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Abstract

Purpose of the review—Epigenetic mechanisms have the ability to alter the phenotype without
changing the genetic code. The science of epigenetics has grown considerably in recent years, and
future epigenetically-based treatments or prevention strategies are likely. Epigenetic associations
with asthma have received growing interest because genetic and environmental factors have been
unable to independently explain the etiology of asthma.

Recent Findings—Recent findings suggest that both the environment and underlying genetic
sequence variation influence DNA methylation, which in turn seems to modify the risk conferred
by genetic variants for various asthma phenotypes. In particular DNA methylation may act as an
archive of a variety of early developmental exposures which then can modify the risk related to
genetic variants.

Summary—Current asthma treatments may control the symptoms of asthma but do not modify
its natural history. Epigenetic mechanisms and novel explanatory models provide burgeoning
approaches to significantly increase our understanding of the initiation and progression of asthma.
This will lead to critical information to prevent or treat asthma not only in the current generation,
but due to the epigenetic inheritance may also prevent asthma in future generations.
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INTRODUCTION

In the 1940s, Conrad Waddington used the term epigenetics to describe how the genotype
manifests itself as a phenotype (1). In 1958, David Nanney borrowed the term to describe
inherited phenomena that could not be explained by conventional genetics (2). Recently,
epigenetics has been defined concisely by Mark Ptashne in 2007 by three criteria: (1) a
change in the activity of a gene that does not involve a mutation, (1) that is initiated by a
signal, and (111) that is inherited (mitotically or meiotically) in the absence of the signal that
initiated the change (3). Classically, four epigenetic mechanisms have been identified: (a)
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DNA methylation, (b) Histone modification, (c) chromatin remodeling, and (d) small (21- to
26-nt) and non-coding RNAs.

There is ample evidence that DNA methylation fulfills all three criteria required to be
considered as an epigenetic mechanism (4-6). Histone modifications fulfill some of the
criteria for being epigenetic mechanisms in that they can result from exogenous signals such
as cigarette smoke and that they alter gene activity (7-9). However, meiotic inheritance has
only been demonstrated in C. elegans, a transparent nematode (10). DNA methylation
usually works hand in hand with histone modifications to activate or silence genes by
influencing chromatin structure and its accessibility by transcription factors (11). So it is
possible that DNA methylation constitutes a mechanism of inheritance for some histone
modifications. Given the complex and ever-changing structure of chromatin, there is little
information on chromatin remodeling regarding initiation, alteration of gene activity, and
inheritance (12-14). MicroRNAs (miRNAs) also have been shown to be caused by
exogenous factors and to alter gene activity by either inhibiting translation or degrading
messenger RNAs (mRNA) (15, 16). For instance, in humans, miRNAs have been
demonstrated to be differentially expressed in current and never smokers and to be related to
particulate matter exposure (7, 17). Currently there is little evidence that miRNAs can be
inherited (18). However, since miRNAs are part of the genetic code, it is possible that DNA
methylation affects the activity of miRNAs and thus facilitates inheritance. Hence in the
following we concentrate on the truly and well-establish epigenetic mechanism, DNA
methylation.

DNA methylation and asthma phenotypes

Asthma is the most common chronic disease among children and it has a complex etiology
including genetic and environmental factors. Human studies have investigated the role of
DNA methylation more often than other epigenetic marks due to practical and biological
reasons (19). Table 1 gives a summary of recent population-based studies investigating the
association between DNA methylation and asthma. Sood et al investigated the role of DNA
methylation of 12 genes selected due to their involvement in oxidative stress pathways in
sputum of 695 older adults (20). They found that the PCDH20 gene coding
protocadherin-20, a protein involved in cell adhesion and signal transduction, was
statistically higher methylated in sputum cells from asthma patients. In a subsample of 36 of
637 children, Isidoro-Garcia and coworkers studied methylation of the D prostanoid receptor
(PTGDR) gene. Prostaglandin D2, a metabolite of arachidonic acid, inhibits apoptosis,
prolonging eosinophilic survival, and biases the development of naive T lymphocytesto T
helper 2 cells. Isidoro-Garcia et al showed that genetic variants of the PTGDR gene altered
adjacent DNA methylation levels, which was related to hypomethylation of the promoter of
the PTGDR gene among asthmatic participants (21). In gene expression analyses, the
authors were able to demonstrate that hypomethylation caused by underlying sequence
variants in patients was associated with increased PTGDR expression (21). A limitation of
these two studies is that DNA methylation may not constitute a risk for asthma but may
reflect a response due to the disease (reverse causation).

Among 182 children with asthma, high methylation levels of adrenergic-receptor beta-2
(ADRB2) gene, an important regulator of airway smooth muscle tone, have been associated
with severe childhood asthma (22). Taking environmental exposures into account, an
increased risk of severe asthma was associated with the joint effect of indoor NO, exposure
and high levels of ADRB2 methylation, which suggests that DNA methylation can act as an
effect modifier for the association between NO5 levels and asthma severity (22). An
environmental study focused on the effects of particulate matter (PM) conducted among 940
southern California school children. Salam et al investigated the fraction of exhaled Nitric
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Oxide (FeNO) produced by the bronchial epithelium and the NOS2 gene that codes the nitric
oxide synthase (23). The results demonstrated two-way interactions between ‘PM> g
exposure x NOS2 genetic variants’ and ‘PM, 5 exposure x NOS2 methylation’ and a three-
way interaction between ‘PM, 5 exposure x NOS2 genetic variants x CpG methylation
levels’ that jointly influenced FeNO levels (23). In another investigation of this cohort,
Breton et al reported associations between differential DNA methylation of arginase-1
(ARG1) and ARG2 and significantly higher levels of FeNO in children with asthma (24).
The authors suggest that differential methylation of ARG genes may play a role in modifying
FeNO production in individuals whose inflammatory and oxidative stress pathways are
already upregulated.

Morales et al addressed a burgeoning question (25), namely whether DDE, a metabolite of
the pesticide DDT, is related to the development of asthma (26, 27). Their results suggest
that prenatal DDE exposure and genetic variants were associated with DNA
hypomethylation of ALOX12 gene. In turn, this hypomethylation was a risk for persistent
wheezing up to 6 years of age (25).

The interplay of genetic variants, environmental factors, and DNA methylation

The epidemiological investigations (Table 1) demonstrate that both environmental and
genetic factors may influence DNA methylation levels and could act as effect modifiers for
asthma-related phenotypes. Hence, environmental exposures and genetic factors are both
essential elements that determine epigenetic state in asthma (28, 29). Multiple past and
current exposures have been linked to levels of DNA methylation such as the Dutch famine
(30, 31); low birth weight, and fetal alcohol syndrome (32, 33), maternal gestational stress in
third trimester (34), gestational folate levels (35-38), early life socio-economic position
(39), infections (40-43), and smoking (44-52). Similarly genetic variants have been shown
to affect the susceptibility to DNA methylation, a process named allele-specific or genotype-
dependent DNA methylation (53-59). Such genetic variants have recently been named
methylation quantitative trait loci (methQTL) (60, 61).

Hence, we do not only need to understand the mechanisms by which alterations in the
epigenome alter phenotype but also to test different models of how genetic variants,
environmental factors, and DNA methylation interplay in the etiology of asthma. A common
idea is that the epigenome is an integrator of multiple signals in the pathway to diseases.
Although different steps seem to be involved in structuring the DNA methylation profiles,
the integrative role often remains a black box (Figure 1, Model A) (62, 63). Here, we
propose a two-stage model (Figure 1, Model B), allowing that these stages develop in
different life phases. In Stage 1, specific exposures and methQTLs interact within one gene
and change the DNA methylation status of specific genetic elements (either promoter or
intragenic). Once a methylation change close to a methQTL has been established, for
instance at the promoter site, the gene may be differentially regulated. The response to
additional exposures that interact with other genetic variants of the same gene depends on
whether, e.g., the promoter is silenced or activated. To contrast these other genetic variants,
whose response may be modified as a consequence of prior DNA methylation, from
methQTLs, we call these modifiable genetic variants (modGV). The three-way interaction in
the study by Salam et al in children in southern California showed that NOS2 genetic
variants were modifiable (Table 1) (23). The study of asthma severity by Fu et al
demonstrates the modifiable role of DNA methylation for the association of NO, and asthma
(22). Recently for eczema, Ziyab et al demonstrated that the haploinsufficiency of the
filaggrin gene can be modified by DNA methylation within the intragenic region that
worsens the insufficiency (64). Experimentally, in lymphoblastoid cell lines similar models
have been identified by Berlivet et al for the asthma-associated locus 17q12-g21 (65).
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Comparable to the studies described above that have focused on gene promoter methylation,
these models also apply to intragenic methylation. DNA methylation is more frequent within
gene-bodies (intragenic) than in promoters. Whereas hypermethylation of promoter sites has
been associated with transcriptional silencing, intragenic methylation has been observed to
be positively or bell-shaped correlated with gene expression (66). Recently, for the CD45
transcript, it has been demonstrated that intragenic DNA methylation is related to alternative
pre-mRNA splicing (67). In particular, it has been suggested that a specific binding factor
was involved in splicing regulation (67). We speculate that methQTLs and exposure may
also affect intragenic DNA methylation (Stage 1) and then modify pre-mRNA splicing
(Stage 2).

DNA methylation is likely to have contributed to discrepancies found among genome-wide
association studies. Both methQTL and modGV are part of the set of genetic variants (e.g.,
SNP, haplotypes), that are the focus of genome-wide association studies. The detection of
associations between such genetic variants and phenotypes may therefore depend on other
modifiers of DNA methylation levels such as environmental exposure. For instance, a SNP
may facilitate DNA methylation in an exposed study group but not in the unexposed group.
Since Stage 1 changes may to some extent penetrate through Stage 2, a methQTL in the
exposed group may be associated with increased risk of the disease. However, in another
study group, a different genetic sequence (non-risk genotype) in the same methQTL may not
be favoring DNA methylation, and thus not establishing a risk for a disease. Also modGV
with the same genetic code may be masked by DNA methylation in one study group but
unmasked in another study. Such settings lead to disagreements between genetic studies and
reduce the chance to replicate candidate genes (68). Hence, a methQTL cannot be assessed
without knowing the exposure and modGV cannot be assessed without taking the
methylation of other SNPs/haplotypes into account that may influence gene regulation or
splicing.

The role of different life phases

As exemplified by the study by Morales et al (25), it is important to consider the timing of
exposure, of measurement of DNA methylation, and of phenotypic outcome assessment with
reference to the life course. In the Morales et al study, firstly change in methylation related
to prenatal DDE in DNA obtained at 4 years of age was assessed (replication study: cord
blood), and secondly, the altered DNA methylation was linked to wheezing (25). This
approach avoids the problem of reverse causation that can result if DNA methylation may
either result as a response to the disease or may be considered as a risk factor. The concept
of the “developmental programming” has been well accepted (69-71) and there is increasing
awareness of its importance in asthma (72). Environmental pollutants may influence crucial
cellular functions during critical periods of fetal development and permanently alter the
structure or function of specific organ systems.

Some studies suggest that intrauterine and early life exposures to a farming environment are
associated with decreased risk of allergic disorders, including asthma (73, 74). This
protective effect is believed to be associated with epigenetic mechanisms that are induced
during early developmental stages. Recently, Slaats et al demonstrated that profiles of
promoter DNA methylation of CD14 gene measured in placentas were different among
mothers living on a farm compared with mothers not living on a farm (75). However, this
finding need to be replicated in a larger sample and the biological pathway underlying the
protective effect needs further elucidation.

Another example of prenatal exposure is maternal smoking. Using the Norwegian Mother
and Child Cohort Study (cord blood), Joubert et al. reported that DNA methylation in cord
blood derived DNA of genes including the cytochrome P450 aryl-hydrocarbon-hydroxylase
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CYP1A1 gene and the aryl hydrocarbon receptor repressor gene (AHRR) are differentially
methylated after gestational exposure to cigarette smoking (76). The CYP1AL gene codes an
enzyme that catalyzes the conversion of chemical species into reactive intermediates such as
quinones; AHRR competes with AHR for binding at xenobiotic response elements and is
related to active smoking. In addition, Karmaus et al. have demonstrated that these genes
were also differentially methylated in individuals exposed to in utero cigarette smoke in
blood DNA samples at age 18 years in the Isle of Wight Birth cohort (77). Given that early
life DNA methylation leads to a cell memory (78, 79), children may be programmed to
metabolize xenobiotics differently, which can increase their disease risk due to smoke
exposure later in life. Hence, DNA methylation builds gene-activation memories during key
periods of development (e.g., in utero and adolescence) producing aberrant activation
patterns later in life which may elevate disease risk.

To date, only a few studies have reported associations between epigenetic marks and the
diverse asthma-related phenotypes. Although most studies have focused on different
candidate genes, they have shown similar models of interactions between genetic variants
(methQTLs and modGV), environmental exposures, and DNA methylation. There is a need
to improve our knowledge about the black box of epigenetics with regard to exposures and
diseases. The biological mechanisms that lead to specific changes in gene regulation in
response to specific exposures are not known. We need to determine whether epigenetics
should be considered as a major integrator of multiple signals, or, alternatively, whether
DNA methylation acts differently at various developmental stages conditional on genetic
variants and exposures, such as in the proposed two-stage model. In addition, since there is a
lack of critical knowledge on which genes are programmed or re-programmed at what time
during gestation and in which developmental phase, birth cohort studies need to trace DNA
methylation over time, and ideally over generations. This will provide critical information
about which phases in the course of life are most suitable to prevent deviant DNA
methylation (preventive epigenomics) or intervene to normalize DNA methylation to
prevent disease (pharmaco-epigenomics) (80). Given that patterns of DNA methylation can
be inherited through meiosis, future research will provide a unique chance not only to
prevent and treat asthma in the current generation, but also prevent it in subsequent
generations.
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Key Points

Of the potential mechanisms, only DNA methylation fulfills all three epigenetic
criteria: (I) A change in the activity of a gene that does not involve a mutation.
(1) It is initiated by a signal or exposure. (I11) It is inherited (mitotically or
meiotically) in the absence of the signal that initiated the change.

Various studies demonstrate for multiple genes that different asthma phenotypes
are associated with DNA methylation; however, a clear time order of DNA
methylation and asthma is not always established.

To distinguish whether DNA methylation precedes asthma and results from
early exposures, birth cohort studies are needed to trace DNA methylation over
time, and ideally over generations.

The effect of environmental exposure seems to be conditional on genetic
variants (methylation quantitative trait loci); and the risk related to genetic
variants is modified by adjacent DNA methylation (modifiable genetic variants).
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Figure 1. Models of theinter play of exposures, genetic, and epigenetic elementsin the disease

etiology

methQTL — methylation quantitative trait loci, genetic variants that change the susceptibility

for DNA methylation

modGV — modifiable genetic variants, genetic variants that are modified by DNA

methylation
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