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Abstract
Modern pupillometry has expanded the study and utility of pupil responses in many new domains
including psychiatry, particularly for understanding aspects of cognitive and emotional
information processing. Here, we review the applications of pupillometry in psychiatry for
understanding patients’ information processing styles, predicting treatment, and augmenting
function. In the past year pupillometry has been shown to be useful in specifying cognitive/
affective occurrences during experimental tasks and informing clinical diagnoses. Such studies
demonstrate the potential of pupillary motility to be used in clinical psychiatry much as it has
been in neurology for the past century.
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Introduction
The pupil has a venerable history in medicine, from the diagnosis of neurological syndromes
such as Addison disease and Horner syndrome to monitoring the depth of anesthesia [1]. As
pupillometry is a quick, painless, and noninvasive process, assessment of the pupil response
to light stimulation and its re-dilation is used in the clinical setting for detecting optic nerve
dysfunction, diagnosing certain drug effects, assessing brainstem integrity and autonomic
functions. [2]. The use of pupillometry in psychology and psychiatry has had a lower profile
stemming from initial forays in the 1960’s as a measure of affect, cognition [3, 4], and
specifically, the observation that the pupil dilates with cognitive load [5]. In the 1980s the
application of pupillometry was extended to reflect individual differences in cognitive and
affective processing [6] yielding the potential for use in understanding psychiatric disorders

Correspondence to: Greg Siegle.

Compliance with Ethics Guidelines

Conflict of Interest
Simona Graur declares no potential conflicts of interest.
Greg Siegle declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.

NIH Public Access
Author Manuscript
Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2014 August 01.

Published in final edited form as:
Curr Neurol Neurosci Rep. 2013 August ; 13(8): 365. doi:10.1007/s11910-013-0365-0.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which are frequently characterized by cognitive and affective disturbances [7]. Here, we
summarize specific recent advances in areas applicable to psychiatry from the past two
years. Psychiatric uses have stemmed from recent re-recognition of the correspondence of
pupil dilation to aspects of information processing including cognition and emotion [8]. We
thus concentrate on associations of altered pupillary motility in psychiatric disorders when
patients are performing cognitive and emotional tasks, along with specific alterations in
developmental populations, particularly autism spectrum disorders. Figure 1 portrays a
theoretical model of how the pupil may be used to index relevant phenomena in the
psychiatric clinic.

1. Brain Influences on the Pupil
Changes in pupillary dilation in response to cognitive and affective load are due to direct
innervation of the sympathetically mediated dilator muscle of the iris and the
parasympathetically mediated sphincter muscle by brain regions associated with cognitive
and emotional processing [2, 7]. For example, stimulation of limbic regions such as the
amygdala (a brain area used in emotion and memory) increases pupil dilation, likely through
a variety of mechanisms involving pathways to the medulla [9] such as direct excitatory
inputs from the amygdala to the descending sympathetic pathway in the medulla, and
mediation through pathways from the amygdala to the posterior hypothalamus.. Pupillary
dilation has been linked to executive control with dorso-lateral prefrontal activity observed
during a working memory task in a dual pupillometry and neuro-imaging study [10], likely
due to cortical inhibition of the Edinger Westphal nucleus. Pupillary responses have also
been associated with the anterior cingulate cortex (as evidenced by dual anterior cingulate
cortex activity and autonomic dilatory pupil response in an error processing task) [11] and to
the activation of the locus coeruleus (LC) and the noradrenergic (NE) system [12] The LC
communicates with the prefrontal cortex, pulvinar nucleaus, superior colliculus and other
areas of the brain in involved in selective attention. Though increasing data suggests the
importance of measuring brain function associated with cognition and emotion in the
psychiatry clinic [13–15], conventional neuroimaging is too expensive to use on a regular
basis. Physiological proxies such as pupil dilation are emerging as promising measures for
the psychiatric clinical setting. The remainder of this article thus reviews recent findings
relevant to this topic.

2. Pupil Dilation, Cognition, and Emotion
The current state-of-the-art in pupillary applications to psychology and psychiatry stems
from assessment of pupil dilation in language, arithmetic, perception tasks, and short term
memory tasks [6]. Many studies support the conclusion that pupil diameterincreases with
cognitive load and that pupil diameter decreases when an individual attempts to process
more than he or she can handle [16–19]. Specifically, the pupil dilates when an individual is
processing positive and negative information [20] including pictures [21, 22], words, [23],
and sounds [24]. While initial research has suggested that the pupil dilates only in response
to a positive stimulus, ([25]; [26]; [21], it is now believed changes in pupil size occur when
emotionally arousing stimuli are present, regardless of positive or negative valence ([22];
[21]; [24]; [27]).

3:Pupillometry to Assess Mechanisms of Psychiatric Disorder and Vulnerability
Initial studies of abnormal pupil dilation in depression [28–30] were augmented by a recent
study showing that pupil dilation indexes one possible neural mechanism for cognitive
deficiencies in depression [31]. Depressed participants not only made more mistakes on a
cognitive task, but were more likely to display non-task related pupil dilation signifying
cognitive load, during a task not due to the task itself – potentially reflecting other processes
such as rumination. Indeed, task-related dilation occurred immediately following the
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cognitive prompt, suggesting task-related cognition. Depressed participants were more likely
to exhibit pupillary dilation not in relation to the cognitive prompt time frame. These
participants also scored higher on rumination traits suggesting that depressed individuals
engage in increased intrinsic processing that depletes their ability to process information.
This application is potentially important as there are assessments of cognitive problems such
as attention deficits, but no clinical assessments for why they occur. Pupillar dilation
dynamics thus provides an objective index of non-task-related processing that could be
addressed in behavioral treatments.

Of note, the pupil has continued to be associated with other features common to psychiatric
disorder such as reward and risk processing [32, 33] which are decreased in disorders such
as depression. The pupil is also associated with facilities such as arousal [34], working
memory [35] and attention [36] which are impaired in many psychiatric conditions and
decision making [37] which is particularly disrupted in externalizing disorders. A large
literature on sleep disturbance and the pupil has similarly been augmented to the place
where clinical measures are possible [38, 39]; it has thus seen initial uses in clinical trials,
e.g., of modafinil (an awake-promoting agent) [40]. Thus, pupillary responses have been
increasingly considered across the psychiatric spectrum, e.g., to high calorie foods in
individuals with high BMI [41], and in a demonstration of particularly low pupillary motility
in association with worry [42], potentially reflecting avoidance processes.

The pupil has also emerged as a potential indicator of vulnerability in individuals who are
not yet depressed [43]. Current studies have demonstrated that non-depressed individuals
with a previous depressive episode (suggesting depression vulnerability) haveincreased
responses to personally relevant negative words compared to never-depressed controls.
However, during a negative mood-state task in which participants were instructed to think of
a sad event while listening to sad music, the depression-vulnerable individuals exhibited less
pupil dilation than non-vulnerable individuals. One proposed explanation for these findings
is that depression-vulnerable individuals are at a heightened reactivity for emotional
information and highly salient emotional information overloads their ability to process it.
Much like when the pupil ceases to dilate when an individual is cognitively overworked
[17], perhaps a similar mechanism is working with emotional information for those at risk
for depression. In addition depression-vulnerable individuals did not report an increase in
negative mood during the mood-state task, suggesting those at risk for depression engage in
emotional and cognitive blunting when processing highly salient negative information. From
a practical perspective, with replication this result could suggest a clinically applicable
assessment of vulnerability to depression as well as relevant mechanisms for pre-emptive
targeting, e.g., via cognitive neurorehabilitative exercises.

Pupil abnormalities can also be seen in those suffering from anxiety. In one study,
individuals scoring high on worry and rumination trait tendencies h smaller pupil dilation
following personally relevant negative emotional stimuli than those scoring low on these
traits [42]. These “worriers” performed behavioral tasks exceptionally well, suggesting that
their relatively poor pupil dilation was not a result of demands exceeding cognitive capacity
[44], but of a pattern of emotional avoidance in chronic worriers.

Pupil dilation differences are also present for individuals with Parkinson’s Disease (PD)
[45], a neurodegenerative disorder which eventually leads to cognitive problems and
dementia in its advanced stages. Pupillary unrest, the spontaneous changes of pupil diameter
in darkness is associated with alternating sympathetic and parasympathetic influences, is
increasingly associated with fatigue/arousal [46] and autonomic instability [47]. Jain et al.
[48] measured pupillary unrest in individuals with PD and controls and found that arousal
symptoms in PD were associated with increased pupillary unrest, suggesting pupillary unrest
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marks features of disorders affecting arousal such as PD and pupillary unrest is a marker of
disordered arousal in PD. Furthermore, cardiovascular autonomic dysfunction (as measured
by resting heart rate variability) reflecting lower parasympathetic function, was negatively
correlated with pupillary unrest in PD [49]. Additional studies are needed to relate
autonomic changes with motor symptoms in PD, but perhaps autonomic physiology
(including the use of pupillary measures) can be used as a marker of PD progression.

4.. Using Pupillometry to Inform Treatment
The past two years have also seen increasing use of the pupil to directly inform treatment
decisions and progress outcome in the psychiatric clinic. Pupillary reactivity is already used
in a predictive capacity for treatment outcome in other disciplines, e.g., as an early index of
intracranial pressure [50] as a predictor for success following surgical intervention in
traumatic brain injury [51], and as an indicator of drug efficiency, e.g., for tramadol
pharmacokinetics [52]; here we focus on its potential for similar uses in the psychiatry
clinic. For example, while Cognitive Therapy (CT) is one of the most efficient treatments
for depression [53], only 40% to 60% of patients experience symptom remission using this
therapy [54]. Currently, there is no efficient mode of determining which patients would
benefit from CT, a therapy that targets deficient regulatory control and fosters the depressed
individual’s ability to recruit executive control in response to negative stimuli or thoughts.
Functional magnetic resonance imaging studies have shown that successful CT treatments
alter limbic activity and prefrontal function ([55]; [56]; [57]. Pre-treatment neuroimaging
has been useful in identifying which patients would benefit from CT, particularly those with
decreased pretreatment reactivity in the subgenual cingulate cortex (suggesting
capitalization on unaffected limbic monitoring) [55, 58]. However the feasibility of
neuroimaging to assess clinical patients is limited as such tests are time-consuming and
expensive. Pupil dilation measures, however, could provide an excellent alternative in this
setting.

Siegle, et al, [59] found that low levels of pupil dilation during a task involving alternation
between naming the emotional valence of words and putting digits in order predicted
remission in CT in participants with depression. Specifically, remission was associated with
either low initial depressive severity or the combination of higher initial depressive severity
and low sustained pupillary responses in the period following presentation of negative words
lasting into the period in which digit sorting was to begin (i.e., during the operation of
switching between cognitive tasks). Brain imaging studies showed – as in healthy
individuals –increased pupillary responses were associated with increased activity in
dorsolateral prefrontal regions associated with executive control and emotion regulation. If
sustained pupillary dilation reflects prefrontally-mediated executive control, more severely
depressed patients who do not have this capability may benefit from CT. Conversely, those
who already have this capability may benefit from other treatments that do not act by
teaching executive control (such as antidepressant medications). That said, there may be a
critical level of recruitment of cognitive and emotional resources to the task, also indexed by
the pupil necessary for response. For example, initial data suggest that periodic pupillary
dilation indicating trial-related responsivity is associated with better response to cognitive
exercises designed specifically to target prefrontally mediated executive control in unipolar
depressed individuals [60].

These results suggest that a quick (less than ten minute) assessment of the pupil may be able
to help clinicians decide when to allocate time and resources of CT therapy to a selected
group of severely depressed patients who would be expected to respond favorably to this
mode of treatment. Theoretically, patients with decreased sustained pupillary responses may
respond well to targeted intervention specifically designed to increase executive control.
Currently, there is no method of determining the optimal treatment for patients with
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depression and depressed individuals are often administered treatments that are inefficient.
Our current unsystematic prescription of depression treatments yields a severe cost not only
to individuals, but to society at large. The cost of depression, in terms of lost productivity
and increased medical expenses, is $83 billion each year [61]. Clinicians and patients must
begin making better informed decisions about psychiatric treatment, a decision pupillometry
can easily, quickly, and cheaply aid.

The primary alternative to psychotherapy for psychiatric disorders is medication. As
medications such as antidepressants are increasingly thought to act on cognitive features of
disorder indexed by the pupil such as attentional allocation [62, 63], it is reasonable that
pupillary motility would also index their utility. Initial data indeed suggests that pupillary
motility has shown progress in understanding drug effects. There is a strong history of
exploring pupillary dilation as a measure of drug occupancy and action [64]. In the past two
years, this literature has specifically expanded to include ketamine which has recently been
explored as an acute intervention for suicidal depression [65]. Pupil dilation was shown to
increase with ketamine administration in dogs [66] potentially yielding a measure of drug
occupancy. Effects on pupillary motility have been explored as well for other psychoactive
agents including antipsychotics [67] and buprenorphine [68]. Relationships of pupillary
motility to release of neurotransmitters such as norepinephrine have also been considered
[69–72] potentially yielding useful clinical predictors or measures in association with
prescriptions, e.g., for common antidepressants such as selective norepinephrine reuptake
inhibitors (SNRI’s). Together, it is hoped that such literature will eventually yield predictive
algorithms such that by observing features such as pupil dilation, an individual can
understand their likelihood of response to, and optimal dose of, a variety of possible
interventions.

5. Pupillometry in Developmental Populations
Differences in pupillary dilation for various experimental tasks have also been found in
younger populations. For example, depressed youths who are presented with negative words
show decreased pupil dilation 9 to 12 seconds after the word presentation, compared to non-
depressed youths [30]. These participants had a greater severity of depression; thus,
decreased pupil dilation suggested an impaired ability to recruit regulatory mechanisms.
This led to the question of whether pupil dilation might also index vulnerability in
developmental populations. Anxious youths frequently become depressed in their late teens
and early adulthood [73–75], and are thus a model vulnerable population. A task involving
attention to emotional faces used in conjunction with pupillometry revealed that unlike
controls and like vulnerable adults [43], anxious youths displayed pupil dilation long after
an emotional or threatening stimulus had been presented [76]. These results suggest anxious
youths have increased and sustained reactions to emotional faces, a response that is possibly
rooted in an enhanced recall or elaboration of threat-relevant information and/or an
increased effort to emotionally regulate emotional stimulus long after it is gone. These
responses to threat may lead to the development of other maladaptive patterns; thus, early
intervention specifically targeting these responses may be useful in treatment.

To create a tool for examining the extent to which these biases generalized to a more “real-
world” context involving social rejection, Silk et al. [77] measured adolescent pupillary
responses to rejection and acceptance using a simulated internet chatroom task. Participants
were put in a scenario where an alleged online peer had to pick between the participant and
another alleged peer to talk about common interests (in truth, all decisions were pre-
determined and there was no true interaction). Pupil responses were obtained to differentiate
pupil responses during acceptance (being picked by their online peer) and rejection (not
being picked). Youths (aged 9–17) showed heightened peak pupil dilation in response to
peer rejection. The findings suggest increased prefrontal activity in response to rejection,
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consistent with previous fMRI research showing greater activity in ventral prefrontal regions
in response to exclusion [78]. Potentially, youths engage prefrontal areas of the brain in
order to regulate emotions in times of social digress. Furthermore, and relevant to the task’s
utility in assessing vulnerability, measuring participant social and emotional behavior in the
real world via brief telephone interviews showed that adolescents with greater pupil dilation
during rejection also had lower feelings of connectedness in their daily peer interactions.
These participants also had increased pupil dilation prior to rejection, suggesting a
particularly sensitive anticipatory response to rejection. These youths are also those that feel
less connected to their peers. Such results suggest that pupillometry might help to identify
youths who might benefit from interventions that seek to increase social connectedness.

Pupillometry has also been used recently to better understand emotional information
processing in adolescents with inflammatory bowel disease (IBD), a disease which is
associated with higher rates of depression than other physical diseases. Youths with IBD had
increased initial pupil dilation to negative words, regardless of depression status, suggesting
an increased sensitivity to negative emotional stimuli [79]. While further research is needed
to tease out why this sensitivity exists in this population (high-dose steroid treatment, effect
of IBD-related inflammatory cytokines, psychosocial stress related to the disease all might
affect neural processing), pupillometry suggests that increased reactivity to negative
emotional information is an integral part of the expression of this disorder.

6. Autism Research
In the psychiatric clinic of the future it will be important to assess not only verbal but non-
verbal nonverbal populations. A specific, often non-verbal group that may benefit from
insights and use of pupillometry are individuals with Autism Spectrum Disorders (ASD).
Indeed, recent years have observed features such as increased pupil diameter along with
other indicators of autonomic dysfunction in autism spectrum disorders [80]. The pupil has
also been associated with key features of autism such as empathy in adults [81] and children
as young as two years old [82], and has specifically been shown to be decreased in response
to social reward in autistic children [83] and positive information in Asperger’s disorder
[84]. Pupillary measures have, indeed proved useful clinically with the potential for charting
the efficacy of behavioral treatments for autism spectrum disorders such as Fragile X
syndrome [85].

Of particular note, while it is known that individuals with ASD attend abnormally to the
eyes, different theories exist on why this is so. Previous research has suggested that unusual
eye fixations of individuals with ASD might be due to eyes being aversive ([86]; [87]; [88]).
An alternative theory is the social motivation hypothesis which states that individuals with
ASD do not attend to social stimuli because they fail to adequately form representations of
the reward value of such stimuli ([89]; [90]), while typically developing individuals find
social stimuli rewarding ([91]; [92]).

Pupil dilation has been used recently to help discern between these two differing hypotheses
[83]. The researchers looked at the pupil dilations of children with ASD viewing static
images of emotional faces. They found that while the responses of ASD children were
similar to controls for most emotions, they lacked pupillary dilation to happy faces with
direct gaze and concluded smiling faces were neither emotionally arousing nor particularly
interesting to ASD children, i.e., that children with autism do not find eyes aversive. In
contrast, happy faces have been shown to activate reward circuitry in typically developing
individuals [91], [93]. In fact, attractive faces with direct gaze elicits activity in the ventral
striatum, an area associated with reward processing [94], and pupillary response has also
been linked to reward processing [95]; [92]; [96]. Thus, typically developing individuals
show a pupillary response to smiling faces due to the reward value of a smiling face. The
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lack of this phenomenon occurring for those with ASD, might be due to impaired social
reward processing system [90], not an aversion to eyes. These studies demonstrate the utility
of pupillometry as one of multiple measures which can improve information-gathering about
populations that cannot speak for themselves.

7. Brain Computer Interactions
The burgeoning area of Brain Computer Interactions (BCI) has been a hotbed of activity for
assisting individuals with movement difficulties to interact with computers. Similarly for
individuals with trouble expressing or recognizing their own emotions, pupil dilation could
help to fill in what is for them, a critical missing piece. This area sits at the intersection
between cognitive neuroscience and neurology, in that the problems are frequently
neurological but techniques from cognitive neuroscience are being brought to the table as
solutions. In particular, if personal computers could perceive a user’s emotion via the use of
physiological measures such as heart rate, galvanic skin response, EEG, pupil diameter etc.
[97], then it could intelligently alter a user’s experience. For patients with disorders that
impair muscle movement (such as amyotrophic lateral sclerosis), computers and devices that
could detect one’s underlying state of mind, would be a highly effective communication
tool. This was the premise used to guide the recent development of an automatic filtering
system to classify individual unpleasant emotions based on pupil size changes and thus
remove perceived unpleasant images from a database [98]. More research must be done in
this area to determine how various stimuli affect different individuals. For example previous
work found that women showed significantly larger pupil responses than males to neutral
auditory stimuli [24]. However, it would certainly be possible (and practical) to create a
baseline assessment of pupillary responses in individuals and use one’s personal data to
inform pupillary input systems.

Conclusion
Together, the current body of literature indicates that pupillometry has recently moved from
a basic research tool toward a clinical use in the domain of psychiatry. The route is not
direct, but rather depends on the pupil’s ability to assess emotional information processing
which is at the core of both the expression of many psychopathologies as well as their
treatments, as described in Figure 1. As an assessment tool it can be used to reveal otherwise
hidden dimensions of patient functioning (e.g., resource limitations) and has applications in
helping to guide treatment selection. It is appropriate for use throughout the lifespan of the
patient in these capacities. Moreover, initial data suggests that as a BCI-based extension of
consciousness, the pupil may be an even more potent tool, particularly for those who are not
strongly verbal.

Future Directions
For pupillometry to be routinely employed in clinics, critical research gaps will need to be
addressed. As with any potential psycho-physiological assessment, measurements must be
reliable for single subjects. While single subject research has helped make neuroimaging
reliable [99], similar research needs to be done in pupillometry. Results that are
understandable to researchers are not necessarily understandable to those in other
professions. Developing software programs for proper analysis would help make pupil data
understandable to clinicians. Furthermore pupil data must be meaningful to those that use it;
thus, developing pupil norms tables for various pathologies (as well as differences in gender,
age, ethnicity, etc.) would be crucial in making pupil data interpretable. Initial data in these
regards has begun to emerge concerning one of the most popular measures – pupillary unrest
[38]. Adding such data for task-related changes will be critical. With the strongly established
base of research in the past few years, the field is now poised to begin such translational
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efforts. We thus look forward to seeing pupillometry in the psychiatry clinic rival its well-
established uses in neurology in the coming years.
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Figure 1.
Theoretical model of how pupil dilation indexes phenomena relevant to cognitive and
emotional information processing relevant to the psychiatry clinic.
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