of exposure to NIMAs in utero. This finding suggested a
fundamental shift in the understanding of how the fetal immune system develops, and
implied that humans have the ability to generate active, long-lasting, post-natal tolerance to
antigens experienced in utero.

Tregs are abundant in the developing human fetus
The developing human fetal immune system in the second trimester is distinct from that of
the newborn, or the mature adult. One of the most striking differences is that fetal tissues
have an increased frequency of Tregs compared to any other time in
development16, 18, 19, 114. The earliest observation of this phenomenon may have been in the
work of Cooper and colleagues, who demonstrated that fetal spleen and premature cord
blood were enriched for a CD45RO+ memory population that also expressed CD25, was
highly proliferative in response to IL-2, but not to standard mitogenic stimuli (e.g. anti-
CD3)15. After the description of Tregs, and FoxP3 as their definitive marker, it was
confirmed that secondary fetal lymphoid tissues in the second trimester contain a
surprisingly high abundance of CD4+CD25+FoxP3+ Tregs, on average 15–20% of CD4+

cells16, 18. This is in contrast to full-term umbilical cord blood, adult peripheral blood, or
lymph nodes from adults, in which Tregs typically represent less than 5% of total CD4+

cells18. The abundance of Tregs in secondary fetal lymphoid organs was not reflected in the
thymus at equivalent gestational ages, where the frequency of CD25+FoxP3+ single CD4
(sp4) thymocytes was comparable to the infant thymus (about 10–12%)18. This suggested
that a significant proportion of the Treg-enriched fetal T cell population consisted of Tregs
that expanded from nTregs, or were generated from conventional CD4+FoxP3− T cells, in
response to antigen. Upon depletion of CD25+ T cells from fetal lymph node-derived T
cells, a significant proportion of the remaining conventional T cells both (1) proliferate
spontaneously; and (2) produce interferon-γ (IFN-γ) in response to SEB stimulation (which
they did not in the presence of Tregs)18. These findings demonstrated the suppressive
influence of Tregs in human fetal lymph nodes, and implied that the fetal immune system
may have the ability to generate active peripheral tolerance via these cells

Fetal Tregs generate specific tolerance toward maternal alloantigen
Given that a significant frequency of human T cells have the capacity to recognize
alloantigen, the fetal immune response against NIMA was used as an in vivo model system
to test the hypothesis that fetal Tregs are generated from conventional fetal T cells in
response to antigen stimulation.19 Maternal cells were confirmed to be in relatively high
abundance (up to 0.8%) in second-trimester fetal lymph nodes, and cells were from each
major hematopoietic lineage were found to be present in full-term umbilical cord blood
(including T, B, NK, and monocytes)19. In mixed lymphocyte reaction (MLRs), fetal
immune responses against maternal antigen presenting cells (APCs) bearing NIMAs were
dampened compared to responses against unrelated alloantigen from third-party donors19.
This demonstrated that fetuses are more tolerant toward NIMAs, and knowing that they are
exposed to those antigens on resident maternal cells, it was proposed that this tolerance was
mediated not only by central clonal deletion, but also by peripherally generated Tregs. Fetal
T cells that were depleted of CD25+ Tregs prior to MLR had significantly enhanced immune
reactions against self and maternal APC, but not against unrelated donors, confirming the
presence of NIMA-specific Tregs19. It was unknown whether these were nTregs generated
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against maternal antigen presented in the thymus, or if iTregs generated in the periphery in
response to stimulation by maternal cells in secondary lymphoid organs may contribute to
anti-NIMA tolerance. To determine if these cells could be generated from non-Tregs,
conventional FoxP3− naïve (CD45RA+CCR7+) T cells were stimulated with foreign APCs.
Surprisingly, alloantigen-stimulated fetal T cells overwhelmingly differentiated into
CD25+FoxP3+ Tregs that were confirmed to mediate alloantigen-specific suppression19.
This effect was dependent on TGFβ signaling, and fetal lymph nodes were found to express
significantly higher levels of TGF-β family members compared to adult lymph nodes. These
findings do not rule out the possibility that fetal Tregs represent a mixed population of
nTregs and iTregs, but do clearly demonstrate that fetal T cells have a strong propensity to
become functional tolerogenic Tregs upon antigen stimulation, and that the fetal peripheral
immune niche is tuned to support such a response.

Implications for fetal and neonatal infection
The strong predisposition of fetal T cells to differentiate into Tregs has many potential
implications for the overall function of the fetal immune response and the nature of its
interactions with both benign (self, maternal, environmental, commensal microbial, and
food) antigens as well as antigens associated with potentially harmful pathogens. Given that
the in utero environment is relatively protected against microbial infection, it makes
teleological and evolutionary sense that T cells in the developing fetus may be predisposed
to mount tolerogenic responses, and that the niche in which they develop may support such
responses. As seen in the example of IPEX, the absence of such tolerance is disastrous52. In
the face of microbial or viral infection, however, a dominant tolerogenic response might
theoretically be detrimental. This raises an interesting possibility that the fetal predisposition
toward tolerance could contribute to the enhanced susceptibility to serious infection that is
well recognized in fetuses and newborns, and particularly in premature newborns.

Infection is a leading cause of death and morbidity in newborns. Not only are neonates
susceptible to more severe forms of disease caused by typical human pathogens, they are
also subject to serious infection by microbes that are considered commensal flora in adults.
For example, even after implementation of intensive screening and prevention practices, the
estimated rate of Group B Streptococal sepsis in the first week of life is 0.34 per 1000 live
births, resulting in 60–70 deaths per year in the United States alone115. Premature infants are
especially predisposed to more severe infections from all pathogens and can also succumb to
fatal infection by microbes that infrequently cause severe disease in adults116. This
increased susceptibility to infection is accompanied by a relatively ineffective response to
neonatal vaccination117, 118. Compared to adults and older children, even full-term
newborns produce less, and generally less effective, antibody in response to most
immunizations. They are also less able to generate effector T cells that mediate effective
antimicrobial responses117, 119–122. Together, these deficiencies render the fetus and neonate
a vulnerable target for a host of invading pathogens. Many mechanisms of classical host
defense are compromised in the fetus and neonate, but this has often been attributed to the
immature developmental state of the immune system, or to the absence of antigen exposure.
The work discussed here demonstrates that the fetal immune system is most certainly not
inert, but rather is extremely active and capable of responding to antigenic stimulation. The
nature of its response, however, while appropriately developmentally tuned to create
tolerance, may predispose the fetus toward tolerance of harmful microbes in the face of
infection. The negative implications of this tolerance-promoting mandate are clear: when
faced with an invading microbe, the human fetal tendency to generate tolerance to antigens
associated with that microbe may be detrimental if it allows infection to proceed unchecked.
This hypothetical explanation for fetal and neonatal susceptibility to infection remains to be
tested, but does provide a novel model with which to frame such pressing questions. It also
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raises the important question of how a tolerogenic immune program that is crucial for
survival and development in utero is ultimately converted into an immune response that can
functionally meet the outside world.

A (not-so) new model for fetal immune development: the layered immune
system

As the fetus nears birth, the tolerogenic fetal T cell response must be converted into a
response dominated by T cells capable of supporting defensive antimicrobial immunity. To
begin to understand this process, and the mechanisms by which it might be governed, it was
necessary to delve further into the nature of the fetal immune system, and how it might be
different from that of the adult. Global gene expression profiling on human fetal and adult
CD4+ naïve T cells and Tregs followed by comparative bioinformatic analysis revealed that
phenotypically similar T cells in the fetus and adult had strikingly different gene expression
profiles123. This was true of both Tregs and naïve T cells, and many of the genes that were
differentially expressed in fetal naïve T cells were also similarly differentially expressed in
fetal regulatory T cells. The commonality of fetal naïve and Treg gene expression profiles
suggested that fetal T cells could represent a unique hematopoietic lineage. There is, in fact,
strong historical evidence in both avian and mouse models that fetal hematopoietic stem-
progenitor cells (HSPCs) can give rise to unique subsets of lymphocytes in the fetus that
cannot be generated from adult HSPCs124–132. In the mouse, the first wave of T cell
progenitors that colonize the fetal thymus differentiate into a unique fetal subset of γδ TCR-
utilizing T cells with a restricted Vγ3/Vδ1 TCR125. These cells are eventually replaced by a
wave of more diverse γδ T cells and ultimately, prior to birth, by a wave of T cells utilizing
the αβ TCR125, 129. This phenomenon echoes earlier reports in quail/chick chimeras in
which three waves of thymocytes populate the thymus, and replace one another in
sequence133, 134. A similar phenomenon has been described and well characterized in mouse
B lymphocyte development. Two distinct lineages can be defined based on surface
phenotype staining, the B-1 and B-2 lineage, initially defined by CD5 (Ly-1)
expression135, 136. The B-1 lineage seems to be a more primitive one that is found in
newborn mice and cannot be efficiently generated by adoptive transfer of adult bone
marrow128. Together, these findings suggest a model whereby maturation of progeny cells
derived from distinct hematopoietic progenitors results in waves of mature immune effector
cells that are tuned to the specific developmental needs of the organism. As these
progressive, distinct waves accumulate, they co-exist for a period of time and result in
‘layers’ of immune cell lineages. This model, first formally proposed by Lee and Len
Herzenberg, has become known as the layered model of immune development (Figure 1)137.
Given the highly unique gene-expression profile of fetal T cells (including fetal Tregs), it
stood to reason that these cells could represent their own wave of T cell progeny arising
from a distinct fetal hematopoietic progenitor.

To test the hypothesis that fetal T cells represent a unique cell lineage compared to adult T
cells, a series of experiments were carried out in which fetal HSPCs from human fetal liver
and bone marrow (18–22 gestational weeks) and adult bone marrow were injected directly
into the human Thy/Liv organ of the SCID-hu Thy/Liv mouse123. This humanized mouse
model allows for reproducible, multi-lineage hematopoiesis (including thymopoiesis) from
human HSPCs138, 139. Global gene expression analysis was carried out on mature
CD3+CD4+CD8−CD25− sp4 thymocytes that were differentiated from fetal liver-, fetal bone
marrow-, or adult bone marrow-derived HSPCs using this model. Surprisingly, HSPCs from
both fetal liver and bone marrow gave rise to identical populations of sp4 thymocytes on the
basis of gene expression. By contrast, adult bone marrow-derived HSPCs had a radically
different gene expression profile compared to each population of fetal HSPC-derived
thymocytes. There was significant overlap between genes expressed in primary peripheral
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CD4+ fetal T cells and CD4+ thymocytes derived from fetal HSPC, and the same was true of
adult peripheral CD4+ T cells and CD4+ thymocytes derived from adult HSPC. This
strongly suggested that fetal and adult HSPCs give rise to developmentally unique lineages
of fetal T cells, thus, providing strong evidence that the layered immune system hypothesis
can be extended to describe human T cell development. Considered in context, this
hypothesis proposes that fetal immune development proceeds in such a manner that a
dominant tolerogenic fetal immune system is progressively replaced by an immunogenic
adult-type immune system, resulting in co-existing populations (or layers) of tolerogenic and
immunogenic T cells. These two immune systems serve different roles based on
developmental state of the organism, and the sum immune response that is generated toward
antigenic stimulation is the result of the relative contribution of these two opposing T cell
layers. Future perspectives for peripheral fetal tolerance and the layered immune system
hypothesis.

The layered immune system hypothesis may have potential to enhance our understanding of
normal fetal immune development, and also represents a new way to model the
pathophysiology of many diseases. For example, if the type and magnitude of response that
is generated in utero or at birth is determined in part by the opposing fetal and adult
influences, the relative contribution of each may determine whether the ultimate response is
tolerogenic, immunogenic, or an intermediate of the two. Within a human population, if
there is variability in the degree to which layering occurs at birth, this could theoretically
also lead to equal variability in the nature of immune responses that can be generated. As an
example, consider the scenario in which the transition from fetal to adult T cell
predominance is delayed compared to the population norm, resulting in a newborn infant
with an over-representation of fetal T cells. When faced with colonizing microbes, including
GBS, this infant might be more predisposed to mount a tolerogenic response to those
microbes. In that scenario, an organism that would normally become a commensal symbiotic
microbe in most infants could potentially cause invasive infection and serious disease.
Conversely, an infant who had precocious maturation of the adult compartment may then
have over-representation of adult T cells at birth. Such an infant may then be at risk of
overly zealous immune responses against normally tolerated antigens such as self,
environmental, or food antigens, potentially leading to auto-immune disease, allergy, or
food-antigen intolerance. To address these questions, it will be necessary to better
understand the timing of, and mechanisms governing, the transition from tolerogenic fetal
responses to immunogenic adult responses.

Another question to be answered is whether hematopoiesis arising from fetal HSPCs persists
throughout post-natal life, and whether T cells arising from these progenitors play a role in
homeostasis, health, and disease. Tregs capable of mediating specific tolerance to NIMA
persist in children and young adults19. It is not clear whether these Tregs represent long-
lived cells acquired during fetal development, the progeny of such cells, or Tregs arising
more recently due to persistence of chimeric maternal cells in the offspring. It is intriguing
to consider that fetal stem-progenitor cells (or their long-lived progeny) may persist in a
normally non-dominant state throughout life, and could potentially be re-activated in
situations where re-acquisition of tolerance is needed (e.g. after non-ablative chemotherapy,
or during immune reconstitution after initiation of antiretroviral therapy for HIV disease).
This possibility also begs the question whether, in some cases, broken or incomplete
tolerance (e.g. autoimmune diseases) represents the failure of a tolerogenic fetal T cell
population. Though these considerations remain hypothetical, ongoing investigations will
hopefully lead to further insights into the process of normal human fetal immune
development and its influence of on how our immune systems learn to interact with
ourselves, and the environment in which we exist.
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Summary
In conclusion, the immune environment of the developing human fetus is especially well
suited to generate peripheral tolerance. Fetal T cells, which are derived from a
developmentally restricted hematopoietic lineage, appear to be a major player in this
tolerogenic disposition because they are relatively enriched in Tregs, and there is a strong
tendency for naïve CD4+ fetal T cells to differentiate into Tregs upon antigen stimulation.
These fetal Tregs are capable of quelling immune responses against maternal alloantigen,
and may therefore provide a means by which the fetus prevents maternal rejection to allow
for maintenance of pregnancy. A deeper understanding of the nature of the developing
human fetal immune system has profound potential to help us understand health and disease
in the fetus, newborn, and likely every stage of life thereafter.
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Figure 1.
Representation of the layered immune system in the human fetus. Tolerogenic fetal T cells
derived from fetal hematopoietic stem–progenitor cells (HSPC) dominate fetal immune
responses until the third trimester, when a population of adult HSPC-derived immunogenic
T cells come to dominance. During the transition period, a layered immune system occurs,
and the prevailing nature of the immune response may be governed, in part, by the degree of
layering of fetal and adult T cells and the relative influence they exert.
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