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Mutations in USP9X Are Associated
with X-Linked Intellectual Disability
and Disrupt Neuronal Cell Migration and Growth

Claire C. Homan,1 Raman Kumar,2,3,4 Lam Son Nguyen,4,12 Eric Haan,4,5 F. Lucy Raymond,6

Fatima Abidi,7 Martine Raynaud,8,9 Charles E. Schwartz,7 Stephen A. Wood,10 Jozef Gecz,1,2,4,11,*
and Lachlan A. Jolly4,11,*

With a wealth of disease-associated DNA variants being recently reported, the challenges of providing their functional characterization

are mounting. Previously, as part of a large systematic resequencing of the X chromosome in 208 unrelated families with nonsyndromic

X-linked intellectual disability, we identified three unique variants (two missense and one protein truncating) in USP9X. To assess the

functional significance of these variants, we took advantage of the Usp9x knockout mouse we generated. Loss of Usp9x causes reduction

in both axonal growth and neuronal cell migration. Although overexpression of wild-type human USP9X rescued these defects, all

three USP9X variants failed to rescue axonal growth, caused reduced USP9X protein localization in axonal growth cones, and (in 2/

3 variants) failed to rescue neuronal cell migration. Interestingly, in one of these families, the proband was subsequently identified

to have a microdeletion encompassing ARID1B, a known ID gene. Given our findings it is plausible that loss of function of both genes

contributes to the individual’s phenotype. This case highlights the complexity of the interpretations of genetic findings from genome-

wide investigations. We also performed proteomics analysis of neurons from both the wild-type and Usp9x knockout embryos and iden-

tified disruption of the cytoskeleton as the main underlying consequence of the loss of Usp9x. Detailed clinical assessment of all three

families with USP9X variants identified hypotonia and behavioral and morphological defects as common features in addition to ID.

Together our data support involvement of all three USP9X variants in ID in these families and provide likely cellular and molecular

mechanisms involved.
Intellectual disability (ID) affects ~2%–3% of the popula-

tion, and in developed countries the dominant cause is

of genetic origin.1 Although ID is one of the most highly

heterogeneous human disorders, there is currently an

overrepresentation of causative mutations found on the

X chromosome.2 Recently the reports of a large-scale

X-exome resequencing effort coupled with high-resolution

copy-number profiling provided plausible explanations for

approximately half of a cohort of 208 families with

evidence for X-linked ID (XLID).3,4 Because the cohort

was previously excluded from the mutations and large-

scale (i.e., 500G banding resolution) cytogenetic alter-

ations known to cause XLID at that time, most variants

discovered were located in genes that were not previously

associated with XLID.3 For the vast majority of the variants

identified, further genetic and functional evidence was

required (e.g., Shoubridge et al.5) to support their causal

involvement in ID of the respective individuals and

families studied.

Variants in USP9X (MIM 300072) have been identified as

being potentially involved in XLID.3 The X-exome

sequencing initially identified a single truncating variant

in an X-linked family, and subsequent screening of an
1School of Molecular and Biomedical Science, University of Adelaide, Adelaid

North Adelaide, SA 5006, Australia; 3Discipline of Medicine, University of Ade

Health, University of Adelaide, Adelaide, SA 5005, Australia; 5South Australian

North Adelaide, SA 5006, Australia; 6Cambridge Institute for Medical Research,

tute, Greenwood Genetics Centre, Greenwood, SC 29646, USA; 8CHRU de Tou

et Cerveau, Tours 37000, France; 10Eskitis Institute for Drug Discovery, Griffith

of Adelaide, Adelaide, SA 5005, Australia
12Present address: Foundation Imagine, Hôpital Necker-Enfants Malades, Paris
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additional cohort of male individuals with ID (where

X-linkage was not always obvious) identified two

additional nonrecurrent missense variants.3 In two of

these three families, the variants segregated as expected

for X-linkage; in one case the inheritance could not be

established (Figure S1 available online). The study was

approved by local ethics committees and institutional

review boards of each collaborating insititution, and in-

formed consent for research was obtained from all individ-

uals involved. In family 1, from France, a missense variant

(c.6278T>A [RefSeq accession number NM_001039590.2],

p.Leu2093His [RefSeq NP_001034679.2]) was found in a

singleton affected male, with no other affected individuals

known in the family (Figure S1). At 21 months of age, he

displayed developmental delay, aggressive behavior, and

hypotonia. Other features included relative macrocephaly,

facial dysmorphism, broad thumbs and great toes, short

stature, constipation, and hyperextensibility of joints

and skin (Table 1). In family 2, from the USA, a second

missense variant (c.6469C>A [p.Leu2157Ile]) was found

in an affected male, his unaffected mother, and his unaf-

fected grandmother (Figures S1 and S2). In addition, the

affected individual was subsequently found to have
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Table 1. Summary of Key Clinical Features of Affected Individuals

Family 1 Family 2 Family 3

USP9X
mutation

c.6278T>A
(p.Leu2093His)

c.6469C>A
(p.Leu2157Ile)

c.7574delA
(p.Gln2525fs*18)

Number of
affected males

1 1 3

Neurological Features

ID (severity) 1/1 (mild) 1/1 (mild) 3/3 (mild-
moderate)

Autism 0/1 1/1 1/3

Aggression 1/1 0/1 0/3

Obsessiveness 0/1 1/1 1/3

Hypotonia 1/1 1/1 3/3

Dysmorphic Features

Craniofacial relative
macrocephaly
and prominent
forehead

0/1 0/3

Digital broad thumbs
and great toes

broad thumbs
and curling
toenails

0/3

Growth

age 21 months:
Ht: 78.5 cm (3%)
Wt: 11.4 kg (25%)
HC: 50.5 cm
(95%)

age 12 months:
Ht: 70.4 cm (3%)
Wt: 7.87 Kg (<3%)
HC: 44.7 cm
(3%–25%)

ND

age 9 years:
Ht: 124 cm (5%)
Wt: 24.1 kg (10%)

Other hyperextensible
joints and skin,
constipation

IUGR, ectopic
left kidney,
tracheomalacia,
gastresophageal
reflux, upper
airway congestion,
hypospadia,
retractable left
testis

ND

Abbreviations are as follows: Ht, height; Wt, weight, HC, head circumference;
IUGR, intrauterine growth restriction; %, percentile; ND, no data.
a ~790 kb deletion at 6q25.3, which includes ARID1B

(MIM 614556). Haploinsufficiency of ARID1B is a common

de novo cause of ID,6 and because his parents are unaf-

fected, it is most likely that this deletion also occurred de

novo (the parents could not be tested). Whether the

ARID1B deletion itself is the only cause of ID in this patient

or whether the USP9X variant provides an additional,

second hit could not be easily determined. Prenatally, the

affected male in family 2 displayed a raisedmaternal serum

alpha-fetoprotein, intrauterine growth restriction, and an

ectopic left kidney. Postnatally, he had feeding difficulties,

hypotonia, tracheomalacia, gastro-esophageal reflux dis-

ease, and developmental delay, with speech development

most affected. He also had broad thumbs, curving toe nails,

and short stature. At 9 years of age, he had ID (he was
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nonverbal, speech having regressed at age 3), obsessive

and autistic behaviors, elevated testosterone and decreased

cholesterol levels, and short stature (Table 1). In the third

family, from the UK, a single-nucleotide deletion was iden-

tified in two half brothers, their unaffected mother and

affected uncle, and their unaffected grandmother (Figures

S1 and S2). A single-nucleotide deletion in USP9X

(c.7574delA [p.Gln2525Argfs*18]) was the only plausible

variant identified in the 700 genes on the X chromosome

screened, and a subsequent systematic screening of 550

genes in which mutations are known (or suspected) to

cause ID, via a customized exome pull-down platform,

did not reveal any other plausible mutation.3 The deletion

introduces a frameshift followed by 17 missense amino

acids leading to a premature termination codon (PTC),

and a 45 amino acid truncation. Because the PTC falls in

the last exon of USP9X, transcripts are not likely to be

degraded by the nonsense-mediated mRNA decay

pathway. The affected individuals all had ID and hypoto-

nia. In addition, one also displayed obsessive behaviors

and another displayed autistic behaviors (Table 1). To

summarize, the key clinical features shared by the five

affected males from the three families with unique

USP9X variants included ID, hypotonia, and short stature

(where measured), with additional variable behavioral,

gastroenterological, and dysmorphic features (Table 1).

USP9X is highly conserved7 with a residual variance

intolerance score8 of �1.62, 2.93%, suggesting consider-

able intolerance to variation. The three USP9X variants

are unique, not present in an additional 914 affected males

in XLID families, 1,129 control X chromosomes,3 or

dbSNP137, EVS, or the 1000 Genomes Project data sets.

Furthermore, the variants were found to change highly

conserved amino acid residues residing in the C-terminal

region of the protein (Figure S1). In silico prediction pro-

grams (PolyPhen2, SIFT, and iPTREE) suggested that the

c.6278T>A (p.Leu2093His) variant was deleterious,

whereas for the c.6469C>A (p.Leu2157Ile) variant, only

iPTREE reported an adverse effect (Figure S1). Additional

prediction programs (PANTHER, Mutation Taster) corrobo-

rated this last result, suggesting that the p.Leu2157Ile

variant was probably deleterious and disease causing.

USP9X encodes a very large substrate-specific deubiqui-

tylating enzyme of 2,570 amino acids, with a largely

unknown structure outside of its catalytic and ubiquitin-

like domains.9 Although the variants did not locate within

either of those domains, we tested whether the catalytic

activity of the enzyme was affected. Overexpression of

both USP9X and variant forms were able to stabilize the

level of the known USP9X substrate MCL-110 (MIM

159552), suggesting that the variants did not affect the

ability of USP9X to rescue MCL-1 from proteasomal degra-

dation (Figure S3). We also observed no appreciative differ-

ence between the ubiquitylation status of proteins that

interacted (i.e., coimmunoprecipitated) with USP9X or

variant forms (Figure S3). Together, these data suggest

that the variants do not affect the catalytic activity of
rican Journal of Human Genetics 94, 470–478, March 6, 2014 471



Figure 1. Expression of USP9X but Not
USP9X Variants Rescues Axonal Defects
in Hippocampal Neurons Isolated from
Usp9x Knockout Mice
Usp9xloxP/LoxP female mice were crossed
with Nestin-Cre males to delete Usp9x
from the entire brain from E12.5 onward
as previously described.11 Brains of
male embryos from these matings are
either wild-type (Usp9xþ/Y) or knockout
(Usp9x�/Y). For all experiments, hippocam-
pal neurons were isolated from male
embryos at E18.5 by established
methods34 and nucleofected with 1 mg of
pMAX-EGFP in addition to either 5 mg of
the empty expression vector (pCMV;
Control) or expression vectors contain-
ing USP9X (pCMV-USP9X (USP9X)) or
USP9X variants (pCMV-USP9X_Leu2093-
His, pCMV-USP9X_Leu2157Ile, or pCMV-
USP9X_Gln2525fs*18) as previously
described.34 After nucleofection, neurons
were seeded in vitro and grown for
5 days, fixed and immunofluorescently
stained, and subjected to morphometric
analysis as previously described.35

(A) Representative immunofluorescent
images of wild-type neurons nucleofected
with control plasmids, compared with

knockout neurons nucleofected with either control plasmid or USP9X expression plasmid. Nucleofected neurons are identified by
EGFP expression (green). Scale bar represents 100 mm.
(B) Loss of Usp9x reduces axonal length, which is rescued by overexpression of USP9X but not USP9X variants. Morphometric analysis of
mean axon length conducted as previously described.35 Note that overexpression of USP9X in wild-type neurons has no
significant effect.
(C) Loss of Usp9x reduces the number of axonal termini, which is rescued by overexpression of USP9X but not USP9X variants. Morpho-
metric analysis of mean axonal termini was conducted as previously described.35 Note that overexpression of USP9X in wild-type
neurons has no significant effect.
All experiments were conducted in triplicate, with at least 25 neurons scored per replicate (i.e., >75 neurons scored per experimental
condition). Graphed values are the mean of the three average values derived from each replicate. Error bars are 5SD. Statistical analysis
conducted by Student’s two-tailed, unpaired t test, assuming equal variance, and significance set as p < 0.05: *significantly different to
‘‘Usp9x�/Y þ Control’’ condition; #significantly different to ‘‘Usp9x�/Y þ USP9X’’ condition.
USP9X. To provide further evidence that the variants are

pathogenic, we employed our recently described Usp9x

knockout mice11 to assay the variants’ effect on neurode-

velopmental processes. Protocols relating to the use of

animals were approved by the Women’s and Children’s

Health Network Animal Ethics Committee. During

embryogenesis, brain-specific deletion of Usp9x results in

early postnatal death, whereas forebrain-specific deletion

is compatible with survival to adulthood. In the absence

of Usp9x the cortical architecture is disorganized, and neu-

rons display reduced neurite growth in vivo and in vitro.11

We therefore asked whether the USP9X variants might also

effect neurite growth, in particular axonal growth. We

introduced the variants into a full-length human USP9X

cDNA and placed it under control of an exogenous

promoter providing uniform expression levels (Figure S4).

We isolated primary hippocampal neurons from bothwild-

type (Usp9xþ/Y) and knockout (Usp9x�/Y) embryonic mice

and grew them in vitro. Prior to plating the neurons,

they were transfected with expression plasmids encoding

EGFP (to track transfected cells), together with either an

empty expression plasmid or ones containing wild-type
472 The American Journal of Human Genetics 94, 470–478, March 6
USP9X or USP9X with either of the three DNA variants.

After 5 days of growth in vitro, we assayed the length of

primary axons and the degree of arborization as reported

by the number of axonal termini (Figure 1). The results

show that overexpression of USP9X in wild-type neurons

has no effect on either length or arborization but that

the loss of Usp9x in knockout neurons resulted in a 43%

reduction in both axon length and arborization, similar

to previous reports.11 The re-expression of wild-type

USP9X successfully rescued these defects, whereas the

re-expression of the variant USP9X forms failed to do so

(Figure 1). Together these data indicate that the three

USP9X variants identified disrupt the ability of USP9X to

function in axonal growth.

Next we explored whether USP9X variants might alter

other neurodevelopmental processes. The C terminus of

USP9X (where the variants cluster) binds the regulator of

neuronal cell migration Doublecortin (DCX [MIM

300121])12,13 and the related Doublecortin-like Kinase

(DCLK1 [MIM 604742]).13 Furthermore, mutations in

DCX cause XLID.14 Therefore, we asked whether the loss

of Usp9xmight also affect neuronal migration. We isolated
, 2014



Figure 2. Expression of USP9X but Not USP9X Variants Rescues Neuronal Migration Defects in Cells Isolated from Usp9x Knockout
Mice
Wild-type (Usp9xþ/Y) or knockout (Usp9x�/Y) embryonic brains were generated and isolated as described earlier (see Figure 1). Neural pro-
genitor cells (NPCs) were isolated from the dorsal cortex of E18.5 brains and grown as nonadherent neurospheres in culture as previously
described.36

(A and B) Neuronalmigration away from seeded neurospheres is inhibited in the absence of Usp9x. Passage 3 neurospheres were cultured
for 5 days, adhered to a poly-L-lysine surface substrate (seeding) as previously described,17 cultured a further 5 days, fixed, and immuno-
fluorescently stained as previously described.36

(A) Scoring system used to measure neuronal cell migration from seeded neurospheres. Composite images of immunofluorescently
stained neurons present in neurosphere outgrowths (TuJ1: anti-bIII tubulin, green; DAPI: blue) were collated and the neurosphere
periphery (as indicated by the edge of contiguous nuclei) outlined. The outline was then used to generate concentric bins outside of
the neurosphere (i.e., in the migration zones) of increasing size (increases of 100 mm diameter) via ImageJ (NIH) software tools. This
allowed for the calculation of neuronal cell density in each bin, which thus reports on migration independent of initial neurosphere
size, and of bin volumes.
(B) Quantitation of neuronal migration away from seeded neurospheres by the described scoring system. Neurospheres were isolated
from three wild-type and three Usp9x knockout embryos. Scoring was restricted to spheres of similar size. At least five neurosphere
outgrowths were scored per embryo (total outgrowths scored: wild-type, 32; knockout, 16). Graph values are means and error bars
are 5SD, of pooled data.
(C and D) Expression of USP9X but not USP9X variants rescue neuronal migration defects. Neurospheres were nucleofected via the same
regime described in Figure 1, with previously described nucleofection techniques.34 Neurospheres were allowed to recover for 48 hr prior
to seeding and were cultured for an additional 48 hr to promote neuronal migration, prior to fixing for immunofluorescent staining as
described above.
(C) Representative images showing migration from wild-type neurospheres nucleofected with control plasmids, compared with Usp9x
knockout neurospheres nucleofected with either control plasmid or USP9X expression plasmid. Scale bar represents 100 mm.
(D) To measure the migration of nucleofected neurons after 2 days of adherent culture, an alternative scoring system was adopted.
Individually nucleofected neurons (i.e., expressing EGFP [green] and labeled by TuJ1 antibody [red]) were scored for the length of their
radial migration path extending from the periphery of their sphere of origin. The average migration distance of neurons was calculated
per neurosphere, and the mean migration distance of all neurospheres per condition was calculated and graphed. At least 20 neuro-
spheres were scored per condition. Error bars represent 5SD. Statistical analysis conducted by Student’s two-tailed, unpaired t test,
assuming equal variance, and significance set as p < 0.05: *significantly different to ‘‘Usp9x�/Y þ Control’’ condition; #significantly
different to ‘‘Usp9x�/Y þ USP9X’’ condition.
neural progenitor cells (NPCs) from both wild-type and

knockout embryonic brains and grew them in vitro as

nonadherent neurosphere cultures. Next we employed an

in vitro neuronal migration assay, wherein neurospheres

are adhered to a poly-L-lysine substrate and the migra-

tion of neurons outward from the sphere boundary is

recorded.15–17 We found a highly significant decrease in

the migration of neurons from the neurospheres in the

absence of Usp9x (Figure 2). Next, we tested whether

re-expression of the wild-type USP9X and variant USP9X
The Ame
forms could rescue this defect. We transfected wild-type

and knockout neurospheres by the same regime as

described above for the axonal growth assay. We found

that overexpression of wild-type USP9X had no effect,

whereas loss of Usp9x resulted in a 42% reduction in

neuronal migration, similar to our previous finding

(Figure 2). This migration defect could be partially rescued

when wild-type USP9X or the c.6278T>A (p.Leu2093His)

variant were re-expressed in the knockout cells, but

re-expression of c.6469C>A (p.Leu2157Ile) or c.7574delA
rican Journal of Human Genetics 94, 470–478, March 6, 2014 473



Figure 3. Reduced Localization of
Variant USP9X in Axonal Growth Cones
Wild-type (Usp9xþ/Y) or knockout
(Usp9x�/Y) hippocampal neuronal cul-
tures were generated and nucleofected
with USP9X or variant forms as described
previously (Figure 1). Immunoflourescent
staining of Doublecortin (Dcx; red) and
USP9X (green). Cell nuclei were stained
with DAPI (blue). Open arrows indicate
USP9X enrichment and closed arrows indi-
cate depletion of USP9X in axonal growth
cones. Scale bars represent 50 mm (left
panels) and 20 mm (right panels).
(p.Gln2525Argfs*18) USP9X variants failed to do so

(Figure 2). These data reveal that USP9X is required for

normal neuronal cell migration and that two of the three

variant USP9X forms probably disrupt this process during

brain development of the affected individuals.

Reduced axonal growth and neuronal migration are also

features of neurons lacking DCX.18–22 Given this overlap,

the shared aspects of respective knockout mice pheno-

types,18,23,24 and the overlap of the variants with the

known DCX-interacting domain of USP9X, we asked

whether the variant USP9X proteins disrupted interactions

with DCX. We first overexpressed USP9X and variant

forms together with DCX in HEK293T cells and conducted

coimmunoprecipitation experiments with USP9X as bait.

DCX coimmunoprecipitated with USP9X and all three

variant forms in this assay, suggesting that the overex-

pressed proteins could interact in these cells (Figure S5).

DCX is, however, endogenously expressed only in the

highly polarized newly born neurons, and DCX and

USP9X are known to colocalize in the growth cones of

extending axons in such cells.13 Therefore, we asked

whether in these cells we could see evidence of altered

interactions. Given the fact that DCX is not a USP9X sub-

strate (rather, it is an interacting protein), we reasoned that

this might present as an alteration in subcellular localiza-

tion and/or changes in colocalization. In cultured Usp9x

knockout neurons, the localization of Dcx was unaffected

(Figure S6). Therefore, we asked whether the localization of

USP9X was altered by the variants. We re-expressed either

USP9X or the variant forms in knockout neurons as

described above. We observed that Usp9x and Dcx colocal-
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ized in the cell soma and in the

axonal growth cones of wild-type

neurons as previously described13

(Figure 3). Likewise, when we re-

expressed USP9X in knockout neu-

rons, its localization overlapped

substantially with Dcx in axonal

growth cones (Figure 3). When we

re-expressed the variant forms, how-

ever, we observed a clear reduction

in the localization of USP9X in the

axonal growth cones, whereas expres-
sion in the cell soma was unaffected (Figure 3). This in turn

led to a drastic reduction in the level of colocalization of

USP9X and Dcx in the axonal growth cones of neurons.

These data suggest that variant USP9X proteins are unable

to be targeted or maintained in the growth cones of axons,

which probably hinders its ability to interact with DCX in

these structures.

With the exception of the c.6278T>A (p.Leu2093His) in

the migration assay, the variant forms of USP9X behaved

similar to a complete loss of function in our neuronal

growth and migration assays. To gain further insight into

the molecular pathways behind the neuronal cell defects,

we employed a global, unbiased approach. Because

Usp9x is a substrate-specific deubiquitylating enzyme,

and thus regulates the proteome, we sought to identify

proteins that were differentially expressed in Usp9x

knockout neurons. We isolated and grew primary cortical

neuronal cultures from four wild-type and four knockout

E18.5 embryos. Lysates were isolated at day 5 of culture

and subjected to two-dimensional difference in gel electro-

phoresis (2D-DIGE; Figure S7). We identified 50 protein

spots that were differentially represented in the gels (p <

0.05; DeCyder Software Module, GE Health). We manually

inspected all protein spots and removed those with un-

spot-like appearance, noise spikes, or poor resolution.

The remaining spots were excised from the gel and pro-

teins identified by liquid chromatography-electrospray

ionization tandem mass spectroscopy (LC-ESI-MS/MS).

From this analysis, we identified 28 proteins that were

differentially expressed. We did not identify any known

substrates of USP9X, but we found evidence for all



Figure 4. Loss of Usp9x Disrupts Cytoskeleton Components
Cortical neurons were isolated from either wild-type (Usp9xþ/Y; n¼ 4) or knockout (Usp9x�/Y; n¼ 4) E18.5 embryos and cultured in vitro
as previously described.36 After 5 days, cell lysates were generated and differentially expressed proteins identified as described in the text.
(A) Loss of Usp9x downregulates proteins. A total of 28 unique proteins were identified as being deregulated, with 27 of them down-
regulated in the absence of Usp9x.
(B) Gene ontology and PANTHER pathway analysis summary. The list of deregulated genes was analyzed by DAVID.25
identified proteins being regulated by ubiquitylation

(Table S1). Furthermore, 27/28 proteins were downregu-

lated in the absence of Usp9x, consistent with its role in

antagonizing theubiquitin-proteasomepathway (Figure 4).

Therefore, the list may contain potential substrates of

Usp9x. It is, however, likely that at least some of these

deregulated proteins are indirectly affected by the absence

of Usp9x, and instead report on the molecular pathways

deregulated in Usp9x knockout neurons. The deregulated

gene list was submitted to the DAVID annotation as

well,25 and significant (p < 0.05) gene ontology and

pathway terms were identified. The highest ranking gene

ontology terms and PANTHER pathways reveal that loss

of Usp9x affected proteins involved in regulation and struc-

ture of the cytoskeleton (Figure 4 and Table S2). Together,

the data suggest that the neuronal migration and axonal

growth defects observed in the absence of Usp9x, and also

probably in neurons of the affected individuals, are based

on a disruption of the neuronal cytoskeleton.

The recent advances in sequencing and genome annota-

tion are revolutionizing the discovery of genetic causes of

disease. These approaches have found many variants that

appear likely, based on initial genetic evidence, to be

pathogenic. However, their acceptance as disease-causing

mutations should be treated with caution, and supported

by additional evidence, including variant frequency,

segregation, genotype-phenotype correlations, and

in silico and wet laboratory functional investigation.

Here we focused on validating three unique variants

discovered in USP9X that associated with ID in three un-

related families.3 For family 3, the clear X-linked mode

of inheritance of a truncation type USP9X variant,

coupled with the lack of any other plausible genetic alter-

ations, provided persuasive genetic support of pathoge-

nicity. Further evidence of the involvement of this

USP9X variant in ID was derived from the variants discov-

ered in families 1 and 2, but X-linkage in these families is

less clear, and additional genetic contributions from other

X-linked and autosomal regions cannot be entirely

excluded (e.g., as in the case for family 2; see below).

Our subsequent analyses are, however, consistent with

the pathogenicity of all three USP9X variants. Although
The Ame
the families were ascertained on the basis of ID, our

follow-up investigations extended the clinical phenotypes

of the affected individuals to also include hypotonia in all

cases, short stature (in all where information was avail-

able), and a spectrum of additional problems that were

present in multiple affected individuals. Our in silico anal-

ysis predicted the USP9X variants to be deleterious, and

functional evidence revealed that the variants of USP9X

were unable to rescue the neuronal migration and/or

axon growth defects observed in Usp9x knockout neurons.

Finally, we show that all three variants of USP9X were

unable to efficiently localize to axonal growth cones.

Together these data provide genetic, clinical, and func-

tional evidence in support of these USP9X variants being

pathogenic mutations.

Although no other plausible pathogenic genetic alter-

ations were found in family 3, less exhaustive genetic

studies had been applied to families 1 and 2.3 A subse-

quent CNV screen of genomic DNA from the affected

individual in family 2 identified a microdeletion encom-

passing ARID1B, a known cause of ID.6 Although this

finding initially complicated our interpretation of the

pathogenicity of the c.6469C>A (p.Leu2157Ile) USP9X

variant, combined genetic and experimental evidence

suggests that this variant is most likely damaging to

USP9X function. In addition, close assessment of the

available clinical information showed that the affected

individual in family 2 has (1) some features that are

consistent with the most severe phenotypes reported for

individuals with altered ARID1B function, e.g., complete

loss of speech, short stature, and light weight (at

12 months, height and weight both %3%); (2) numerous

features that are typically only variably present, e.g., hy-

potonia, autism, genital deformities, digital anomalies,

feeding difficulties; and (3) some that are yet to be

described, e.g., obsessiveness, ectopic kidney, gastro-

esophageal reflux disease, together suggesting that the

USP9X mutation has resulted in a severe or aggravated

phenotype normally associated with ARID1B haploinsuffi-

ciency.6 The presence of multiple hits with additive effect

or independently causing ID or other disorders has been

documented previously.26
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Our study indicates potential pathological mechanisms

including perturbed neuronal cytoskeletal dynamics,

resulting in defective migration and axonal growth, that

may underlie ID associated with USP9X mutations.

Resolving full cellular and molecular pathways altered by

USP9X mutations is expected to be important for the

understanding of how ID develops. Because oligo-

nucleotide-driven knockdown of Usp9x mRNA during pre-

implantation development in mouse leads to a failure of

blastocyst development,27 it is unlikely that the USP9X

mutations result in a complete loss of function, because

this might not be compatible with life. Consistently, we

did not find evidence that the variants affected the overall

catalytic activity of the enzyme. Instead, it is likely that the

mutations effect specific aspects of USP9X function

required for brain development. Intriguingly, all the muta-

tions altered the C-terminal region of USP9X, which is

known to interact with DCX.13 Mutations in DCX cause

XLID that stems from the neuronal migration disorders lis-

sencephaly in males and subcortical band heterotopia in

females (MIM 300067).12,14 The interaction of USP9X

and DCX appears to be important for the pathology,

because a mutation in DCX has been shown to abolish

the interaction specifically with USP9X but not other

DCX-interacting proteins.13 Thus the mutations in

USP9X may perturb DCX function. In line with this

hypothesis, the brain-specific knockout of Usp9x shows

many correlates with the Dcx/Dclk double knockout,

including reduced hippocampal volume, agenesis of the

corpus callosum, and delamination of CA3 neurons.18,24

It is noteworthy that Dclk, which appears to be function-

ally redundant to Dcx in mouse,18,22 is also reported to

be a USP9X-interacting protein.13 Loss of either Dcx or

Usp9x also share common neuronal cell affects in vitro,

including reduced neuronal migration and axon

growth.18–21 Although overexpressed mutants of USP9X

were able to interact with overexpressed DCX in nonpolar-

ized HEK293T cells, we show that in immature polarized

neurons (where endogenous DCX is expressed), their

colocalizations were drastically reduced owing to the fact

that USP9X mutants were not efficiently targeted or main-

tained in axonal growth cone structures. DCX is a microtu-

bule-associated protein involved in vesicle transport,

microtubule dynamics, and actin structure, and interest-

ingly, our proteomic analysis highlighted that the loss of

Usp9x resulted in changes to the neuronal cytoskeleton.

Among the proteins deregulated are Tubulin subunits

(Tubulin bIII, bIIB, bIIC, and a1a), Tubulin-regulating pro-

teins (Stathmin and the Dihydropyriminidase-related pro-

teins 2 and 3), and Actin filament-regulating proteins

(Cofilin and Actin related protein 2/3 complex subunit

2). All of these proteins play integral roles in cytoskeletal

dynamics and have established roles in neuronal migra-

tion, neuronal polarity, and axonal growth.28,29 Further-

more, among the deregulated proteins are those whose

orthologous human genes havemutations that cause other

forms of ID, including the neuronal migration disorders
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lissencephaly 3 ([MIM 611603]; TUBA1A [MIM 602529]),

complex cortical dysplasia ([MIM 614039]; TUBB3 [MIM

602661]), and polymicogyria ([MIM 610031]; TUBB2B

[MIM 612850]), as well as other neurological disorders

([MIM 610992]; PSAT1 [MIM 610936]). Individuals with

these neuronal migration disorders display signature

changes in MRI scans. Only the affected male in family 2

has undergone such investigation, with no obvious abnor-

malities reported. Therefore, it will be of interest to inves-

tigate additional individuals as they become available. Still,

the overall underlying pathological mechanisms stem-

ming fromUSP9Xmutations are predicted to bemore com-

plex than a simple disruption of DCX and cytoskeletal

functions owing to the fact that USP9X has more than

30 known substrates, many with bona fide roles in neural

development. Of note, the axon growth defect in Usp9x-

null neurons has been linked to a failure of TGF-b signaling

response.11 Usp9x has two substrates known to regulate

TGF-b signaling, including the common TGF-b signal

transduction molecule SMAD4 (MIM 600993) and the

ubiquitin ligase SMURF1 (MIM 605568).30–32 Interestingly,

SMURF1 is known to bind the C terminus of USP9X and

has established roles in cell migration.32 The probable

pathogenic role of USP9X during the development of the

brain is also not expected to be restricted to neurons. For

example, it is known that Usp9x can affect the polarity

and self-renewal of neural progenitor cells and has been

implicated in the regulation of synaptic transmis-

sion.23,33 Thus, resolving which cells and key cellular pro-

cesses are altered and which key substrates and molecular

pathways are disrupted by USP9X mutations will provide

the high-ranking candidate mechanisms underlying ID

and associated clinical features. Our collective data suggest

that mutations in USP9X have a functional impact and

therefore are implicated in intellectual disability. It is

now important to identify additional individuals with

USP9X variants that will validate or challenge our data.
Supplemental Data

Supplemental Data include seven figures and two tables and can

be found with this article online at http://www.cell.com/AJHG/.
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