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Abstract
In 2004 it was first shown that mutations in LRRK2 can cause Parkinson's disease. This initial
discovery was quickly followed by the observation that a single particular mutation is a relatively
common cause of Parkinson's disease across varied populations. Further genetic investigation has
revealed a variety of genetic ties to Parkinson's disease across this gene. These include common
alleles with quite broad effects on risk, likely through both alterations at the protein sequence
level, and in the context of expression. A great deal of functional characterization of LRRK2 and
disease-causing mutations in this protein has occurred over the last 9 years, and considerable
progress has been made. Particular attention has been paid to the kinase activity of LRRK2 as a
therapeutic target, and while it is no means certain that this is viable target it is likely that this
hypothesis will be tested in clinical trials sooner rather than later. We believe that the future goals
for LRRK2 research are, while challenging, relatively clear and that the next 10 years of research
promises to be perhaps more exciting than the last.
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Introduction
The identification of LRRK2 mutations as a cause of PD in 2004 had an instant, significant,
and lasting impact on our understanding of Parkinson's disease (PD) [1, 2]. This work
provided surprising insight into the genetic basis of this disease, revealing that mutations
underlie a substantive number of PD cases throughout the World. The protein product of this
gene, a kinase, also provided hope, as it was immediately suggested that this would prove to
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be a druggable target for treating both genetic and idiopathic forms of PD. In this article we
will review and discuss the significant progress that has been made in understanding the role
of LRRK2 in PD, both from the perspective of genetics, and through understanding the
etiology and pathogenesis of this disorder.

Parkinson's Disease-Associated LRRK2 Mutations
Mutations in LRRK2 (NM_198578.3) are the most common genetic cause of late-onset
Parkinson's disease (PD) identified to date [1, 2]. LRRK2 consists of 51 coding exons and
encodes a large 2,527-amino acid protein called dardarin, which consists of several leucine-
rich repeats (LRRs), a Ras-like GTPase domain (ROC) along with its C-terminal domain
(COR), a kinase domain, as well as a WD40 motif. Although over 100 LRRK2 mutations
have already been reported [3], only a few have been proven to cause PD. These include the
p.N1437H, p.R1441C/G/H, p.Y1699C, p.S1761R, p.G2019S, p.I2012T, and p.I2020T
mutations [4–7] (Fig. 1). Interestingly, all established pathogenic mutations are clustered
among the three domains that form the enzymatic core of dardarin and are associated with
variable degrees of population-specificity [7].

The most frequent LRRK2 mutation, p.G2019S, while barely present in Asia (<0.1%), is
responsible for up to 10% of apparently sporadic PD and up to 42% of familial PD [5, 8];
although this mutation has a worldwide distribution, it is present with a higher frequency in
Portuguese (16%), Ashkenazi Jewish (28%), and North African Arab (42%) populations [9–
11]. Similarly, within the Basque population the LRRK2 p.R1441G mutation presents at a
frequency of 2.5% and 46% in apparently sporadic and familial PD, respectively but is
hardly present in other European populations, including other regions of Spain, or North and
South America [12–15]. In contrast, the p.R1441C mutation represents the second most
common LRRK2 mutation identified in Europe, being the major genetic cause of PD among
Belgian PD patients, likely due to a founder effect [16]. Although the p.R1441G/C
mutations have not been reported among Asian PD patients, the p.R1441H mutation has
been found in Asia, Europe, and North America [17, 18]. Only four families have been
described with the p.I2020T mutation, notably however, this includes the Sagamihara
kindred, the first reported family with PD linked to the LRRK2 locus [19]. Lastly the
p.Y1699C mutation, sitting within the COR domain, has been reported in several families of
British (1), German-Canadian (1), and Korean (1) origin [1, 2, 20].

While it is likely that at least some of the other reported mutations in LRRK2 are
pathogenic, in most instances the segregation or association data are insufficient to prove
pathogenicity. Consequently, the majority of research conducted in understanding the
clinical, pathological, and biochemical consequences of LRRK2 mutation is limited to the
mutations described above.

LRRK2-associated phenotype
Given the high frequency of the p.G2019S mutation, the majority of LRRK2 disease related
clinical data are associated with this mutation. Most reports agree that the phenotypic
features associated with LRRK2 disease, characterized by unilateral tremor as initial
symptom, good response to levodopa therapy, and slow, benign disease progression, closely
resemble those seen in idiopathic Parkinson's disease (IPD). Tremor is the most commonly
recognized initial symptom [7, 21]; indeed LRRK2-associated disease has been categorized
by a large collaborative study as an asymmetrical tremor-predominant parkinsonism with
bradykinesia and rigidity [22]. It has also been suggested that LRRK2 associated disease
may be marginally more benign than IPD. LRRK2 mutation carriers usually present with
lower risk of cognitive decline [22, 23] than IPD patients, and in general cognitive decline
and psychiatric features are rarely reported in symptomatic LRRK2 mutation carriers [22,
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24]. Conversely a high frequency of depression, anxiety, and irritability, and a trend toward
a greater risk of premorbid mood disorders have recently been reported in symptomatic
LRRK2 mutation carriers by two independent studies [25, 26]. Although dystonia and
levodopa-induced dyskinesias (LID) seem to be more frequent in p.G2019S carriers than
IPD, dystonia appears to be triggered by complications of medical or surgical treatments and
the differences in LID did not reach statistical significances [22, 27].

There has been much discussion over the pentrance of LRRK2 mutations, with estimates
ranging from 30% to 80%. Initial estimates were likely skewed by the inherent
ascertainment bias of family based studies, and by rather small numbers and age ranges for
cohort based work. A more reasonable model has evolved over several years, being one that
takes into account age with penetrance modeled in a large group of cases and controls from
around the World. This shows that the penetrance of LRRK2 mutations is clearly age
dependent, increasing from 17% at age 50 to 85% at age 70 years [28]; notably some
p.G2019S mutation carriers do not manifest disease even in their eighties or later [29].

Given the large number of asymptomatic p.G2019S mutation carriers, numerous reports are
now focused on these healthy carriers in an effort to identify early preclinical biomarkers of
PD. Within this context, lower cognitive performances have been reported in non-
manifesting p.G2019S mutation carriers when compared to healthy non-carriers, suggesting
cognitive impairment, though not commonly seen in symptomatic carriers, as a preclinical
non-motor symptom of PD [30]. A higher frequency of postural and action tremor as well as
gait alterations have also been reported in non-manifesting carriers [21, 31].

Olfactory dysfunction (hyposmia), a well-established non-motor feature of IPD that may
precede disease onset and is present in 70–90% of patients with PD, has been widely studied
in p.G2019S mutation carriers [32, 33]. Most reports agree that symptomatic p.G2019S
mutation carriers also manifest olfactory dysfunction, although this is less frequent than in
IPD [34, 35]. Similar findings have been reported in p.R1441G mutation carriers [36]. On
the other hand, healthy mutation carriers exhibited similar levels of hyposmia to healthy
non-carriers, including non-manifesting relatives, raising the possibility that the occurrence
of this non-motor symptom of PD may be independent of the LRRK2 mutation, or quite a
late event in the disease process [21, 37].

In short, the LRRK2-associated phenotypic spectrum largely resembles the idiopathic disease
and although some efforts have been carried out to establish pre-motor biomarkers for PD in
LRRK2 patients, more work remains to be done toward this end.

LRRK2-associated neuropathology
Postmortem data available for about 40 LRRK2 mutation carriers has revealed that the
LRRK2-associated neuropathology is fairly heterogeneous. Although it is mainly
characterized by the loss of dopaminergic neurons and the presence of Lewy bodies (LBs)
and Lewy neurites (LNs), these are not present in all cases and the same mutation can cause
quite diverse neuropathology [38, 39]. Despite this, the p.G2019S mutation is often
associated with Lewy body pathology and neuronal loss in the substantia nigra (SN), tau
pathology without LBs or LNs, and neuronal loss restricted to the SN, indicating that
LRRK2 mutation does not always manifest as synucleinopathy or LB disease [40]. Similar
findings have been reported for the p.I2020T mutation, where five out of six mutation
carriers exclusively showed tau pathology while tau-positive lesions, restricted to the
brainstem along with alpha-synuclein deposits, were unique to one patient [41]; the
p.Y1699C mutation, who carriers showed nigral neuronal loss and gliosis with either
cortical and brainstem LBs or ubiquitin-positive cytoplasmic and nuclear inclusions [42,
43]; and the p.R1441C mutation, in which available data from four patients also revealed
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variable synuclein and tau pathology: LBs and LNs were detected in two cases (one with
brainstem LB disease and one with diffuse LBdisease), neurofibrillary tangles (NFT)
without either LBs or LNs were identified in a third patient, while neither the presence of
LBs nor NFT were found in the fourth patient [44]. The only case examined with the
p.R1441G mutation showed loss of dopaminergic neurons in SN without alpha-synuclein
inclusions [45]. More recently, the p.N1437H mutation has also been associated with almost
a high degree of dopaminergic cell loss in the SN pars compacta, brainstem, and cortex but
sparse alpha-synuclein pathology, and pronounced ubiquitin-positive pathology in the
brainstem, temporolimbic regions, and neocortex [46].

In conclusion, LRRK2-associated pathology, although mainly characterized by pure nigral
neurodegeneration, is strikingly heterogeneous and can additionally present as tau-, alpha-
synuclein-, TDP-43(one case), or ubiquitin-positive pathologies [39].

LRRK2 mutation modifiers
The reduced penetrance and the variability in the age at onset (AAO) and neuropathology
identified in LRRK2 mutation carriers suggests that LRRK2-associated PD is probably
modulated by a combination of both environmental and genetic factors. Considering the
neuropathological findings in LRRK2 mutation carriers, one might speculate that both SNCA
and MAPT genes, which in turn are associated with the risk of PD [47], may also affect the
LRRK2-related phenotypic expression. Indeed, two different studies have recently reported
that two different MAPT alleles (rs2435207 and rs11079727) substantially affect the age at
onset of motor symptoms in LRRK2 mutation carriers. In both studies heterozygous carriers
of the minor alleles (rs2435207-A and rs11079727-A) developed the parkinsonian
symptoms approximately seven years later [48, 49]. Additionally, two SNCA polymorphisms
(rs356165 and rs356219) have been identified as modifiers of the age at onset in both IPD
and LRRK2-related PD by two independent studies, respectively. One study demonstrated
that both heterozygous and homozygous IPD carriers of the major allele, rs356165-G,
presented with earlier AAO than homozygous carriers of the minor allele (rs356165-A) with
approximately 3 years of difference [50]. A second study showed that PD patients carrying
the p.G2019S mutation also presented with earlier AAO when jointly carried the SNCA
rs356219-G allele; in this study patients developed the parkinsonian symptoms
approximately 9 years earlier than carriers of the homozygous rs356219-A allele [51].

Although these results were carried out in quite small cohorts they provide the first evidence
supporting the notion that varied presentation of LRRK2 disease may arise from a
combination of multifactorial events. Further research is required to support these results
and extend the search for modulating environmental and genetic factors that may affect the
clinical presentation of LRRK2 disease.

Beyond Disease Causing Mutations: LRRK2 and Risk
As discussed above, the first PD linked variants identified in LRRK2 were essentially
disease causing mutations, each being relatively rare in the general population. What has
become apparent over the last 9 years is that the genetic contribution of this locus to PD is
not merely limited to disease causing mutations, but also includes variants that impart
varying degrees of risk for this disease.

Common protein-coding LRRK2 variants as risk factors for disease
In the wake of the original LRRK2 mutation reports, a large number of screening efforts
were performed both to define PD linked variants and to characterize the genetic variability
in and around LRRK2. As described above, this work produced a large list of variants linked
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to disease, the majority only tenuously. Initial efforts failed to create a convincing argument
that common risk variants existed at this locus [52–54], however, after several years of
effort the relationship between common variants at this locus and risk for disease has
become clearer.

As a part of a mutation screening effort, the LRRK2 variant p.G2385R was identified as a
possible cause of PD in a father-daughter pair of patients originating from Taiwan [55]. Less
than a year after this finding, it became apparent that this alteration was unlikely to cause
PD, but may play a more interesting role in disease. In 2006 Vincenzo Bonifati led a study
testing LRRK2 variants in a case control population from Taiwan. This groups data showed
p.G2385R to be relatively common in the control population, being carried by about 1 in
every 20 people free from disease, certainly too common to be considered a mutation, but
that this variant was twice as common in PD patients [56]. This work, which was performed
in a series of ∼600 cases and ∼375 controls, therefore suggested that the p.G2385R
increases risk for disease by about 2 fold; while this was only a relatively modest effect it
has certainly been borne out by subsequent studies. Immediately after this initial result 2
studies confirmed this association both in Taiwanese and ethnic Chinese patients from
Singapore [57, 58]. Since then a large number of reports have investigated this
polymorphism and confirmed an association in varied Asian populations including
Taiwanese, Singaporean Malays, Han Chinese, Hong Kong Chinese, Korean, and Japanese
[59–68]. An excellent and frequently updated synopsis of these findings is maintained at the
online PDgene repository (http://www.pdgene.org/meta.asp?geneID=13) [69], also adapted
here (Fig. 2). While the magnitude and effect of p.G2385R has been borne out consistently
in Asian populations, this alteration has essentially been too rare in other populations to
observe any disease-linked effect.

A second coding variant, p.R1628P has been examined extensively across Asian populations
following an initial report suggesting it conferred risk of a similar magnitude to p.G2385R
[70]. In this original work Ross and colleagues identified p.R1628P as a risk factor in ethnic
Chinese populations from Singapore and Taiwan, conferring an increased risk of 1.84 fold
(95 CI 1.2–2.8). Similar to p.G2385R, the p.R1628P variant exhibits a low allele frequency,
being present in ∼3% and ∼6% of ethnic Chinese controls and cases respectively. p.R1628P
was described as rare or absent in Indian, and Japanese subjects. Examination of this variant
in a series of Malay patients showed no association with disease, however, this likely
reflects the insufficient power of this small series to detect an effect of the expected
magnitude rather than a genuine lack of effect [70, 71]. Replication of the association
between p.R1628P and disease has been largely consistent and has been performed in Han
Chinese, and Korean patients [65, 72–75] (Fig. 2). Further an association with PD was
identified in the Thai population, and given the high observed frequency of the variant allele
in this population, the authors argued that this variant may have emerged from a Thai
founder [76].

One of the most comprehensive studies into the role of LRRK2 variants in disease was
centered on genotyping of 121 exonic variants within the gene across a series of ∼7000
Caucasian patients, ∼5600 Caucasian controls, ∼1400 Asian patients, and ∼1000 Asian
controls [17]. The authors gathered a series of rare and common variants from published
studies, public databases, and their own sequencing data, then tested association for these
across these large series of cases and controls. This work supported a role for p.G2385R as a
risk variant in the Asian population, although not p.R1628P. In the Caucasian series the
authors noted association between p.M1646T and disease (OR 1.43, 95% CI 1.15–1.78).
This variant had been tested previously as a putative risk allele for PD with no obvious
association, however, each of these small studies were relatively unlikely to yield positive
results for a variant conferring such a modest effect size [77–79]. In the same study the
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authors also identified an association between protection against disease and a 3 variant
haplotype p.N551K-p.R1398H-p.K1423K, the data in this study being consistent with a
general protective effect in both Caucasian and Asian series [17]. These three variants exist
in strong linkage disequilibrium, so it is not yet clear which of the three (or which
combination) is the biological effector.

Lastly, in the work by Ross and colleagues p.A419V was posited as a potential risk variant
in the Asian population [17]. While replication has been attempted, thus far the results
remain inconclusive [80–83].

Common non-coding LRRK2 variants as risk factors for disease
The majority of replicated genetic association loci for complex traits are not linked to
obvious protein coding alterations and it is believed that these are likely to exert a biological
effect through mediating expression and splicing [84]. It would appear feasible then that
non-coding risk variants exist at the LRRK2 locus in addition to protein coding risk variants.
While initial efforts to show that this may be true were largely unsuccessful there has been
increasingly compelling evidence of an association at LRRK2 with disease from genome
wide association studies. The first suggestion of this effect was seen by two coordinated
studies in 2009 performed in Asian and Caucasian cohorts [47, 85]. This association in both
the Caucasian and Asian data was most prominent 5′ to the protein-coding region of LRRK2
and was independent of the well known p.G2019S mutation. The association has been
replicated in subsequent well-powered association studies [86, 87]. These studies have
shown quite modest effects of risk alleles at LRRK2 with odds ratios in the range of
∼1.2-1.3, consistent with that seen at most other risk loci identified by GWA.

Future work on LRRK2 and disease risk
As discussed there is good evidence that variability in and around LRRK2 contributes to risk
for PD and that LRRK2 accounts for a greater proportion of the genetic architecture of PD
than previously appreciated. The website PDGene goes some way toward identifying
LRRK2 variants that confer risk by compiling existing data; however, there is a need to
assimilate current genetic data on LRRK2 variants and perform more extensive data
generation in an effort to unequivocally define alleles associated with risk for, and plausibly
protection against, disease. Given the large size of this gene, direct genotyping, sequencing,
and replication would have the benefit of providing information on linkage disequilibrium of
variants, and establishing independency of effects. This type of work is not only important
because it clarifies the role this gene product plays in disease, but also because it is key that
scientists trying to understand the functional basis of lrrk2 in disease know which are truly
associated variants, and which are not. From a genetic perspective this must be one of our
research priorities in understanding LRRK2 and disease.

There are a few as yet answered questions regarding the association of common non-coding
risk variants near LRRK2 and disease. Firstly, are there several non-coding risk variants at
LRRK2; secondly, what is (are) the biologically relevant variant(s); and thirdly, what is the
biological consequence of this variant. It is likely that fine mapping and resequencing efforts
may go some way toward answering the first two questions. It is reasonable to assume that
non-coding variants exert their effect through mediating expression of proximal transcripts,
and good evidence exists to support this idea [88]; to date there is not compelling evidence
of such an association for the LRRK2 risk alleles. There are many reasons why this may be,
the change in expression may be too subtle to detect with current methods, it may be only
apparent under certain states or in certain cell types, or it may effect splicing or UTR usage
rather than the overall level of transcript. It is likely that the increasing availability of
reference data sets for genotype-expression-epigenetic correlation and improved methods for
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transcript profiling may help in dissecting out the relationship between risk alleles and
biological consequence.

A clear trend in PD genetics is the existence of pleomorphic risk loci (PRL), i.e. individual
genetic loci where several types of genetic risk for disease exist, including rare risk variants,
common variants, and rare disease causing mutations [89]. As a general rule the genetics
field has been most successful at identifying disease-causing mutations and common risk
alleles. This latter category has been identified both by candidate gene association studies,
which when performed in genes linked to monogenic forms of disease implicitly test the
PRL hypothesis, and by genome wide association. There has been increasing interest in
another area of the landscape of PRL, rare variants that exert moderate and minor risk. This
category of risk alleles is often thought to be responsible for a major portion of the missing
heritability of complex diseases such as PD. While there has been recent success in the
identification of this type of risk variant in Alzheimer' disease [90, 91], the identification of
such variants is challenging. This work usually requires very large sample series, and,
particularly in the context of very rare variants, an ability to collapse groups of genetic
variability into potential risk and potential protective prior to association testing. While this
type of categorization is often performed computationally, based on a prediction of
consequence (specifically protein coding consequence), there is the potential to incorporate
expression and splicing consequences of rare variants into such a model. As with fine
mapping of loci, it is likely that resequencing, in large series, will aid in the identification of
rare risk alleles at the LRRK2 locus.

The Function of LRRK2 and its Role in Disease
As we have learned more about the genetics of LRRK2, the importance of this gene in
Parkinson's has become ever clearer. It is a large leap, however, from human disease
genetics to therapeutic targeting and one that is dependent upon a clear understanding of
both protein structure and function. What, then, have we learned about the function of
LRRK2 since mutations in the gene were first described? LRRK2 is a large multidomain
enzyme, coupling kinase and GTPase activities with a number of protein/protein interaction
domains [92]. It is one of a small number of proteins in the human genome that possess
more than one enzymatic activity in the same open reading frame, an aspect of LRRK2s
biology that is both attractive (as it presents two active sites to target) and complicates
interpretation of both its normal cellular role and its dysfunction in the disease state. Over
the last ten years a huge amount has been learned about the biochemistry and biology of
LRRK2, and although a clearer picture is beginning to emerge regarding the consequences
of mutations on the function of this protein there are still large gaps in our understanding of
the pathogenic pathways that link LRRK2 to Parkinson's disease.

Structural biology
The complete open reading frame of LRRK2 codes for a 2527 amino acid protein, and initial
domain prediction analysis of the primary sequence of LRRK2 identified two enzymatic
domains: a GTPase and a kinase [93]. The GTPase domain was categorised as a Ras of
Complex Proteins, or ROC, domain while the kinase domain has been variously described as
belonging to the MAPKKK family, to the Mixed Lineage Kinases or to the RIP kinases [94].
Based purely upon the primary sequence of the kinase domain, LRRK2 is most closely
linked to the RIP kinases. The two enzymatic domains of LRRK2 are separated by a domain
of unknown function, a c-terminal of ROC (COR) domain, and are flanked by a number of
protein/protein interaction motifs including a WD40 domain, the Leucine Rich Repeats that
give the protein its name, and a series of repeats in the N-terminal region that have described
as ankaryin repeats and armadillo repeats (Fig. 1) [95].
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A number of atomic resolution structures have been reported for fragments of LRRK2 or
closely related members of the same protein family. The first to be described was a fragment
of human LRRK2 coding for the ROC domain of the protein, revealing a domain swap
dimer structure [96]. Subsequent to this, a crystal structure has been elucidated for a
prokaryotic homolog of LRRK2 isolated from Chlorobium tepidum, supporting a dimeric
structure for this ROCO protein [97]. The chlorobium tepidum protein differs from LRRK2
in that it lacks a c-terminal kinase domain, but provides the first structural detail for the
enigmatic COR domain – suggesting that this domain provides the key surfaces for dimeric
interaction. Finally, the kinase domain of a LRRK2 ortholog from Dictyostelium has been
crystalized and a 1.8 Å structure derived [98]. It is noteworthy that the publically available
structures for LRRK2 highlight the extent of the challenge that LRRK2 presents to structural
biologists: thus far, only small fragments or homologs of LRRK2 have been purified to the
point where structural studies are possible.

Based upon the published structures for LRRK2 and related proteins, Gasper and co-workers
have proposed a model for ROCO protein function based upon Guanosine nucleotide
dependent dimerization (GAD), classing LRRK2 as such a protein [99].

Other than purely structural approaches, a number of studies have been carried out to
investigate the complex formed by LRRK2 under cellular or in vitro conditions. Using
techniques such as size exclusion chromatography and blue native gel electrophoresis,
several groups have reported that LRRK2 forms a complex consistent with a dimeric
conformation [100–102], although there are reports in the literature that conflict with this
[103]. Further studies using electron microscopy also support a dimeric conformation [104],
and taking all of the extant data into consideration it is likely that dimerization plays an
important part in the function of LRRK2 in a cellular context. A recent study using total
internal reflection microscopy suggests that LRRK2 is predominantly monomeric in the
cytoplasm, and forms a multimeric complex when associated with membranes [105]. The
elucidation of the precise atomic structure of this complex, and the dynamics of this
interaction in a functional context, remain a huge challenge.

Enzymatic function
The presence of two predicted enzymatic domains in the LRRK2 open reading frame has
focused a considerable research effort on characterising and defining these activities. Soon
after the description of mutations in LRRK2 linked to PD, a series of papers reported that
LRRK2 was indeed an active kinase [106–108]. Similarly, several groups have reported that
LRRK2 possesses a functional GTPase activity [109–111]. One of the many puzzling
aspects of LRRK2 biology is how these two enzymatic activities relate to one another.
Based upon a study investigating GTPase and kinase function in LRRK1, a close human
homolog of LRRK2, which revealed that the kinase function of this protein was dependent
upon GTP binding by the ROC domain [112], a number of publications have examined
whether the kinase activity of LRRK2 has a similar requirement [96, 113–115]. This led to
the development of a model for LRRK2 enzymatic activity analogous to that applied to the
small GTPases such as Ras, where the tightly controlled cycle between GTP and GDP
bound states governs the activity of interacting kinases (in the case of Ras, the kinase Raf).
More recent studies have suggested that the kinase activity of LRRK2 is dependent not upon
whether GTP or GDP occupies the active site of the ROC domain, but upon whether there is
a Guanosine nucleotide of any description within the active site [116]. Although by no
means proving that the GAD model for LRRK2 function is correct, these data are certainly
consistent with a Guanosine nucleotide dependent activation of kinase activity.

Intriguingly, there is accumulating evidence that the kinase activity of LRRK2 can be
directed against its own ROC domain [117, 118], suggesting that there is a complex,
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reciprocal relationship between the enzymatic activities of this protein. Even more intriguing
is a report that phosphorylation of the ROC domain can have a functional impact on the
properties of this domain [119]. It should be noted that much of the data relating to
phosphorylation of the ROC domain of LRRK2 derives from in vitro model systems, and
this has not yet been demonstrated to be a physiologically relevant phenomenon, therefore
caution should be exercised in interpreting these results.

Outside of the ROC/COR/Kinase enzymatic core of LRRK2, it has become clear that the far
c-terminus of LRRK2 plays a crucial role in regulating the kinase activity of this protein.
Loss of the WD40 domain ablates the kinase activity of LRRK2, and provocatively even the
loss of the seven amino acids at the far c-terminus of LRRK2 (residues 2520–2527) results
in a kinase inactive form of the protein [120, 121]. How the WD40 domain can have such an
impressive impact on kinase activity is not clear, and the impact of c-terminal truncation on
LRRK2s GTPase activity has not been thoroughly investigated. It is likely that the
underlying mechanism relating the WD40 domain to the enzymatic activities of LRRK2 will
not be completely clarified until detailed structural information describing the precise spatial
relationships of the different domains of LRRK2 is elucidated.

One final aspect of the control of LRRK2 enzymatic activity, linking in with the GAD
model for ROCO protein function, is the dependence of kinase activity in particular upon
dimerization. Although it is technically challenging to determine whether this kinase activity
is derived from one species of LRRK2 rather than another (dimeric versus monomeric),
there is evidence from several experimental conditions that the kinase activity of LRRK2 is
dependent upon dimerization [100, 101, 122]. Clearly, more work is needed to determine if
dimerization is an absolute requirement for kinase activity or if multiple LRRK2 complexes
are enzymatically active [123].

Signaling pathways and cellular function
The cellular function/functions of LRRK2 have been a matter of great debate ever since the
initial report of mutations in LRRK2. Given its large size and complex domain structure, it
is perhaps not surprising that LRRK2 has been implicated in a startling array of cellular
tasks.

The starting point for many of these roles has been LRRK2s status as a kinase, GTPase and
putative signalling scaffold [92, 124]. A number of studies have placed LRRK2 in one of the
many established signalling cascades, including the mTOR, ERK, WNT and TLR pathways
(Figure) [125–128]. The key challenge for these studies has been the validation of LRRK2s
involvement by the demonstration of a physiological LRRK2 dependent phosphorylation
event, and, despite almost ten years of searching, a clear validated substrate for LRRK2 has
yet to emerge.

One aspect of LRRK2 biology that has stood the test of repeated investigation is an
interaction with 14-3-3 proteins, dependent upon phosphorylation at residues S910 and S935
[129–131]. Phosphorylation and binding of 14-3-3 proteins plays an important role in the
cellular localisation of LRRK2, although the kinase(s) responsible for directly
phosphorylating LRRK2 at these residues has not been identified. Indeed, studies of the
cellular localisation of LRRK2 have provided some clues as to what it may be doing within
the cell. Data from a number of groups, using a variety of approaches, suggests that LRRK2
can associate with membrane structures in the cell [132–134]. Biochemical studies and total
internal reflection microscopy have provided evidence that LRRK2 can cycle between a
cytosolic, monomeric form which has decreased activity, and a membrane associated,
multimeric form that has a higher activity [105, 122].
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With regard to the physiological processes that these cascades link LRRK2 to, the recurring
cellular themes are vesicle cycling, autophagy, miRNA processing and cytoskeletal
regulation (Fig. 3). It is not yet clear if these represent independent or convergent roles for
LRRK2, and it is certainly not beyond the bounds of possibility that LRRK2 might have
important roles in a number of cellular processes given its complicated domain structure
[123].

A number of studies have highlighted a role for LRRK2 in the regulation of synaptic
vesicles [135, 136], with Matta and coworkers demonstrating that LRRK2 interacts directly
with endophilins to exert an influence on vesicle endocytosis. Further evidence of a role for
LRRK2 in vesicular biology comes from studies linking LRRK2 to cellular macroautophagy
[128, 137–139], although it is not clear precisely how LRRK2 impacts on this process. A
strong line of evidence supporting a role for LRRK2inautophagy, albeit a complicated role,
comes from studies of mice lacking LRRK2 [140, 141]. In these mice, knockout of LRRK2
results in a kidney phenotype marked by inclusions and by alterations in markers for
autophagy – although again the precise reason why this occurs is not clear. The
complications arise from an apparent biphasic impact on autophagy, with autophagic
markers altering through development. A more recent study has implicated LRRK2 in
chaperone-mediated autophagy (CMA), suggesting that alterations in LRRK2 can result in
defective CMA [142]. Macleod and coworkers have reported LRRK2 interacting with
Rab7L1 to influence protein sorting, including lysosomal protein sorting, via the retromer
complex – suggesting that multiple systems surrounding protein disposal can be adversely
impacted by LRRK2 [143].

As noted above, miRNA regulation is another recurring theme in LRRK2 biology. Gehrke
and colleagues described LRRK2 regulating let-7 and miR-184* to control protein
translation, with a subsequent study by Cho et al reporting LRRK2 levels being regulated in
turn by miR-205 [144, 145]. How LRRK2 regulates, and is regulated by, miRNAs is an area
of active investigation. It will be of particular interest to discover if these interactions have a
consistent pathological role in human cell models and brain tissue.

LRRK2 has been identified as interacting with a number of cytoskeletal proteins, including β
Tubulin [146, 147], actin [148] and Moesin [120]. There is increasing evidence linking
LRRK2 to a functional role in the control of cytoskeletal remodeling, which is of particular
interest given that one of the more robust cellular phenotypes associated with LRRK2,
alterations in neurite branching, can be impacted by this [149, 150].

One area of LRRK2 biology that is under increasing scrutiny is a putative role in the
immune system. It has long been noted that LRRK2 is highly expressed in immune cells,
and several studies have shown that LRRK2 is involved in the response to pathogens and
interferon γ [151, 152]. Intriguingly, the LRRK2 locus been implicated in Crohn's disease
and susceptibility to leprosy, providing a genetic link to immune disease [153, 154] and
recent studies have highlighted a potential role in microglial response within the brain [155,
156]. How these data tie in to the cellular biology of LRRK2 is unclear, but this is certainly
an area that merits further investigation.

Mutations in LRRK2 and their impact on biology
The central question in LRRK2 biology, and the question that drives the majority of research
into this protein, is straightforward: how do the mutations in LRRK2 linked to PD result in
disease? The answer, unfortunately, is convoluted. From a genetic standpoint, as highlighted
earlier in this article, it is clear that the enzymatic core of LRRK2 is central to the role of
this protein in neurodegeneration as the penetrant mutations unambiguously linked to
disease all cluster within the ROC/COR/kinase triptych of domains [17]. To date, however,
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no consistent biochemical impact of these mutations has been reported (Table 1). Mutations
in the ROC and COR domains (for example those at codon 1441 and the p.Y1699C
mutation) act to decrease GTPase activity by an as yet undefined mechanism, although
based on the GAD model for LRRK2 function one could hypothesise a disruptive influence
on dimer formation for both of these residues. A detailed characterisation of the impact of
mutations in the kinase domain (either the p.G2019S or p.I2020T mutants) upon GTPase
activity of full length LRRK2 has not yet been carried out, however the p.G2019S mutation
results in a 20% reduction in GTPase activity compared to wild type LRRK2 in assays using
a truncated recombinant form of the protein [157]. This suggests that the GTPase activity of
LRRK2 is certainly worthy of further investigation. The impact of mutations throughout the
ROC/COR/kinase domains upon kinase activity has been assessed by a number of groups,
with a substantial and consistent impact noted for p.G2019S but not other mutations
(including the p.I2020T mutation, located at the residue next to p.G2019) [158]. In a
surprising twist, a recent study has suggested that a risk variant in the WD40 domain of
LRRK2 found associated with PD in asian populations (the p.G2385R polymorphism)
substantially decreases the kinase activity of LRRK2 – the opposite of the impact of the
p.G2019S mutation [121]. If correct, this result has profound implications for the
development of inhibitors targeting the kinase activity of LRRK2 as a therapeutic avenue.
An example of the complexities of enzymatic activities and inhibition in a cellular context is
presented by a recent analysis of Wnt signaling linked to LRRK2 – with both mutations
(including the p.G2019S mutation, and therefore a hyperactive kinase) and kinase inhibition
resulting in the same cellular alteration in Wnt signaling [124]. A comprehensive analysis of
the impact of mutations on the folding and turnover of LRRK2 has not been reported,
however there are suggestions that the p.R1441C and p.I2020T mutations could alter protein
stability and/or protein turnover – which would, of course, have a significant impact on
enzymatic activity [159, 160]. Despite almost ten years of research, we are still unsure as to
what aspect of LRRK2s biochemistry we should be concentrating on in the context of
Parkinson's disease. If any theme emerges looking across the extant literature covering the
biochemical impact of mutations in LRRK2, it is that disruption of enzymatic activity –
whether up or down, kinase or GTPase – can be deleterious. This suggests a model where
LRRK2 activity is tightly regulated within cells, and it is the disruption of this regulation
regardless of the direction that results in the instigation of disease.

Unfortunately the picture is just as murky when the impact of LRRK2 mutations on cellular
phenotypes is considered. One of the few consistent aspects of LRRK2 mutations in a
cellular context is that they display increased toxicity compared to the wild type protein, and
this toxicity is dependent upon kinase activity [108, 115]. What drives this toxicity is not
known, although there is no shortage of possibilities - ranging from FADD signalling
through to changes in translational regulation [144, 161]. A major stumbling block, similar
to that encountered when assessing the biochemical impact of mutations in LRRK2, is that
different mutations quite often have different outcomes with regard to a given cellular
readout. A good example of this is provided by the robust interaction between LRRK2 and
14-3-3 [129, 130]. While the p.R1441G, p.Y1699C and p.I2020T mutants all have a major
impact on the phosphorylation of LRRK2 at p.S910 and p.S935 (and thus a decreased
binding of LRRK2 to 14-3-3), the common p.G2019S mutant does not. Conversely, a
number of cellular phenotypes linked to PD mutations in LRRK2 – for example the impact
on miRNA processing described by Gehrke and coworkers - alter in the presence of the
p.G2019S mutation, but not other mutations. This poses a particular conundrum to
researchers: we know that kinase activity is important for LRRK2 and its pathogenic impact,
and we know that the p.G2019S mutation that alters kinase activity is the most common
mutation in LRRK2, but it is equally clear that kinase activity, or at least a simple increase
in this activity, is not the only factor in the pathogenic process. The challenge, therefore, is
to distinguish between phenotypes that are primarily driven by the kinase activity of LRRK2
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(particularly the case with the p.G2019S mutation) and those that are truly associated with
disease. One obvious way to address this is to examine mutations in each of the domains of
LRRK2, for example the p.R1441G, p.Y1699C and p.G2019S substitutions (with the
possible addition of the p.G2385R polymorphism in the WD40 domain), for any phenotype
that is suspected to link with LRRK2. It is of course conceivable that different mutations in
LRRK2 have different mechanisms of action, but, given the consistent clinical phenotype
associated with LRRK2 mutations, it is highly likely that there is a property that unites all of
the mutations in LRRK2 – the problem is that we haven't found it yet.

Animal models for LRRK2 dysfunction
Given the interest in LRRK2 and its role in PD, it is perhaps not surprising that a large
number of animal models for LRRK2 dysfunction have been developed. Drosophila
melanogaster, Danio rerio and Caenorhabditis elegans models have been developed,
including knockout, knockdown and overexpression of the human protein (plus and minus
mutations) or the equivalent fly, fish or worm orthologs [125, 162–168]. The interpretation
of the data from these models is complicated by the relationship between human LRRK2
and the LRRK genes found in these species: in all three cases there is only one LRRK gene,
and whether this corresponds to human LRRK1 or LRRK2 is a matter of some debate [169].

Rodents, in contrast, have orthologs of both human LRRK genes and a number of mouse
and rat models for LRRK2 have been developed over the last nine years (summarised in
reference [170]). In common with rodent models for other genes linked to Parkinson's
disease, these have proved to be somewhat disappointing in terms of replicating a phenotype
that is equivalent to the human disorder [171]. Important insights into LRRK2 dysfunction
have been gained, however, by detailed analysis of these models. A putative role for LRRK2
in modulating alpha synuclein pathology was reported by Lin and co-workers examining
transgenic mice expressing LRRK2 and the p.A53T form of alpha-synuclein, and several
models using both BAC expression of LRRK2 mutants and viral mediated acute expression
have reported accumulation of tau [172–175]. These findings are particularly interesting in
the light of the varied pathology observed in human LRRK2 mutation carriers. Echoing the
vesicular data from cellular models, the p.R1441C mutation impacts on dopamine cycling in
mice [176]. The extant transgenic models for LRRK2 do not, on the whole, present with
neuronal degeneration, however acute expression of LRRK2 via viral transduction provides
evidence of direct neuronal toxicity in an in vivo setting [177, 178]. How this acute
expression relates to the drawn out pathogenic process seen in human PD is unclear. Knock
out rodent models for LRRK2 have likewise revealed important insights into LRRK2
biology – providing evidence of a link to autophagy and to Crohn's disease [140, 179].

Future functional challenges
As is abundantly obvious from this brief summary of our current understanding of LRRK2
biology, there are many challenges still to be met before we have a complete picture of
LRRK2s function and how this is perverted in Parkinson's disease. Two even larger
challenges are on the horizon. First, and dependent upon elucidation of the role of mutations
in LRRK2 in the pathological cascade that leads to Parkinson's disease, will be how to
correct their impact. Based upon the indubitable importance of kinase activity in the
aetiopathogenesis of LRRK2 linked PD, there is a concerted effort underway to develop
inhibitors of LRRK2 kinase activity [180]. It is by no means clear, however, if this approach
will succeed in a clinical setting–although it is likely that LRRK2 kinase inhibitors will be
tested in a clinical trial sooner rather than later.

The second major challenge is to dissect the role of LRRK2 in sporadic PD. The scale of this
challenge on a cellular scale is difficult to underestimate. We have, to date, struggled to
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decipher what mutations in LRRK2 strongly associated with disease do to the brain. How
much more difficult will it be to understand how subtle variation at the LRRK2 locus,
accounting for a fraction of a percentage point of increased life time risk for PD, impacts of
the pathogenesis of this disorder? At present it is not known what the association uncovered
by the GWA studies at the LRRK2 locus represents, and indeed uncovering exactly what the
association drives at a functional level may be no small feat in itself.

Summary
The field has made enormous progress since the discovery of LRRK2 mutations in 2004. Our
understanding of the genetic basis of this disease has increased exponentially since this time,
and it is clear that varied forms of LRRK2 exert many different types of influence on the
disease process. Likewise, while there is still a long way to go in understanding the
pathobiological basis of PD, LRRK2 mutations have provided valuable insights into this
process, and the tools with which to understand more. We believe that this is an exciting
time in PD research, and we believe that LRRK2 will be central to this effort for a long time
to come.
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Fig. 1.
LRRK2 ideogram showing functional domains and penetrant mutations.
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Fig. 2.
Forest plot showing risk associated with the p.G2385R Lrrk2 variant. Modified from
PDGene (http://www.pdgene.org/meta.asp? geneID=13) [69] to show only studies
performed in Asian populations. Data abstracted in January 2013.
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Fig. 3.
The biology of LRRK2. LRRK2 has been implicated in a host of different cellular
processes.
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Table 1
Summary of the impact of mutations in LRRK2 on biochemical readouts for LRRK2
function

Mutation Domain Enzymatic impact 14-3-3 binding

p.N1437H ROC Unknown Unknown

p.R1441C ROC GTPase↓ ↓

p.R1441G ROC GTPase↓ ↓

p.Y1699C COR GTPase↓ ↓

p.S1761R COR Unknown Unknown

p.I2012T Kinase None ↓

p.G2019S Kinase Kinase ↑ GTPase↓ No change

p.I2020T Kinase None ↓

p.G2385R WD40 Kinase↓ No change
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