Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 8;69(Pt 7):o1033. doi: 10.1107/S1600536813014372

4-(Naphthalen-1-yl)pyridine

Antje Vetter a, Wilhelm Seichter a, Edwin Weber a,*
PMCID: PMC3952235  PMID: 24627683

Abstract

In the title compound, C15H11N, the mean planes of the aromatic moieties are inclined to one another by 72.9 (1)°. The crystal is stabilized by π–π stacking inter­actions between the pyridine rings of inversion-related mol­ecules, with a centroid–centroid distance of 3.772 (2) Å. In addition, C—H⋯π contacts involving an α-C—H group of the pyridine ring and the nonsubstituted ring of the naphthalene unit are observed, giving rise to a herringbone-type supramolecular architecture of the naphthalene moiety being contained in the molecule.

Related literature  

For preparative methods and the characterization of the title compound, see: Miyaura et al. (1981); Broutin & Colobert (2005); Molander & Beaumard (2010). For π–π stacking inter­actions, see: James (2004). For C—H⋯π inter­actions, see: Nishio et al. (2009). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999). For related structures, see: Boeyens et al. (1988); Fabbiani et al. (2006); Suthar et al. (2005). For aspects of organic crystal engineering, see: Tiekink et al. (2010).graphic file with name e-69-o1033-scheme1.jpg

Experimental  

Crystal data  

  • C15H11N

  • M r = 205.25

  • Monoclinic, Inline graphic

  • a = 6.8487 (2) Å

  • b = 7.4436 (2) Å

  • c = 21.8378 (5) Å

  • β = 91.833 (1)°

  • V = 1112.70 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.53 × 0.43 × 0.43 mm

Data collection  

  • Bruker X8 APEX CCD diffractometer

  • 14800 measured reflections

  • 2831 independent reflections

  • 2302 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.147

  • S = 1.05

  • 2831 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-NT (Bruker, 2007); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014372/fj2629sup1.cif

e-69-o1033-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014372/fj2629Isup2.hkl

e-69-o1033-Isup2.hkl (139KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014372/fj2629Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.93 2.69 3.577 (2) 161
C14—H14⋯Cg1ii 0.93 2.84 3.648 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Molecules having a defined structure with rather predictable supramolecular interactions of their construction elements and functional groups such as π···π (James, 2004) or weak hydrogen bonding contacts (Desiraju & Steiner,1999) are helpful in gaining deeper insight into the principles of crystal engineering (Tiekink et al., 2010). This has stimulated to determine the crystal structure of the title compound being composed of two π-systems of different electronic nature (naphthalene and pyridine units) and having potential capability of weak C—H···π (Nishio et al., 2009) or C—H···N bonding (Desiraju & Steiner, 1999). In the crystal structure, the bond distances both of the naphthalene (AB) and pyridine (C) parts agree well with those found for related compounds (Boeyens et al., (1988) Suthar et al., 2005). The naphthalene moiety shows a slight distortion from strict planarity with largest atomic distances from the best plane being 0.029 (1) Å for C7 and -0.030 (2) Å for C9. The mean planes of the naphthalene and pyridine moieties are inclined to one another by 72.9 (1) ° (Fig. 1). Contrary to expectations, the nitrogen of the heterocyclic ring is excluded from molecular association. Instead, the crystal structure is stabilized by weaker C—H···π contacts with the non-substituted ring of the naphthalene unit (B) acting as an acceptor [C6—H6···centroid(B) 2.69 Å, 161 °, C14—H14···centroid(B) 2.84 Å, 146 °]. Moreover, the centre···centre distance of 3.772 (2) Å between the pyridine rings of inversion related molecules indicate the occurrence of π···π stacking interactions (Fig. 2). In a similar fashion as in the crystal structure of naphthalene (Fabbiani et al., 2006), each molecule is surrounded by another six molecules so that their naphthalene elements form a herringbone motif.

Experimental

Preparation of the title compound was achieved by a Suzuki cross coupling reaction (Miyaura et al., 1981) between 2-(1-naphthyl)-1,3,2-dioxaborolane (Broutin & Colobert, 2005) (4.94 g, 25 mmol) and 4-bromopyridinium hydrochloride (4.87 g, 25 mmol) in the presence of tetrakis(triphenylphosphane)palladium (0.52 g, 0.45 mmol) and potassium phosphate (7.24 g, 34 mmol) in 136 ml degassed N,N-dimethylformamide. The resulting mixture was heated to 100 °C and stirred at this temperature for 6 h. After cooling to room temperature, the mixture was extracted with toluene. The extract was washed with saturated aqueous NaCl solution and dried (Na2SO4). Evaporation of the solvent and crystallization from ethanol yielded 1.10 g (24%) colourless crystals. M.p. (366–368 K). Spectroscopic data correspond to those reported for the compound obtained via a different synthetic route (Molander & Beaumard, 2010).

Refinement

Aromatic H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound, showing the atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a-axis of the title compound. Hydrogen bond type contacts are presented as broken, π···π stacking interactions as broken double lines.

Crystal data

C15H11N F(000) = 432
Mr = 205.25 Dx = 1.225 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7291 reflections
a = 6.8487 (2) Å θ = 2.9–32.2°
b = 7.4436 (2) Å µ = 0.07 mm1
c = 21.8378 (5) Å T = 193 K
β = 91.833 (1)° Irregular, colourless
V = 1112.70 (5) Å3 0.53 × 0.43 × 0.43 mm
Z = 4

Data collection

Bruker X8 APEX CCD diffractometer 2302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
Graphite monochromator θmax = 28.6°, θmin = 1.9°
φ and ω scans h = −7→9
14800 measured reflections k = −10→9
2831 independent reflections l = −29→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2598P] where P = (Fo2 + 2Fc2)/3
2831 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.12887 (17) 0.13749 (16) 0.10279 (5) 0.0377 (3)
C2 0.2963 (2) 0.1121 (2) 0.07098 (6) 0.0502 (3)
H2 0.3218 0.1859 0.0378 0.060*
C3 0.4299 (2) −0.0245 (2) 0.08800 (7) 0.0568 (4)
H3 0.5416 −0.0412 0.0656 0.068*
C4 0.3968 (2) −0.13166 (19) 0.13686 (7) 0.0517 (3)
H4 0.4867 −0.2206 0.1477 0.062*
C5 0.22727 (18) −0.10975 (16) 0.17143 (6) 0.0405 (3)
C6 0.1913 (2) −0.21677 (19) 0.22348 (7) 0.0521 (3)
H6 0.2814 −0.3045 0.2354 0.063*
C7 0.0282 (2) −0.1939 (2) 0.25625 (7) 0.0587 (4)
H7 0.0089 −0.2637 0.2908 0.070*
C8 −0.1115 (2) −0.0647 (2) 0.23796 (7) 0.0552 (4)
H8 −0.2247 −0.0516 0.2600 0.066*
C9 −0.08234 (18) 0.04175 (17) 0.18808 (6) 0.0433 (3)
H9 −0.1765 0.1262 0.1764 0.052*
C10 0.08913 (16) 0.02542 (15) 0.15386 (5) 0.0356 (3)
C11 −0.00895 (17) 0.28518 (16) 0.08512 (5) 0.0383 (3)
C12 −0.1289 (2) 0.27550 (19) 0.03312 (6) 0.0519 (3)
H12 −0.1247 0.1757 0.0076 0.062*
C13 −0.2554 (2) 0.4160 (2) 0.01943 (7) 0.0603 (4)
H13 −0.3365 0.4058 −0.0154 0.072*
C14 −0.1506 (2) 0.5733 (2) 0.10206 (8) 0.0595 (4)
H14 −0.1552 0.6763 0.1261 0.071*
C15 −0.0213 (2) 0.43915 (19) 0.11996 (7) 0.0537 (4)
H15 0.0569 0.4526 0.1553 0.064*
N1 −0.26865 (18) 0.56431 (17) 0.05271 (6) 0.0572 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0399 (6) 0.0367 (6) 0.0362 (5) 0.0064 (4) −0.0017 (4) −0.0047 (4)
C2 0.0521 (8) 0.0563 (8) 0.0428 (6) 0.0127 (6) 0.0091 (6) 0.0022 (6)
C3 0.0486 (8) 0.0686 (9) 0.0540 (8) 0.0212 (7) 0.0123 (6) −0.0027 (7)
C4 0.0460 (7) 0.0516 (8) 0.0571 (8) 0.0194 (6) −0.0029 (6) −0.0033 (6)
C5 0.0402 (6) 0.0373 (6) 0.0435 (6) 0.0048 (5) −0.0073 (5) −0.0031 (5)
C6 0.0531 (8) 0.0455 (7) 0.0569 (8) 0.0037 (6) −0.0104 (6) 0.0099 (6)
C7 0.0618 (9) 0.0573 (9) 0.0568 (8) −0.0067 (7) −0.0005 (7) 0.0170 (7)
C8 0.0471 (8) 0.0601 (8) 0.0589 (8) −0.0050 (6) 0.0105 (6) 0.0056 (7)
C9 0.0369 (6) 0.0428 (6) 0.0504 (7) 0.0027 (5) 0.0015 (5) −0.0007 (5)
C10 0.0350 (6) 0.0331 (5) 0.0383 (6) 0.0021 (4) −0.0043 (4) −0.0050 (4)
C11 0.0381 (6) 0.0386 (6) 0.0383 (6) 0.0045 (5) 0.0027 (4) 0.0011 (4)
C12 0.0523 (8) 0.0491 (7) 0.0536 (7) 0.0098 (6) −0.0100 (6) −0.0085 (6)
C13 0.0536 (8) 0.0660 (9) 0.0603 (8) 0.0133 (7) −0.0156 (7) 0.0007 (7)
C14 0.0652 (9) 0.0452 (7) 0.0681 (9) 0.0169 (7) −0.0011 (7) −0.0076 (7)
C15 0.0608 (9) 0.0479 (7) 0.0516 (7) 0.0134 (6) −0.0114 (6) −0.0087 (6)
N1 0.0518 (7) 0.0529 (7) 0.0669 (8) 0.0175 (5) −0.0010 (6) 0.0064 (6)

Geometric parameters (Å, º)

C1—C2 1.3723 (17) C8—C9 1.367 (2)
C1—C10 1.4259 (17) C8—H8 0.9300
C1—C11 1.4916 (16) C9—C10 1.4172 (17)
C2—C3 1.4098 (19) C9—H9 0.9300
C2—H2 0.9300 C11—C15 1.3797 (18)
C3—C4 1.357 (2) C11—C12 1.3823 (17)
C3—H3 0.9300 C12—C13 1.3849 (19)
C4—C5 1.4144 (19) C12—H12 0.9300
C4—H4 0.9300 C13—N1 1.326 (2)
C5—C6 1.4161 (19) C13—H13 0.9300
C5—C10 1.4252 (16) C14—N1 1.328 (2)
C6—C7 1.356 (2) C14—C15 1.3828 (19)
C6—H6 0.9300 C14—H14 0.9300
C7—C8 1.405 (2) C15—H15 0.9300
C7—H7 0.9300
C2—C1—C10 119.92 (11) C7—C8—H8 119.7
C2—C1—C11 120.16 (11) C8—C9—C10 121.00 (12)
C10—C1—C11 119.90 (10) C8—C9—H9 119.5
C1—C2—C3 120.78 (13) C10—C9—H9 119.5
C1—C2—H2 119.6 C9—C10—C5 118.21 (11)
C3—C2—H2 119.6 C9—C10—C1 122.98 (10)
C4—C3—C2 120.51 (13) C5—C10—C1 118.81 (11)
C4—C3—H3 119.7 C15—C11—C12 116.81 (12)
C2—C3—H3 119.7 C15—C11—C1 121.27 (11)
C3—C4—C5 120.82 (12) C12—C11—C1 121.92 (11)
C3—C4—H4 119.6 C11—C12—C13 119.29 (13)
C5—C4—H4 119.6 C11—C12—H12 120.4
C4—C5—C6 122.03 (12) C13—C12—H12 120.4
C4—C5—C10 119.14 (11) N1—C13—C12 124.30 (14)
C6—C5—C10 118.83 (12) N1—C13—H13 117.8
C7—C6—C5 121.34 (13) C12—C13—H13 117.8
C7—C6—H6 119.3 N1—C14—C15 124.12 (14)
C5—C6—H6 119.3 N1—C14—H14 117.9
C6—C7—C8 120.05 (13) C15—C14—H14 117.9
C6—C7—H7 120.0 C11—C15—C14 119.60 (13)
C8—C7—H7 120.0 C11—C15—H15 120.2
C9—C8—C7 120.51 (13) C14—C15—H15 120.2
C9—C8—H8 119.7 C13—N1—C14 115.86 (12)
C10—C1—C2—C3 0.3 (2) C2—C1—C10—C9 −178.79 (12)
C11—C1—C2—C3 178.62 (13) C11—C1—C10—C9 2.86 (17)
C1—C2—C3—C4 −1.1 (2) C2—C1—C10—C5 1.02 (17)
C2—C3—C4—C5 0.5 (2) C11—C1—C10—C5 −177.32 (10)
C3—C4—C5—C6 −178.45 (14) C2—C1—C11—C15 −105.67 (15)
C3—C4—C5—C10 0.8 (2) C10—C1—C11—C15 72.68 (16)
C4—C5—C6—C7 179.85 (14) C2—C1—C11—C12 73.83 (17)
C10—C5—C6—C7 0.6 (2) C10—C1—C11—C12 −107.83 (14)
C5—C6—C7—C8 1.5 (2) C15—C11—C12—C13 −1.2 (2)
C6—C7—C8—C9 −1.6 (2) C1—C11—C12—C13 179.30 (13)
C7—C8—C9—C10 −0.3 (2) C11—C12—C13—N1 1.1 (3)
C8—C9—C10—C5 2.34 (18) C12—C11—C15—C14 0.4 (2)
C8—C9—C10—C1 −177.84 (12) C1—C11—C15—C14 179.90 (13)
C4—C5—C10—C9 178.26 (11) N1—C14—C15—C11 0.6 (3)
C6—C5—C10—C9 −2.44 (17) C12—C13—N1—C14 −0.1 (2)
C4—C5—C10—C1 −1.57 (17) C15—C14—N1—C13 −0.8 (2)
C6—C5—C10—C1 177.74 (11)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C5–C9 ring.

D—H···A D—H H···A D···A D—H···A
C6—H6···Cg1i 0.93 2.69 3.577 (2) 161
C14—H14···Cg1ii 0.93 2.84 3.648 (2) 146

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2629).

References

  1. Boeyens, J. C. A., Denner, L. & Perold, G. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 67–73.
  2. Broutin, P.-E. & Colobert, F. (2005). Eur. J. Org. Chem. pp. 1113–1128.
  3. Bruker (2007). SAINT-NT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.
  5. Fabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2006). Acta Cryst. B62, 826–842. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. James, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093–1099. Boca Raton: CRC Press.
  8. Miyaura, N., Yanagy, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.
  9. Molander, G. A. & Beaumard, F. (2010). Org. Lett. 12, 4022–4025. [DOI] [PMC free article] [PubMed]
  10. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Suthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607–o608.
  13. Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering Chichester: Wiley.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014372/fj2629sup1.cif

e-69-o1033-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014372/fj2629Isup2.hkl

e-69-o1033-Isup2.hkl (139KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014372/fj2629Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES