Abstract
In the title compound, C15H11N, the mean planes of the aromatic moieties are inclined to one another by 72.9 (1)°. The crystal is stabilized by π–π stacking interactions between the pyridine rings of inversion-related molecules, with a centroid–centroid distance of 3.772 (2) Å. In addition, C—H⋯π contacts involving an α-C—H group of the pyridine ring and the nonsubstituted ring of the naphthalene unit are observed, giving rise to a herringbone-type supramolecular architecture of the naphthalene moiety being contained in the molecule.
Related literature
For preparative methods and the characterization of the title compound, see: Miyaura et al. (1981 ▶); Broutin & Colobert (2005 ▶); Molander & Beaumard (2010 ▶). For π–π stacking interactions, see: James (2004 ▶). For C—H⋯π interactions, see: Nishio et al. (2009 ▶). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999 ▶). For related structures, see: Boeyens et al. (1988 ▶); Fabbiani et al. (2006 ▶); Suthar et al. (2005 ▶). For aspects of organic crystal engineering, see: Tiekink et al. (2010 ▶).
Experimental
Crystal data
C15H11N
M r = 205.25
Monoclinic,
a = 6.8487 (2) Å
b = 7.4436 (2) Å
c = 21.8378 (5) Å
β = 91.833 (1)°
V = 1112.70 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 193 K
0.53 × 0.43 × 0.43 mm
Data collection
Bruker X8 APEX CCD diffractometer
14800 measured reflections
2831 independent reflections
2302 reflections with I > 2σ(I)
R int = 0.019
Refinement
R[F 2 > 2σ(F 2)] = 0.047
wR(F 2) = 0.147
S = 1.05
2831 reflections
145 parameters
H-atom parameters constrained
Δρmax = 0.25 e Å−3
Δρmin = −0.18 e Å−3
Data collection: SMART (Bruker, 2007 ▶); cell refinement: SAINT-NT (Bruker, 2007 ▶); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014372/fj2629sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014372/fj2629Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813014372/fj2629Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the C5–C10 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C6—H6⋯Cg1i | 0.93 | 2.69 | 3.577 (2) | 161 |
| C14—H14⋯Cg1ii | 0.93 | 2.84 | 3.648 (2) | 146 |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
Comment
Molecules having a defined structure with rather predictable supramolecular interactions of their construction elements and functional groups such as π···π (James, 2004) or weak hydrogen bonding contacts (Desiraju & Steiner,1999) are helpful in gaining deeper insight into the principles of crystal engineering (Tiekink et al., 2010). This has stimulated to determine the crystal structure of the title compound being composed of two π-systems of different electronic nature (naphthalene and pyridine units) and having potential capability of weak C—H···π (Nishio et al., 2009) or C—H···N bonding (Desiraju & Steiner, 1999). In the crystal structure, the bond distances both of the naphthalene (AB) and pyridine (C) parts agree well with those found for related compounds (Boeyens et al., (1988) Suthar et al., 2005). The naphthalene moiety shows a slight distortion from strict planarity with largest atomic distances from the best plane being 0.029 (1) Å for C7 and -0.030 (2) Å for C9. The mean planes of the naphthalene and pyridine moieties are inclined to one another by 72.9 (1) ° (Fig. 1). Contrary to expectations, the nitrogen of the heterocyclic ring is excluded from molecular association. Instead, the crystal structure is stabilized by weaker C—H···π contacts with the non-substituted ring of the naphthalene unit (B) acting as an acceptor [C6—H6···centroid(B) 2.69 Å, 161 °, C14—H14···centroid(B) 2.84 Å, 146 °]. Moreover, the centre···centre distance of 3.772 (2) Å between the pyridine rings of inversion related molecules indicate the occurrence of π···π stacking interactions (Fig. 2). In a similar fashion as in the crystal structure of naphthalene (Fabbiani et al., 2006), each molecule is surrounded by another six molecules so that their naphthalene elements form a herringbone motif.
Experimental
Preparation of the title compound was achieved by a Suzuki cross coupling reaction (Miyaura et al., 1981) between 2-(1-naphthyl)-1,3,2-dioxaborolane (Broutin & Colobert, 2005) (4.94 g, 25 mmol) and 4-bromopyridinium hydrochloride (4.87 g, 25 mmol) in the presence of tetrakis(triphenylphosphane)palladium (0.52 g, 0.45 mmol) and potassium phosphate (7.24 g, 34 mmol) in 136 ml degassed N,N-dimethylformamide. The resulting mixture was heated to 100 °C and stirred at this temperature for 6 h. After cooling to room temperature, the mixture was extracted with toluene. The extract was washed with saturated aqueous NaCl solution and dried (Na2SO4). Evaporation of the solvent and crystallization from ethanol yielded 1.10 g (24%) colourless crystals. M.p. (366–368 K). Spectroscopic data correspond to those reported for the compound obtained via a different synthetic route (Molander & Beaumard, 2010).
Refinement
Aromatic H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).
Figures
Fig. 1.

Asymmetric unit of the title compound, showing the atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
Fig. 2.
A view along the a-axis of the title compound. Hydrogen bond type contacts are presented as broken, π···π stacking interactions as broken double lines.
Crystal data
| C15H11N | F(000) = 432 |
| Mr = 205.25 | Dx = 1.225 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 7291 reflections |
| a = 6.8487 (2) Å | θ = 2.9–32.2° |
| b = 7.4436 (2) Å | µ = 0.07 mm−1 |
| c = 21.8378 (5) Å | T = 193 K |
| β = 91.833 (1)° | Irregular, colourless |
| V = 1112.70 (5) Å3 | 0.53 × 0.43 × 0.43 mm |
| Z = 4 |
Data collection
| Bruker X8 APEX CCD diffractometer | 2302 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.019 |
| Graphite monochromator | θmax = 28.6°, θmin = 1.9° |
| φ and ω scans | h = −7→9 |
| 14800 measured reflections | k = −10→9 |
| 2831 independent reflections | l = −29→28 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.147 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2598P] where P = (Fo2 + 2Fc2)/3 |
| 2831 reflections | (Δ/σ)max < 0.001 |
| 145 parameters | Δρmax = 0.25 e Å−3 |
| 0 restraints | Δρmin = −0.18 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.12887 (17) | 0.13749 (16) | 0.10279 (5) | 0.0377 (3) | |
| C2 | 0.2963 (2) | 0.1121 (2) | 0.07098 (6) | 0.0502 (3) | |
| H2 | 0.3218 | 0.1859 | 0.0378 | 0.060* | |
| C3 | 0.4299 (2) | −0.0245 (2) | 0.08800 (7) | 0.0568 (4) | |
| H3 | 0.5416 | −0.0412 | 0.0656 | 0.068* | |
| C4 | 0.3968 (2) | −0.13166 (19) | 0.13686 (7) | 0.0517 (3) | |
| H4 | 0.4867 | −0.2206 | 0.1477 | 0.062* | |
| C5 | 0.22727 (18) | −0.10975 (16) | 0.17143 (6) | 0.0405 (3) | |
| C6 | 0.1913 (2) | −0.21677 (19) | 0.22348 (7) | 0.0521 (3) | |
| H6 | 0.2814 | −0.3045 | 0.2354 | 0.063* | |
| C7 | 0.0282 (2) | −0.1939 (2) | 0.25625 (7) | 0.0587 (4) | |
| H7 | 0.0089 | −0.2637 | 0.2908 | 0.070* | |
| C8 | −0.1115 (2) | −0.0647 (2) | 0.23796 (7) | 0.0552 (4) | |
| H8 | −0.2247 | −0.0516 | 0.2600 | 0.066* | |
| C9 | −0.08234 (18) | 0.04175 (17) | 0.18808 (6) | 0.0433 (3) | |
| H9 | −0.1765 | 0.1262 | 0.1764 | 0.052* | |
| C10 | 0.08913 (16) | 0.02542 (15) | 0.15386 (5) | 0.0356 (3) | |
| C11 | −0.00895 (17) | 0.28518 (16) | 0.08512 (5) | 0.0383 (3) | |
| C12 | −0.1289 (2) | 0.27550 (19) | 0.03312 (6) | 0.0519 (3) | |
| H12 | −0.1247 | 0.1757 | 0.0076 | 0.062* | |
| C13 | −0.2554 (2) | 0.4160 (2) | 0.01943 (7) | 0.0603 (4) | |
| H13 | −0.3365 | 0.4058 | −0.0154 | 0.072* | |
| C14 | −0.1506 (2) | 0.5733 (2) | 0.10206 (8) | 0.0595 (4) | |
| H14 | −0.1552 | 0.6763 | 0.1261 | 0.071* | |
| C15 | −0.0213 (2) | 0.43915 (19) | 0.11996 (7) | 0.0537 (4) | |
| H15 | 0.0569 | 0.4526 | 0.1553 | 0.064* | |
| N1 | −0.26865 (18) | 0.56431 (17) | 0.05271 (6) | 0.0572 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0399 (6) | 0.0367 (6) | 0.0362 (5) | 0.0064 (4) | −0.0017 (4) | −0.0047 (4) |
| C2 | 0.0521 (8) | 0.0563 (8) | 0.0428 (6) | 0.0127 (6) | 0.0091 (6) | 0.0022 (6) |
| C3 | 0.0486 (8) | 0.0686 (9) | 0.0540 (8) | 0.0212 (7) | 0.0123 (6) | −0.0027 (7) |
| C4 | 0.0460 (7) | 0.0516 (8) | 0.0571 (8) | 0.0194 (6) | −0.0029 (6) | −0.0033 (6) |
| C5 | 0.0402 (6) | 0.0373 (6) | 0.0435 (6) | 0.0048 (5) | −0.0073 (5) | −0.0031 (5) |
| C6 | 0.0531 (8) | 0.0455 (7) | 0.0569 (8) | 0.0037 (6) | −0.0104 (6) | 0.0099 (6) |
| C7 | 0.0618 (9) | 0.0573 (9) | 0.0568 (8) | −0.0067 (7) | −0.0005 (7) | 0.0170 (7) |
| C8 | 0.0471 (8) | 0.0601 (8) | 0.0589 (8) | −0.0050 (6) | 0.0105 (6) | 0.0056 (7) |
| C9 | 0.0369 (6) | 0.0428 (6) | 0.0504 (7) | 0.0027 (5) | 0.0015 (5) | −0.0007 (5) |
| C10 | 0.0350 (6) | 0.0331 (5) | 0.0383 (6) | 0.0021 (4) | −0.0043 (4) | −0.0050 (4) |
| C11 | 0.0381 (6) | 0.0386 (6) | 0.0383 (6) | 0.0045 (5) | 0.0027 (4) | 0.0011 (4) |
| C12 | 0.0523 (8) | 0.0491 (7) | 0.0536 (7) | 0.0098 (6) | −0.0100 (6) | −0.0085 (6) |
| C13 | 0.0536 (8) | 0.0660 (9) | 0.0603 (8) | 0.0133 (7) | −0.0156 (7) | 0.0007 (7) |
| C14 | 0.0652 (9) | 0.0452 (7) | 0.0681 (9) | 0.0169 (7) | −0.0011 (7) | −0.0076 (7) |
| C15 | 0.0608 (9) | 0.0479 (7) | 0.0516 (7) | 0.0134 (6) | −0.0114 (6) | −0.0087 (6) |
| N1 | 0.0518 (7) | 0.0529 (7) | 0.0669 (8) | 0.0175 (5) | −0.0010 (6) | 0.0064 (6) |
Geometric parameters (Å, º)
| C1—C2 | 1.3723 (17) | C8—C9 | 1.367 (2) |
| C1—C10 | 1.4259 (17) | C8—H8 | 0.9300 |
| C1—C11 | 1.4916 (16) | C9—C10 | 1.4172 (17) |
| C2—C3 | 1.4098 (19) | C9—H9 | 0.9300 |
| C2—H2 | 0.9300 | C11—C15 | 1.3797 (18) |
| C3—C4 | 1.357 (2) | C11—C12 | 1.3823 (17) |
| C3—H3 | 0.9300 | C12—C13 | 1.3849 (19) |
| C4—C5 | 1.4144 (19) | C12—H12 | 0.9300 |
| C4—H4 | 0.9300 | C13—N1 | 1.326 (2) |
| C5—C6 | 1.4161 (19) | C13—H13 | 0.9300 |
| C5—C10 | 1.4252 (16) | C14—N1 | 1.328 (2) |
| C6—C7 | 1.356 (2) | C14—C15 | 1.3828 (19) |
| C6—H6 | 0.9300 | C14—H14 | 0.9300 |
| C7—C8 | 1.405 (2) | C15—H15 | 0.9300 |
| C7—H7 | 0.9300 | ||
| C2—C1—C10 | 119.92 (11) | C7—C8—H8 | 119.7 |
| C2—C1—C11 | 120.16 (11) | C8—C9—C10 | 121.00 (12) |
| C10—C1—C11 | 119.90 (10) | C8—C9—H9 | 119.5 |
| C1—C2—C3 | 120.78 (13) | C10—C9—H9 | 119.5 |
| C1—C2—H2 | 119.6 | C9—C10—C5 | 118.21 (11) |
| C3—C2—H2 | 119.6 | C9—C10—C1 | 122.98 (10) |
| C4—C3—C2 | 120.51 (13) | C5—C10—C1 | 118.81 (11) |
| C4—C3—H3 | 119.7 | C15—C11—C12 | 116.81 (12) |
| C2—C3—H3 | 119.7 | C15—C11—C1 | 121.27 (11) |
| C3—C4—C5 | 120.82 (12) | C12—C11—C1 | 121.92 (11) |
| C3—C4—H4 | 119.6 | C11—C12—C13 | 119.29 (13) |
| C5—C4—H4 | 119.6 | C11—C12—H12 | 120.4 |
| C4—C5—C6 | 122.03 (12) | C13—C12—H12 | 120.4 |
| C4—C5—C10 | 119.14 (11) | N1—C13—C12 | 124.30 (14) |
| C6—C5—C10 | 118.83 (12) | N1—C13—H13 | 117.8 |
| C7—C6—C5 | 121.34 (13) | C12—C13—H13 | 117.8 |
| C7—C6—H6 | 119.3 | N1—C14—C15 | 124.12 (14) |
| C5—C6—H6 | 119.3 | N1—C14—H14 | 117.9 |
| C6—C7—C8 | 120.05 (13) | C15—C14—H14 | 117.9 |
| C6—C7—H7 | 120.0 | C11—C15—C14 | 119.60 (13) |
| C8—C7—H7 | 120.0 | C11—C15—H15 | 120.2 |
| C9—C8—C7 | 120.51 (13) | C14—C15—H15 | 120.2 |
| C9—C8—H8 | 119.7 | C13—N1—C14 | 115.86 (12) |
| C10—C1—C2—C3 | 0.3 (2) | C2—C1—C10—C9 | −178.79 (12) |
| C11—C1—C2—C3 | 178.62 (13) | C11—C1—C10—C9 | 2.86 (17) |
| C1—C2—C3—C4 | −1.1 (2) | C2—C1—C10—C5 | 1.02 (17) |
| C2—C3—C4—C5 | 0.5 (2) | C11—C1—C10—C5 | −177.32 (10) |
| C3—C4—C5—C6 | −178.45 (14) | C2—C1—C11—C15 | −105.67 (15) |
| C3—C4—C5—C10 | 0.8 (2) | C10—C1—C11—C15 | 72.68 (16) |
| C4—C5—C6—C7 | 179.85 (14) | C2—C1—C11—C12 | 73.83 (17) |
| C10—C5—C6—C7 | 0.6 (2) | C10—C1—C11—C12 | −107.83 (14) |
| C5—C6—C7—C8 | 1.5 (2) | C15—C11—C12—C13 | −1.2 (2) |
| C6—C7—C8—C9 | −1.6 (2) | C1—C11—C12—C13 | 179.30 (13) |
| C7—C8—C9—C10 | −0.3 (2) | C11—C12—C13—N1 | 1.1 (3) |
| C8—C9—C10—C5 | 2.34 (18) | C12—C11—C15—C14 | 0.4 (2) |
| C8—C9—C10—C1 | −177.84 (12) | C1—C11—C15—C14 | 179.90 (13) |
| C4—C5—C10—C9 | 178.26 (11) | N1—C14—C15—C11 | 0.6 (3) |
| C6—C5—C10—C9 | −2.44 (17) | C12—C13—N1—C14 | −0.1 (2) |
| C4—C5—C10—C1 | −1.57 (17) | C15—C14—N1—C13 | −0.8 (2) |
| C6—C5—C10—C1 | 177.74 (11) |
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the C5–C9 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H6···Cg1i | 0.93 | 2.69 | 3.577 (2) | 161 |
| C14—H14···Cg1ii | 0.93 | 2.84 | 3.648 (2) | 146 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y+1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2629).
References
- Boeyens, J. C. A., Denner, L. & Perold, G. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 67–73.
- Broutin, P.-E. & Colobert, F. (2005). Eur. J. Org. Chem. pp. 1113–1128.
- Bruker (2007). SAINT-NT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.
- Fabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2006). Acta Cryst. B62, 826–842. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- James, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093–1099. Boca Raton: CRC Press.
- Miyaura, N., Yanagy, T. & Suzuki, A. (1981). Synth. Commun. 11, 513–519.
- Molander, G. A. & Beaumard, F. (2010). Org. Lett. 12, 4022–4025. [DOI] [PMC free article] [PubMed]
- Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Suthar, B., Fowler, A., Jones, D. S. & Ogle, C. A. (2005). Acta Cryst. E61, o607–o608.
- Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering Chichester: Wiley.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014372/fj2629sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014372/fj2629Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813014372/fj2629Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

