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Abstract
We present full structural optimizations of the ground state and of the low lying triplet state of the
ethylene molecule by means of Quantum Monte Carlo methods. Using the efficient structural
optimization method based on renormalization techniques and on adjoint differentiation
algorithms recently proposed [Sorella, S.; Capriotti, L. J. Chem. Phys. 2010, 133, 234111], we
present the variational convergence of both wave function parameters and atomic positions. All of
the calculations were done using an accurate and compact wave function based on Pauling’s
resonating valence bond representation: the Jastrow Antisymmetrized Geminal Power (JAGP). All
structural and wave function parameters are optimized, including coefficients and exponents of the
Gaussian primitives of the AGP and the Jastrow atomic orbitals. Bond lengths and bond angles are
calculated with a statistical error of about 0.1% and are in good agreement with the available
experimental data. The Variational and Diffusion Monte Carlo calculations estimate vertical and
adiabatic excitation energies in the ranges 4.623(10)–4.688(5) eV and 3.001(5)–3.091(5) eV,
respectively. The adiabatic gap, which is in line with other correlated quantum chemistry methods,
is slightly higher than the value estimated by recent photodissociation experiments. Our results
demonstrate how Quantum Monte Carlo calculations have become a promising and
computationally affordable tool for the structural optimization of correlated molecular systems.

1. INTRODUCTION
Quantum Monte Carlo (QMC) methods have been successfully applied to tackle the
electronic structure of molecules and solids where electron correlation plays an important
role.1,2 In the past decade, a rapid improvement of algorithms opened the door to the QMC
study of the ground state properties of several highly correlated systems in chemistry and
physics, such as transition metal complexes,3,4 graphene,5 hydrogen bonding systems,6–8

dispersive interactions,9 and high pressure hydrogen.10

The success of these stochastic methods is due to their capability to correctly describe the
electronic states of the system and, at the same time, due to the possibility of their handling a
relatively large number of atoms. The good scaling properties with the number of electrons
together with the excellent portability of the algorithms on high performance parallel
computers make these methods particularly promising for quantum chemistry calculations of
large and correlated systems. The calculations proposed in the present work are based on
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highly compact and correlated variational wave functions inspired by Pauling’s resonating
valence bond (RVB) representation of the chemical bond: the Jastrow Antisymmetrized
Geminal Power (JAGP), as introduced in refs 11 and 12. This resonating valence bond
ansatz is able to correctly describe the statical and dynamical correlation of a large variety of
molecular systems.3,5,6,9,13

One historical difficulty with QMC methods is efficiently evaluating forces, due to problems
arising from the stochastic noise. Several solutions have been proposed, like those based on
the zero-variance principle,14 on correlated sampling,15 and on the introduction of particular
coordinate transformations.16 However, all of these approaches have the inconvenience of
becoming unfeasible for large systems, due to the fact that the number of coordinate
derivatives increases linearly with the system’s size. Recently, an efficient scheme to
compute forces with quantum Monte Carlo has been proposed by means of the so-called
adjoint algorithmic differentiation,17 through which full structural optimization of systems
of few atoms can be performed with small computational overhead.

In the present paper, we apply this technique to study the ground and excited state properties
of ethylene. Besides its important role in industry and medicine, ethylene has been the
subject of many experimental and high level computational works since it represents the
prototype for a double carbon bond in organic molecules.18 In addition, its singlet to triplet
interconversion is a model for the photochemistry of larger conjugated organic molecules
and polymers.

Since the early investigations of the properties of ethylene’s 1Ag ground state (N), the first
singlet excitation (V), the vertical triplet excitation (T), and Rydberg states, identified by
Mulliken and Wilkinson,18,19 were an interesting and quite challenging subject because of
the significant change in the geometrical structure induced by the electronic excitations.
While the dominant line in ethylene’s spectrum has been recognized as the V(1B1u)←N(1Ag)
singlet excitation with an estimated energy of about ~7.6 eV,19,20 many experimental
studies, through optical21 and low-energy electron impact spectroscopies,22–25 have
assigned to the vertical triplet excitation T(3B1u)←N(1Ag) an energy gap between 4.32 and
4.70 eV. A lower bound of the gap equal to 4.3 eV has been also reported by ion impact
spectroscopy.26 The adiabatic vertical excitation, namely, the energy gap between the
equilibrium ground state and the triplet state at its equilibrium geometry T(3A1)←N(1Ag),
has been recently identified during the dissociation dynamics of ethylene sulfide SC2H3 by
Qi et al. Through the time-of-flight (TOF) spectra of photofragments from
photodissociation, they were able to produce ethylene’s T state near its equilibrium
geometry 3A1, estimating an energy gap T ←N of about 2.52(13) eV.27 Many computational
efforts have been spent to identify the N, V, and T states of ethylene and to evaluate the
vertical excitations between the singlet (1Ag) and the low lying vertical (3B1u) and adiabatic
(3A1) triplets.28–34

In the present work, we use variational Monte Carlo methods to fully optimize the wave
functions and the molecular geometries of ethylene in both the singlet and triplet states. The
vertical and adiabatic triplet excitation energies will be estimated using the variational
Monte Carlo (VMC) and lattice regularized diffusion Monte Carlo (LRDMC)35,36 methods,
comparing the obtained results with the available experimental data and with other quantum
chemistry calculations.

2. QUANTUM MONTE CARLO METHODS
Variational Monte Carlo methods are based on the stochastic evaluation of the energy
functional
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(1)

with respect to a trial wave function , where  is the
6N-dimensional vector of the electronic Cartesian  and spin

coordinates,  is a set of independent wave function parameters,  is
the vector of the nuclear coordinates, and  is the molecular Hamiltonian. In order to
stochastically evaluate the functional eq 1, it is convenient to rewrite the integrand as the
product of two local functions:

(2)

the local energy , i.e., the energy
of a single electronic configuration , and

, which is the probability to visit
that particular configuration in space. The integral written in the form of eq 2 can now be

evaluated as the mean value of the local energy, , calculated on a number
 of electronic configurations , sampled with probability . The error associated with

this estimation will be equal to , decreasing
as the square root of the number of samples of the configuration space independently of the
dimension of the system. Expression 1 can be minimized with respect to the set of
parameters  obtaining

(3)

According to the variational principle, EVMC represents the lowest upper bound of the
ground state energy E0 for a given variational wave function. The  set of parameters of the
many-body wave function can be optimized using stochastic evaluation of the energy
derivatives recently developed.9,37,38

The QMC methods also include a variety of projection methods such as diffusion2 and
Green’s function39 Monte Carlo that can go beyond the variational ansantz having direct
access to the lowest energy eigenvalue given the nodal surface determined by . In
particular, the lattice regularized diffusion Monte Carlo35,36 method can offer two
advantages with respect to the traditional diffusion Monte Carlo (DMC) algorithms. First of
all, it is size-consistent, so that it maintains its efficiency during the correlated metropolis
sampling even for systems with a large number of electrons.36 The second important
advantage is that the LRDMC method preserves the variational principle even when used in
combination with nonlocal pseudopotentials.36 Both projection methods introduce a
systematic error either by the discretization τ of the imaginary time propagator (DMC) or by
the spatial discretization of the molecular Hamiltonian on a lattice grid of step a (LRDMC).
These errors are overcome by extrapolating the estimated energy, for different a or τ steps,
to the continuum limit a, τ→0.
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3. STRUCTURAL OPTIMIZATION AND FORCE CALCULATION IN VMC
The structural optimization of molecular systems within the VMC scheme corresponds to

minimizing expression 3 with respect to both sets of parameters , the parameters of
the electronic wave function, and the coordinates of the nuclei:

(4)

where we have explicitly written the dependency of the energy functional E from  through

the Hamiltonian . The optimization requires the evaluation of the force vectors acting
along all of the coordinates  of the nuclei, defined as

(5)

where  implicitly depends on  since the minimum energy condition (eq 3) has to be
satisfied at fixed . In general, the calculation of forces in QMC is done through two
approaches. A first method is the finite difference approach for which the derivatives of the
energy functional with respect to the atomic displacements are defined through a space
discretization, leading to the equation

(6)

where  is the new geometrical configuration after the displacement ΔRa of

the ath nucleus, and  is the variational energy (eq 3) evaluated in the

new positions  with the optimized wave function . Unfortunately, in
QMC, the values of the energy for the two structural geometries are affected by a stochastic
error that propagates in the calculation of forces, increasing when ΔRa → 0. For this reason,
the finite difference approach is usually carried out using the correlated sampling technique.
This technique reduces the stochastic error when evaluating energy differences by
estimating both of the variational energies in eq 6 using the same Monte Carlo random
walk.15

The second approach for evaluating forces is to directly estimate the analytic derivative of
eq 5 that gives the expression

(7)

The second term in this definition can be neglected for the Euler conditions

 at the energy minimum (eq 3). For this reason, we are left with the

equation , which following the notation introduced in section 2
can be rewritten as the sum of two contributions:40,41
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(8)

that are respectively the Hellmann–Feynman (H–F)  and Pulay (P)  terms.
The Pulay term is exactly zero in two cases: when working with an exact eigenstate in the
limit of complete basis sets and if the trial wave function is expanded into an originless basis
set such as plane waves. In our case, the Pulay term cannot be neglected as discussed in ref
40.

Our approach to the evaluation of the analytic eq 8 in the VMC frame is characterized by the
introduction of three ingredients. The first of these ingredients is the space warp coordinate
transformation (SWCT), that together with the second ingredient of our procedure, which is
the reweighting method defined in ref 41, is able to reduce the variance of the forces.17

When using pseudopotentials in the SWCT scheme, the analytic calculation of derivatives
becomes prohibitive. To overcome this drawback, we used the adjoint algorithm
differentiation (AAD), obtaining overall a computational cost that does not grow linearly
with the system size, at variance with the methods based on the numerical derivative. In the
next paragraphs, we will briefly describe these three techniques that lead to a new
expression of the force components, as described by Sorella and Capriotti in ref 17.

Space Warp Coordinate Transformation
To derive our convenient analytic expression of the force components, we used the Space
Warp Coordinate Transformation first introduced to calculate atomic forces within the VMC
and DMC methods within the finite difference approach.14–16,42 In ref 17 it is shown that
the introduction of this transformation in the definition of the energy functional, used with
the reweighting method, has the advantage of reducing the variance and also treating
nonlocal pseudopotentials. Within this transformation scheme, each ionic displacement ΔRa
is followed by the translation of the electronic positions around the nuclei, through the
equations:

(9)

where F(ria) should be a function that decays rapidly; in this case, it is taken to be  as
proposed in ref 15, with ria = ∣ri – Ra∣. Within the SWCT, the energy functional (eq 1), after
the displacement of a single nuclei , assumes the form

(10)

where  is the Jacobian of the transformation (eq 9) and both the local energy and the
wave function depend on the new nuclear displacement both directly and through the
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transformed electronic coordinates . Equation 10 can be easily differentiated with respect
to ΔRa in the limit of ΔRa →0, leaving us with the differential expression of the force acting
on the ath nucleus:

(11)

This analytic expression is the sum of the two different contributions previously introduced,
the Hellmann–Feynman term, which is simply the mean value of the derivative of the local
energy, and the Pulay term, which is fundamental for accurate force evaluations, as
demonstrated in ref 40.

Taking into account the fact that the electronic coordinates also depend on the nuclear
displacement within the SWCT, the total derivatives in eq 11 can be written in terms of
partial derivatives of the local energy and of the wave function logarithm:

(12)

(13)

The force components 11 with the expansions 12 and 13 are the analytic local expressions
that we have to sample within our VMC schemes. Although these expressions present an
elegant form, they still have an unbounded variance, as described in the next paragraph, so
that to obtain a meaningful average some manipulations have to be made.

Reweighting Methods
As anticipated, the Hellmann–Feynman term has unbounded variance when the electron–
atom distance vanishes. In our case, this problem is overcome by the fact that the Hellmann–
Feynman contribution defined in eq 11 depends on the local energy and not only on the
Coulomb potential, which means that with a trial wave function satisfying the electron–ion
cusp conditions (as shown in section 4), it remains finite even when the electron ion distance
ria approaches zero. The H–F term containing only the first derivative of the local energy
diverges at most as 1/ria, and the variance is therefore finite in three dimensions as

 converges.

Parallel to the variance problem appearing when the electron–ion distances approach zero,
there exists also a more subtle infinite variance problem when a sample configuration 
approaches the nodal surface, i.e. . Both the H–F and the Pulay terms diverge
when a sampled electronic configuration  approaches the nodal surface of the wave
function. In this situation, both the local energy and the partial derivative of the logarithm of
the wave function are proportional to the inverse of this distance 1/d, while the density

probability , leading to an unbound variance of their product in the Pulay term or
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in the local energy derivative that appear in the H–F term (≃ 1/d2), although the mean
values remain well-defined. This problem was first tackled by Attaccalite and Sorella in ref
41 with the so-called reweighting method in which a new probability distribution is defined

 depending on a guiding function

(14)

where the function  is a measure of the distance between the electronic configuration 
and the nodal surface and therefore is assumed to vanish proportionally to  as d → 0.
As the nodes of the wave function only depend on its determinantal part, schematized here
by a single Slater determinant A, we can assume that the  depends only on A:41

(15)

To regularize the probability density close to the nodal surface,  is defined as

(16)

where ε is a positive small number chosen to reduce the number of electron configurations
that approach the nodal surface. This renormalization has the advantage of satisfying the
continuity of the derivate of the  when , ensuring that ΨG stays as close as
possible to the trial wave function. In this new scheme, the Hellmann–Feynman and Pulay
terms are written as

(17)

(18)

where the reweighting factor  is proportional to d2 and cancels
out the divergence of the integrand, solving the problem of unbounded variance in the VMC
scheme.

Adjoint Algorithm Differentiation
Although the reweighting method cures the variance problems of eq 11, we are still left with
the computational challenge of evaluating the derivatives of the local energy and of the
logarithms that appear in eqs 12 and 13. The presence of pseudopotentials and SWCT makes
the practical implementation of the analytic derivatives extremely complicated. To
overcome this drawback, we efficiently computed the derivative using the third feature of
our structural optimization method which is the adjoint algorithmic differentiation
procedure.17 The idea beyond the algorithmic differentiation is that a derivate can always be
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written using the chain rule as the propagation of the derivatives of simpler functions that
are known (polynomials, cosines, sines, etc). Following the chain rule, intermediate results
can be stored in memory and used to calculate other derivatives that share the same
intermediate values. These procedure can be applied either in a backward or forward sweep,
as described in ref 43. A clear example on how the calculation of the kinetic energy
derivatives is done through the AAD can be found in ref 17. In summary, the inclusion of
AAD is a very convenient way to deal with analytical derivatives using pseudopotentials and
SWCT. The computational overload for calculating forces in the proposed scheme does not
have any linear dependence on the system size and allows us to optimize wave functions and
geometries of large molecular systems.

4. VARIATIONAL WAVE FUNCTION
The trial wave function used in this investigation is the Jastrow antisymmetrized geminal
power,11 which is an implementation of Pauling’s valence bond picture.44 This wave
function is built as the product between an antisymmetric geminal power (AGP)45,46 and a
Jastrow factor  and includes both static and dynamical electron correlation effects. It has
been demonstrated that the JAGP11–13,41 is a compact and reliable wave function for
describing the bonding properties of organic molecular systems like graphene sheets5 and
benzene molecules,47 and in reproducing the weak binding energies in van der Waals
interactions9 and hydrogen bonds.6

For molecular systems of N electrons in a spin singlet state, i.e., N/2 = N↑ = N↓, the AGP is
written as the product

(19)

where  is the whole set of Cartesian and spin coordinates of the N electrons and  is the
antisymmetrization operator. The two electron wave functions that appear in the definition
19 are the Geminal pairing functions

(20)

written as a spin singlet multiplied by a spatial part ϕG(ri,rj), which is a linear combination
of products of two atomic orbitals:

(21)

the indices μ and ν represent the quantum numbers (n,l,lz) of the orbitals centered on the ath
and bth atoms.

These pairing functions couple electrons belonging to different atoms according to the
matrix λμaνb in a resonating valence bond scheme, similar to that proposed a b by Anderson
in the study of oxide superconductors.48

The 1Ag ground state of the ethylene molecule can be correctly described using the AGP (eq
21) wave function because it is a singlet state. To represent molecular excitations with total
spin S > 0, like the two triplet states 3B1u and 3A1 of ethylene, it is necessary to apply the
generalized antisymmetric geminal power wave function (GAGP), introduced by Coleman
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in 1965.49,50 Assuming that the number of spin-up electrons exceeds the number of
electrons with opposite spin N↑ > N↓, the GAGP is built as the antisymmetric product:

(22)

that along with N↓ geminal functions 21, contains S = (N↑ – N↓) single electron wave
functions:

(23)

One fundamental ingredient of the JAGP is the Jastrow factor13 that includes a
homogeneous interaction that treats the electron–electron and electron–nucleus cusps
conditions51 and a non homogeneous contribution that introduces dynamical correlations
between electrons and nuclei. In our representation, the Jastrow factor is written as the
product of three terms, J = J1J2J3/4. The first term is the one-body Jastrow factor:

(24)

where ria = ∣ri – Ra∣ is the distance between the ith electron and the ath nucleus, Za is the
atomic charge, M is the number of atoms in the molecular compound, and N is the total
number of electrons. This factor includes both the homogeneous interaction between the
electron and the nuclei through the function ξ(r) = B/2(1 – e−r/B), and the non homogeneous

term built from the linear combination of atomic orbitals .

The second term is the purely homogeneous two-body factor

(25)

that depends only on the distances rij = ∣ri – rj∣ between electron pairs, treating the electron–
electron cusp conditions of the JAGP wave function through the function ξ(rij) = b/2(1 –
e−rij/b).

The last term is the three/four-body Jastrow J3/4 that includes the electron–electron–nuclei
correlation

(26)

where

(27)

The contributions with a = b represent the three-body terms that consider correlations
between electrons occupying shells of the same atom, whereas terms with a ≠ b are four-
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body terms that consider the coupling between orbitals of different atomic centers, crucial
for the correct description of dispersive interactions.6

5. COMPUTATIONAL DETAILS
The computational investigation of our systems has been carried on using the TurboRVB
package developed by Sorella52 that includes a complete suite of variational and diffusion
quantum Monte Carlo programs for wave function and geometry optimization of molecules
and solids.

All-Electron Calculations—JAGP
As starting points for the construction of the all-electron basis sets of the AGP wave
functions, we used the cc-pVDZ and cc-pVTZ basis sets.53,54 We considered only s, p, and
d shells for the carbon atoms and the s and p shells for hydrogen atoms. We included only
the terms of the contractions with smaller exponents, since the electron–nuclei cusps are
already described through the Jastrow factor. Finally, we obtained the following contracted
basis sets: 8s4p1d composed of (8s4p1d)/[3s2p1d] orbitals for the carbon atom and (4s1p)/
[2s1p] contracted orbitals for the hydrogen atoms and 9s5p2d built of (9s5p2d)/[4s3p2d]
orbitals for the carbon atom and (5s2p)/[3s2p] orbitals for the hydrogen atoms. For the
Jastrow factor J3/4, we used an uncontracted Gaussian basis set of (2s2p) orbitals and (1s1p)
for carbon and hydrogen atoms, respectively.

The wave function was optimized through different steps using the linear method described
in refs 9 and 37. As a first step, we optimized only the λ coefficients of the JAGP and the J2
Jastrow factor. In the second step, we optimized only the J1 and J3/4 terms, keeping all other
parameters fixed. Finally, we fully relaxed all of the parameters of the wave function
including the exponents and coefficients of the atomic orbital basis sets. During the
optimization procedure, we used an increasing statistical accuracy for each step, ranging
from 6.4 × 103 to 3.2 × 105 Monte Carlo (MC) steps per electron. VMC and LRDMC
calculations at the energy minimum were carried on using 5.1 × 107 and 1.3 × 107 MC steps
per electron, respectively. LRDMC energies were extrapolated in the limit a→0 using the
following set of lattice space discretizations: a = {0.05, 0.10, 0.15, 0.2} [au].

All-Electron Calculations—JAGPn*
Together with the standard JAGP wave function optimization, we have also employed the
JAGPn* method introduced recently in ref 13. The method adopts a projection scheme to
reduce the total number of parameters (in particular the λ matrix) in the JAGP wave
function. The optimization of the parameters is performed under the constraint of keeping
fixed the number n of molecular orbitals considered in the AGP expansion to an appropriate
number. For ethylene’s ground state, we considered n = 8 (corresponding to the minimum
number of molecular orbitals, i.e., a single Slater determinant) and the optimal value n = n*
= 12, which corresponds to the number of occupied orbitals of the totally dissociated
molecule, as described in ref 13. For the triplet states of ethylene, the minimum number of
molecular orbitals is equal to n = 9, whereas n* = 12 as in the singlet case. As a starting
point for these optimization procedures, we used molecular orbitals previously obtained
through density functional theory (DFT) calculations with the B3LYP hybrid functional. All
parameters were optimized with the same procedure described above for the JAGP with
maximum statistics of 3.2 × 105 MC steps per electron.

Pseudopotential Calculations
To investigate the influence of the explicit treatment of core electrons on the geometrical
and electronic properties, we have employed different pseudopotentials: a scalar-relativistic
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energy consistent pseudopotential (SR-ECP),55 a smooth relativistic norm-conserving
pseudopotential (SR-NCP),56 and a norm-conserving pseudopotential generated through a
Hartree–Fock Hamiltonian (HF-NCP).57 As basis sets, we used contracted Gaussian
orbitals. For hydrogen atoms, we have used a (4s3p)/[1s1p] basis set, whereas for carbon
atoms the basis set was gradually increased to verify the convergence of ethylene’s
excitation energies: keeping fixed to 5 the number of primitive Gaussians per shell, the
number of contracted orbitals was varied from (5s5p5d)/[1s1p1d] to (5s5p5d)/[2s2p2d]. The
basis set for the Jastrow factor was fixed to (2s2p)/[1s1p] contracted orbitals for the
hydrogen atoms. For carbon atoms, we tested three different contracted basis sets: (4s3p)/
[1s1p], (4s3p)/[1s2p], and (4s3p)/[2s2p]. Wave functions were optimized following a
multistep procedure similar to that employed for the all-electron case but using final
statistics of 1.6 × 105 MC steps per electron. VMC and LRDMC calculations at the energy
minimum were carried on using 2.6 × 107 and 1.3 × 107 MC steps per electron, respectively.
LRDMC energies were extrapolated in the limit a → 0 using the following set of lattice
space discretizations: a = {0.1,0.2,0.3,0.4} [au].

Structural Optimization
During the geometry optimizations, when possible, we enforced molecular symmetries to
reduce the number of force components and of independent parameters. The final 500
structural optimization steps were made with 6.4 × 105 MC steps per electron,
corresponding to an error of 3 × 10−4 [au] on the mean values of the force components over
the last 200 steps. This last accurate optimization step required about 2 h on eight quad-core
Opteron CPUs.

6. RESULTS AND DISCUSSION
6.1. Geometry Optimization by Variational Monte Carlo

The 1Ag Ground State of Ethylene—Geometry relaxation of the ground state structure
of the ethylene molecule was performed starting from the ground state experimental
geometry reported in ref 58 (RCH = 1.086 Å, RCC = 1.337 Å, θHCH = 117.62°). We carried
out a full wave function and geometry optimization using different basis sets, as described in
the computational details.

The number of the total variational parameters was varying from 237 to 1216, ranging from
the smallest pseudopotential calculation to the largest basis set employed in all-electron
calculations.

The structural parameters of the optimized geometries for the 1Ag state are reported in Table
1. In all cases, both the RCC and RCH bond lengths and the θHCH angle are compatible with
the available experimental data and with high level quantum chemistry calculations such as
CCSD(T).30 For the all-electron calculations, it is very interesting to see that the equilibrium
geometry of the molecule is basically consistent within 0.001 Å with the best CCSD(T)
quantum chemistry method. Nevertheless, the JAGP (n = 8) results are also in good
agreement with the available experimental data.

For the pseudopotential calculations, we made an extended study of the basis set
convergence using the energy consistent pseudopotential with scalar-relativistic corrections
(SR-ECP).55 As shown in Table 1, the relaxed geometrical parameters do not seem to be
significantly affected by the basis set. In particular, even with the smallest basis set (4s4p)/
[2s2p] for carbon atoms, bond distances and angles are all compatible within the converged
ones, and the introduction of d orbitals in the basis set does not seem to be crucial for the
correct description of the ground state geometry. Further calculations were done with the
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well converged middle size basis set (5s5p5d)/[1s2p1d], to test the SR-NCP56 and the HF-
NCP57 norm-conserving pseudopotentials. As shown in Table 1, both the norm-conserving
pseudopotentials display a slight elongation of the RCC (in the range 1.333–1.335 Å) and
RCH bonds with respect to the all-electron and the SR-ECP optimizations, regardless of the
inclusion of relativistic corrections.

In summary, all of the converged equilibrium geometries obtained with the JAGP are
compatible with the most recent MP2, B3LYP, and CCSD(T) results within deviations of
less than 0.002 Å on the RCC and RCH bond lengths. The predicted equilibrium RCC bond
falls in the lower limit of the experimental values, which spread in a range between 1.330
and 1.339 Å. This demonstrates the possibility to obtain full geometry relaxation of small
molecules at the quantum Monte Carlo level, by using a relatively compact and fully
optimized AGP wave function.

The Adiabatic 3A1 Triplet State of Ethylene—Starting from the 1Ag optimized ground
state geometry, we built the 3B1u JAGP triplet wave function and performed a full geometry
optimization up to complete relaxation into the 3A1 lowest energy triplet state.

In Figure 1, we can follow this geometrical relaxation as a function of the optimization steps
for the SR-ECP pseudopotential case with the (5s5p5d)/[1s2p1d] contracted basis set.
During the first steps of optimization, the molecule is kept planar so that we can identify a
first quick energy drop due to the elongation of the RCC bond from 1.33 Å to 1.53 Å, as
shown in Figure 2. After these first steps, the planar symmetry is broken and the ethylene
molecule slowly starts to rotate around the RCC bond, and at the same time, a contraction of
the bond occurs. The 3A1 adiabatic triplet state is eventually reached, displaying a D2d
symmetry with an optimized RCC distance of 1.4515(21) Å.

In Table 2, we report the extensive basis set study of the equilibrium geometries of the 3A1
adiabatic triplet in the case of the SR-ECP pseudopotential. The effect of the basis set is
similar to what is observed for the ground state equilibrium, and also for the adiabatic triplet,
the relaxed RCC bond lengths obtained through the two norm-conserving pseudopotentials
SR-NCP and HF-NCP are slightly longer than the SR-ECP and the all-electron predictions.
We can also infer from Table 2 a good agreement between our predicted adiabatic triplet
geometry and the most recent MP2, B3LYP, and CCSD(T) equilibrium geometries.
Unfortunately, to the best of our knowledge, no experimental information is available for the
geometrical parameters of this state.

6.2. Excitation Energies
The 3B1u← 1Ag Vertical Triplet Excitation of Ethylene—In Table 3, we report the
energies of the ground state and first excited states for all-electron wave functions,
calculated on both the VMC and LRDMC levels on the optimized equilibrium geometries
reported in Table 1.

It is important to emphasize that the absolute energies in Table 3 clearly demonstrate the
high variational quality of our all-electron JAGP wave function for both the VMC and
LRDMC approaches, if compared to the reported multi-reference,32 coupled cluster,29 and
DMC results.31,34

The vertical excitation energies seem to be sensitive to the number of molecular orbitals
considered in the JAGPn* wave function, an increase of about 0.1 eV passing from n = 8/n
= 9 to n = n* = 12. As shown in Table 1, increasing the number of molecular orbitals affects
the ground state’s equilibrium geometry by stretching the C๛C bond by about 0.005 Å.
This geometrical difference is not relevant for the energy of the singlet state since the
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structure is close to the singlet minimum, but it is significative for the energy of the triplet
state because at that distance the triplet energy surface is rather steep and the stretching of
the C๛C bond corresponds to a lowering of the triplet energy. This dependency on the RCC
bond length has already been shown in previous works through the calculation of the
potential energy surface (PES) of the ground state of ethylene.28

A similar trend is observed when comparing the pseudopotential results reported in Table 4.
The values of the VMC vertical gap predicted by the SR-ECP calculations are in the range
3.020(10)–3.053(10) eV, which is similar to what was obtained in all-electron calculations
(3.039(21)–3.058(19) eV). In the case of the two norm-conserving pseudopotentials, the gap
is about 0.1 eV smaller. Similarly to what discussed above about the JAGP (n = 12) results,
this can be interpreted as an effect of the ground state geometries, since for these
pseudopotentials a slightly longer RCC bond (Table 1) is reported.

In the recent article by Anderson, the ethylene vertical triplet excitation has been calculated
by DMC using a generalized valence bond (GVB) wave function and considering two
different ground state geometries. For the “long” experimental geometry reported in ref 59
that displays a C๛C bond RCC = 1.339 Å, they estimate a vertical excitation in the range
4.4721(69)–4.5090(69) eV, whereas for the “short” geometry, optimized at the MP2 level
(RCC = 1.331046 Å), the energy gap ranges between 4.5554(69) eV and 4.6200(60) eV. The
dependence on the RCC geometrical parameter is therefore similar to what was observed by
us.

In conclusion, all of our VMC and LRDMC all-electron and pseudopotential calculations
predict a vertical triplet excitation energy which spreads in a range compatible with the
various experimental measurements, which indicate lower and upper bound values of 4.2025

eV and 4.6824 eV, respectively (Table 5).

The 3A1 ← 1Ag Adiabatic Triplet Excitation of Ethylene—The adiabatic singlet–
triplet excitation energies are reported in Table 3 for all-electron calculations and in Table 4
for the pseudopotential calculations, without zero point energy (ZPE) corrections.

All of the results are in the range of 2.890(16)–3.053(16) eV and are compatible with
previous DMC calculations using HF and GVB wave functions, which give respectively a
value of 3.014(26)34 eV and 3.024(7)31 eV, and with CCSD(T) calculations (2.9835 eV).33

In Table 5, some of our singlet–triplet excitations are summarized together with the ones
obtained using other methods and experimental data. In this table, the adiabatic excitations
are corrected with the difference between the ground 1Ag state and the adiabatic 3A1 triplet
state ZPE energies, estimated to be 0.139 eV by a mixture of coupled cluster and
experimental frequency calculations.33 These results obtained by different fully correlated
computational methods are in disagreement with the value of 2.52(13) eV predicted by
photodissociation experiments.27

7. CONCLUSIONS
In this work, we have applied modern QMC optimization techniques to study the
geometrical and electronic properties of the ethylene molecule in its singlet and triplet states.

The recently introduced methods, to perform efficient structural optimization by QMC,17

have been shown to be able to describe the equilibrium geometries with a statistical
accuracy of about 0.1% and with a reasonable computational effort. Since the computational
demand of these QMC techniques scales as the third–fourth power of the number of
electrons, these results indicate that these methods are willing to become competitive with
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respect to other quantum chemistry methods for the evaluation of geometrical and electronic
properties of large molecules.

The obtained geometrical ethylene parameters, such as the equilibrium RCC bond lengths in
singlet and triplet states, appear to be unaffected by the choice of the basis sets used for the
Jastrow factor and for the AGP part of the wave function. The use of different
pseudopotentials seems to slightly affect the RCC distance, introducing some shift (~0.1 eV)
on the calculated vertical excitations.

It is worth to remark that, thanks to the high correlation and variational complexity of the
JAGP wave function, the VMC results are in most cases very close to the LRDMC
extrapolated data. This indicates the completeness of JAGP and its capability to
quantitatively describe, even at the variational level, the electronic properties of molecules.
The results obtained are in agreement with those reported by other DMC, CCSD(T), and
MP2 calculations for both the vertical and adiabatic singlet–triplet excitations. In particular,
our results confirm that the theoretical estimation of the adiabatic excitation, considering
zero point energy corrections, is in the range of 2.85–2.91 eV, at variance with the value of
2.52(13) eV estimated by photodissociation experiments. These discrepancies deserve
further experimental and theoretical investigation.
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Figure 1. Variation of ethylene’s structural parameters during the 3A1← 3B1u geometrical
optimization.
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Figure 2. Energy and force convergence during the structural optimization 3A1← 3B1u.
The points reported are mean values obtained from 50 consequential optimization steps. The
force component showed in the figure is the one acting on a C atom along the C–C bond.
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Table 1
Equilibrium Structure of the 1Ag Statea

basis setsb RCC [Å] RCH [Å] θHCH [deg]

all-ele. 8s4p1d (AGP) 1.3288(9) 1.0788(7) 117.04(11)

8s4p1d (n = 8) 1.3262(9) 1.0801(6) 117.03(11)

9s5p2d (n = 8) 1.3257(9) 1.0798(6) 117.09(11)

8s4p1d (n = 12) 1.3305(9) 1.0798(6) 117.16(11)

9s5p2d (n = 12) 1.3313(9) 1.0793(6) 117.03(11)

SR-ECP [1s1p1d] 1.3303(3) 1.0783(2) 116.89(5)

[2s1p1d] 1.3282(8) 1.0786(16) 116.82(14)

[1s2p1d] 1.3295(6) 1.0787(3) 117.07(9)

[2s2p]c 1.3284(12) 1.0791(9) 116.94(9)

[2s2p1d] 1.3289(6) 1.0790(5) 117.01(9)

[2s2p2d] 1.3283(3) 1.0789(2) 117.08(5)

SR-NCP [1s2p1d] 1.3347(11) 1.0809(12) 117.09(22)

HF-NCP [1s2p1d] 1.3353(11) 1.0808(13) 117.09(22)

CCSD(T)30 1.3307(3) 1.0809(3) 117.12(3)

LDA34 1.3266 1.0958 116.66

MP234 1.3386 1.0848 116.64

MP231 1.331046 1.080564 117.3

B3LYP34 1.3289 1.0850 116.52

B3LYP60 1.324 1.085 116.32

exptl58 1.3370 1.0860 117.62

exptl61 1.330(5) 1.079(5)

exptl62 1.334(2) 1.081(2) 117.36(17)

exptl63 1.336 1.076 118.02

exptl59 1.339 1.085 117.8

a
In this table, we report the structural optimization of the 1Ag ground state of the C2H4 molecule for different basis sets.

b
For the pseudopotential basis sets, we have indicated only the carbon atom contracted orbitals made of (5s5p5d) primitive Gaussians. The

hydrogens’ basis set was fixed to (4s3p)/[1s1p] contracted Gaussian orbitals.

c
This basis set is built of (4s4p)/[2s2p] contracted orbitals for the carbon atom and (2s2p)/[1s1p] orbitals for the hydrogen atoms. The three-body

Jastrow factor is built with (3s2p)/[2s2p] orbitals for the carbon atoms and (2s1p)/[1s1p] orbitals for the hydrogens.
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Table 2
Equilibrium Structure of the 3A1 Statea

basis setsb RCC [Å] RCH [Å] θHCH [deg]

all-ele. 8s4p1d (AGP) 1.4533(8) 1.0775(6) 117.10(9)

8s4p1d (n = 9) 1.4492(10) 1.0811(6) 116.91(14)

9s5p2d (n = 9) 1.4478(10) 1.0805(7) 116.94(14)

8s4p1d (n = 12) 1.4526(10) 1.0804(6) 117.05(10)

9s5p2d (n = 12) 1.4509(9) 1.0804(6) 117.20(15)

SR-ECP [1s1p1d] 1.4494(9) 1.0801(4) 116.77(10)

[2s1p1d] 1.4515(9) 1.0799(9) 117.01(19)

[1s2p1d] 1.4515(21) 1.0795(10) 117.03(25)

[2s2p1d] 1.4485(53) 1.0793(38) 116.61(59)

[2s2p2d] 1.4507(37) 1.0799(20) 116.99(36)

SR-NCP [1s2p1d] 1.4556(11) 1.0820(6) 117.03(10)

HF-NCP [1s2p1d] 1.4562(13) 1.0822(7) 116.97(13)

LDA34 1.42 1.1014 115.38

MP234 1.4604 1.0847 116.98

MP231 1.449148 1.080469 117

B3LYP34 1.4473 1.0880 116.44

CCSD(T)64 1.451 1.080 117.1

CCSD(T)33 1.456

a
In this table, we report the structural optimization of the 3A1 excited state of the C2H4 molecule with fixed dihedral angle HCCH = 90°.

b
For the pseudopotential basis sets we have indicated only the Carbon atom contracted orbitals made of (5s5p5d) primitive gaussians. The

hydrogens’ basis set was fixed to (4s3p)/[1s1p] contracted Gaussian orbitals.
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Table 3
All-Electron Energy Calculationsa

basis set 1Ag [Hartree] 3B1u [Hartree] 3A1 [Hartree] 3B1u ← 1Ag [eV] 3A1 ← 1Ag [eV]

VMC

8s4p1d (n = 8)/(n = 9) −78.5217(4) −78.3553(4) −78.4171(4) 4.528(16) 2.846(16)

9s5p2d (n = 8)/(n = 9) −78.5249(4) −78.3578(4) −78.4190(4) 4.547(16) 2.882(16)

8s4p1d (n = 12) −78.5287(4) −78.3595(4) −78.4182(4) 4.604(16) 3.007(16)

9s5p2d (n = 12) −78.5303(4) −78.3613(4) −78.4207(4) 4.598(16) 2.982(16)

8s4p1d (AGP) −78.5246(4) −78.3561(4) −78.4173(4) 4.585(16) 2.920(16)

LRDMC

8s4p1d (n = 8)/(n = 9) −78.5663(5) −78.3999(6) −78.4588(6) 4.527(21) 2.925(21)

9s5p2d (n = 8)/(n = 9) −78.5685(6) −78.4015(5) −78.4612(5) 4.544(21) 2.919(21)

8s4p1d (n = 12) −78.5717(6) −78.4013(5) −78.4600(5) 4.637(21) 3.039(21)

9s5p2d (n = 12) −78.5743(5) −78.4037(3) −78.4619(3) 4.642(19) 3.058(19)

8s4p1d (AGP) −78.5726(5) −78.4019(5) −78.4631(5) 4.645(19) 2.979(19)

GVB-2 (cc-pVTZ)b −78.56236(18) −78.39401(18) −78.45124(18) 4.581(7) 3.024(7)

HF(cc-pVDZ/cusp)c 4.501(17) 3.014(26)

MR-CISD+Qd −78.451288 −78.285126 4.52

MR-AQCCd −78.432429 −78.266543 4.51

a
In this table, we report the absolute energies of the 1Ag, 3B1u, and 3A1 states of ethylene, evaluated with all-electron calculations. The

geometries are those reported in Tables 1 and 2. The energy differences do not consider the zero point energies of the states. The all-electron
calculations were made using n = 8 molecular orbitals for the ground state and n = 9 orbitals for the triplet states, corrisponding to single Slater
determinants.

b
DMC results from ref 31. We reported the lowest energy calculations with an identical basis set. The ground state geometry (RCC = 1.331046 Å,

RCH = 1.080564 Å, HCH = 117.3°) and the adibatic triplet geometry (RCC = 1.449148 Å, RCH = 1.080469 Å, HCH = 117°) are both optimized

on the MP2 level with the cc-pVTZ basis set.

c
DMC results from ref 34 with geometry optimized on the MP2 level and uncorrected with the addition of 0.1388 eV (3.2 kcal/mol)33 of ZPE

energy to compare them with our results.

d
Results from ref 32 with fixed geometry (RCC = 1.339 Å, RCH = 1.086 Å, HCH = 117.6°); the MR-CISD+Q calculations refer to the QZ basis

set reported for REF(12,12,1p) determinants, while the MR-AQCC calculations refer to the TZ basis reported for REF(12,12,1p).
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Table 4
Pseudopotential Energies of the Ethylene Electronic Statesa

carbon atoms’ basis sets VMC LRDMC

pseudo AGP (5s5p5d) 3/4bodyJas. (4s3p) 1Ag [Hartree]
3B1u ← 1Ag

[eV]

3A1 ← 1Ag
[eV]

1Ag [Hartree]
3B1u ← 1Ag

[eV]

3A1 ← 1Ag
[eV]

SR-ECP [1s1p1d] [1s2p] −13.7254(1) 4.686(5) 3.067(5) −13.7472(3) 4.623(10) 3.048(10)

[2s1p1d] [1s2p] −13.7269(1) 4.688(5) 3.091(5) −13.7477(3) 4.677(10) 3.037(10)

[1s2p1d]b [1s1p] −13.7276(1) 4.645(5) 3.012(5) −13.7479(3) 4.628(10) 3.037(10)

[1s2p1d]b [1s2p] −13.7277(1) 4.626(5) 3.001(5) −13.7481(3) 4.626(10) 3.031(10)

[1s2p1d]b [2s2p] −13.7286(1) 4.642(5) 3.012(5) −13.7483(3) 4.645(10) 3.037(10)

[2s2p1d] [1s2p] −13.7281(1) 4.648(5) 3.018(5) −13.7476(3) 4.634(10) 3.020(10)

[2s2p2d] [1s2p] −13.7289(1) 4.658(5) 3.034(5) −13.7483(3) 4.648(10) 3.053(10)

SR-NCP [1s2p1d] [1s2p] −13.6945(1) 4.555(5) 2.993(5) −13.7155(3) 4.568(10) 3.015(10)

HF-NCP [1s2p1d] [1s2p] −13.6924(1) 4.549(5) 3.012(5) −13.7130(3) 4.533(10) 2.988(10)

a
The geometrical structures used for each base are those reported in Tables 1 and 2. As in Table 3, the energy values of the adiabatic triplet

excitations are not corrected with the ZPE.

b
These basis sets share the same optimized geometry of the (5s5p5d)/[1s2p1d] basis set.
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Table 5
Excitation Energiesa

3B1u← 1Ag [eV] 3A1← 1Ag [eV]

VMC (all-ele) 4.598(16) 2.843(16)

VMC (SR-ECP) 4.626(5) 2.862(5)

VMC (HF-NCP) 4.549(5) 2.873(5)

VMC (SR-NCP) 4.555(5) 2.854(5)

LRDMC (all-ele) 4.642(19) 2.919(19)

LRDMC (SR-ECP) 4.626(10) 2.892(10)

LRDMC (HF-NCP) 4.533(10) 2.849(10)

LRDMC (SR-NCP) 4.568(10) 2.876(10)

CIS65 1.995

LDA34 4.874 2.953

MP234 4.549 2.970

B3LYP34 4.462 2.667

MR-CI28 4.597 2.780

CCSD(T)33 4.514 2.845

DMC (HF-ECP)34 4.523(13) 2.862(13)

DMC (CASSCF-ECP)34 4.488(13) 2.879(13)

DMC (HFall)34 4.501(26) 2.875(18)

DMC (GVB)31 4.6027(13) 2.9102(61)

DMC (CAS2–2)66 4.49(2)

PDb 2.52(13)

EELSc 4.2

IISd 4.3

EELSe 4.32

OSf 4.60

LEEISg 4.68

a
The adiabatic excitation energy is corrected with the difference between the singlet and triplet zero point energies, which has been estimated to be

0.1388 eV (3.2 kcal/mol).33 The all-electron values reported are related to the 9s5p2d basis set with n = 12 molecular orbitals. The pseudopotential
calculations all refer to the same (5s5p5d)/[1s2p1d] basis set for the carbon atom.

b
Photodissociation experiment ref 27.

c
Electron energy loose spectroscopy ref 25.

d
Ion impact spectroscopy ref 26.

e
Electron energy loose spectroscopy ref 67.

f
Optical absorption spectroscopy ref 21.

g
Low-energy electronimpact spectroscopy ref 24.

J Chem Theory Comput. Author manuscript; available in PMC 2014 March 13.


