
Identifying Differentiation Stage of Individual Primary
Hematopoietic Cells from Mouse Bone Marrow by Multivariate
Analysis of TOF-Secondary Ion Mass Spectrometry Data

Jessica F. Frisz†, Ji Sun Choi‡, Robert L. Wilson†, Brendan A. C. Harley‡,§, and Mary L.
Kraft†,‡,*

†Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
‡Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801
§Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract
The ability to self-renew and differentiate into multiple types of blood and immune cells renders
hematopoietic stem and progenitor cells (HSPCs) valuable for clinical treatment of hematopoietic
pathologies and as models of stem cell differentiation for tissue engineering applications. To study
directed HSC differentiation and identify the conditions that recreate the native bone marrow
environment, combinatorial biomaterials that exhibit lateral variations in chemical and mechanical
properties are employed. New experimental approaches are needed to facilitate correlating cell
differentiation stage with location in the culture system. We demonstrate that multivariate analysis
of time-of-flight secondary ion mass spectrometry (TOF-SIMS) data can be used to identify the
differentiation state of individual hematopoietic cells (HCs) isolated from mouse bone marrow.
Here, we identify primary HCs from three distinct stages of B cell lymphopoiesis at the single cell
level: HSPCs, common lymphoid progenitors, and mature B cells. The differentiation state of
individual HCs in a test set could be identified with a partial least squares discriminant analysis
(PLS-DA) model that was constructed with calibration spectra from HCs of known differentiation
status. The lowest error of identification was obtained when the intra-population spectral variation
between the cells in the calibration and test sets was minimized. This approach complements the
traditional methods that are used to identify HC differentiation stage. Further, the ability to gather
mass spectrometry data from single HSCs cultured on graded biomaterial substrates may provide
significant new insight into how HSPCs respond to extrinsic cues as well as the molecular changes
that occur during cell differentiation.
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INTRODUCTION
The body’s full spectrum of blood and immune cells is generated from a small number of
hematopoietic stem cells (HSCs) that are located within the bone marrow.1–4 HSCs self-
renew and differentiate into increasingly less-rare and more-mature HCs.2,5–9 This renders
HSCs of significant value for clinical treatment of hematopoietic pathologies and as models
of stem cell differentiation.10

Presently, much research focuses on developing culture systems that mimic the bone
marrow’s chemotactic and micromechanical properties to enable control over HSC
differentiation. Engineered biomaterials that exhibit spatial variations in mechanical
properties and ligand presentation are especially attractive because they enable screening the
effects of multiple microenvironments on HSC fate using a minimal number of cells.11–13

To utilize such combinatorial systems, rigorous methodologies to aid identification of HC
differentiation stage at the single cell level with location specificity are highly attractive.
Currently, differentiation stage is most commonly assessed via fluorescence microscopy
using cocktails of differentiation stage specific antibodies;14 however ambiguity from
single-cell fluorescence analysis of small cell populations and inter-user variability of
immunolabeling approaches can be a significant drawback.15

We hypothesized that information about the expression profiles of cell surface antigens as
well as other differences in cell surface chemistry could be acquired with time-of-flight
secondary ion mass spectrometry (TOF-SIMS), and exploited to identify the differentiation
stage of individual HCs within a culture. Mass spectral maps of the molecules at the surface
of an individual cell can be collected with TOF-SIMS.16–18 Because the spectra collected
from biomaterials using TOF-SIMS instruments equipped with liquid metal primary ion
sources are dominated by low mass (m/z<300) fragment ions that are common to multiple
biomolecules, multivariate analysis is often employed to discriminate the spectra of
biomolecules and cells.16,19–30 Unknown samples have also been identified with supervised
multivariate models that are constructed from the TOF-SIMS data of known samples.20,27

For example, two different cell lines in a heterogeneous culture have been identified with
location specificity by partial least-squares discriminant analysis (PLS-DA) of TOF-SIMS
data.31 Though this work achieved the location-specific identification required for studies of
HSC fate decision, the accuracy of identifying primary cells that exhibit higher intra-
population heterogeneity than laboratory cells lines32 with this approach has not been
quantitatively assessed.

Here, we report our efforts to classify individual primary murine HCs isolated from the bone
marrow according to their stage in the B lymphocyte differentiation pathway by multivariate
analysis of TOF-SIMS data. We focus on identifying three populations of primary HCs that
were isolated from murine bone marrow via conventional flow cytometry (Figure 1): 1)
hematopoietic stem and progenitor cells (HSPCs) that do not express lineage antigens (Lin−)
but that do express Sca1 and cKit (Lin−Sca-1+c-Kit+, LSK); 2) common lymphoid
progenitors (CLPs, Lin−IL-7Rα+Sca-1medc-Kitmed); and 3) mature B cells (B220+IgM+).6,33

These populations represent distinct cell phenotypes during lymphopoiesis: uncommitted
stem and progenitor cells (HSPCs), lineage specified progenitor cells (CLPs), and fully-
differentiated cells (B cells). We further investigated use of TOF-SIMS data to identify
differences between HSPC populations isolated from young and old mice. Though isolated
using identical sorting criteria, significant age-related differences in HSC functionality have
been previously reported, making classification approaches that do not rely on surface
antigen expression especially significant.34–36 The potential for existence of populational
subfractions with improved HSPC stemness, therefore, motivated study of whether TOF-
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SIMS approaches could segregate HSPCs isolated via identical flow conditions from young
and old mice.

Identification of the differentiation stage of individual primary HCs by multivariate analysis
of TOF-SIMS data is complicated by the high degree of heterogeneity that exists within
primary cell populations.37–39 Such intra-population heterogeneity can hinder the detection
of the differentiation-related spectral features.19,22 We selectively captured the spectral
variation between, but not within, each cell population, by employing PLS-DA models
constructed using spectra from HCs of known differentiation status (calibration data set) to
accurately identify the differentiation state of test HC cells. The lowest error of
identification was achieved when the intra-population spectral variance that may be caused
by auto-specific and age-related differences in cell surface chemistry were minimized. This
approach may enable identifying cell differentiation status and its relationship to location
within a colony or engineered microenvironment.

METHODS
HC isolation and preparation

The hematopoietic subpopulations were isolated from the femoral and tibial bone marrow of
female C57BL/6 mice (Jackson Labs) (see the Supplemental Information for details of
isolation and preparation). Distinct age ranges were used for ‘old’ (10 months old) and
‘young’ (2 – 4 months old) mice.

TOF-SIMS
Mass spectral images were acquired in unbunched mode (total primary ion dose = 3 × 1013

ions/cm2) using a PHI Trift-III TOF-SIMS (Physical Electronics Incorporated, Chanhassen,
MN) instrument with a 197Au+ liquid ion gun that was operated at 22 kV. The primary ion
beam was raster scanned across the sample, and positive-ion spectra with a mass range of 0
to 800 amu were acquired at each pixel.

Data analysis
Multivariate analysis was performed using the PLS Toolbox (v.6.2.1, Eigenvector Research,
Manson, WA) run in MATLAB (v.7.12.0 R2011a, MathWorks Inc., Natick, MA). Unit mass
binned spectra of individual cells were extracted from the TOF-SIMS images and imported
into the PLS toolbox. Outlier spectra that exhibit unusual variation were identified as
described in the Supplemental Information and Figure S1, and excluded from further
analysis. Construction of the PLS-DA and PCA models is described in the Supplemental
Information, Table S1, and Figures S2 – S5.

RESULTS
The Differentiation Status of Primary HCs Isolated from Mouse Bone Marrow Can Be
Identified by PLS-DA of TOF-SIMS Data

A PLS-DA model was constructed from a calibration data set consisting of the spectra
acquired from 15 B cells, 13 CLPs, and 15 HSPCs isolated from five old mice. This PLS-
DA model was then used to identify the differentiation stage of 15 B cells, 12 CLPs, and 15
HSPCs (test data set) also harvested from the same mice. To increase the probability that the
identification was based on cell surface biomolecules and not contaminants, only the peaks
that were related to amino acids, phosphocholine, and fatty acids were analyzed (cell-related
peak set, Table S1).22,40 Figure 2A – 2C shows the identifications made with the PLS-DA
model, where the cells that exceeded the classification threshold (red dashed lines in Fig. 2A
– 2C) were identified as the indicated population. Table 1 lists the sensitivity (the fraction of
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cells in the specified population correctly identified as that population), specificity (the
fraction of cells from other populations that were correctly identified as not in the specified
population) and error (average of the false positive and false negative rates) for identifying
each HC population. The differentiation stages of the calibration cells were re-identified
with high sensitivity and specificity, and the errors for identifying the B cells, CLPs, and
HSPCs in the calibration set were only 0%, 2%, and 10%, respectively. Likewise, the
differentiation stages of the cells in the test set were also identified with high sensitivity,
high selectivity, and low error (3%, 8%, and 11% identification error for the test B cells,
CLPs, and HSPCs, respectively). Thus, the variance in the peaks related to amino acids,
phosphocholine, and fatty acids in the spectra was characteristic of HC populations, and
could be exploited to identify the differentiation stage of individual HCs.

The contributions of each mass peak to the spectral variance that identifies the B cells,
CLPs, and HSPCs are shown in the variable importance in projection (VIP) plots (Fig. 2D –
2F). Peaks with VIP scores greater than unity exhibit variance that is important towards
identifying the indicated population.41–42 For at least two of the three cell types, peaks m/z
53, 55, 86, 130, 148, 166, 184, 190, 205, 206, 210, and 279 have high VIP scores. Although
some of these peaks are related to multiple biomolecular building blocks, phosphocholine,
fatty acids, glutamine, glutamic acid, leucine, and tryptophan are likely candidates for the
parent components because they are related to two or more of the peaks with high VIP
scores. The amino acid-related peaks with high VIP scores might reflect changes in the
differentiation-specific proteins expressed on the cell surface, or the presence of the different
antibodies used to isolate each HC population by flow cytometry. To investigate whether the
antibodies used for cell isolation significantly contributed to cell identification, a PLS-DA
model was constructed using spectra from the antibody cocktails that were used to isolate
each HC population. Few of the peaks with the highest importance towards identifying the B
cells, CLPs, and HSPCs (Fig. 2D – 2F) also had high importance towards identifying the
antibodies used to isolate the B cells, CLPs, and HSPCs (Fig. S3A – S3C), respectively.
This suggests that the mass fragments produced by the population-specific antibodies did
not contribute significantly to the spectral variation that identified each HC population.
Though analysis of only the peaks related to amino acids, phosphocholine, and fatty acids
increases the probability that the identifications are based on biomolecules and not sample-
specific contaminants, it precludes detecting differentiation-related variations in other cell
surface components, such as glycans.43–44 Higher sensitivity and specificity of identifying
the calibration and test cells was achieved when PLS-DA was performed using all of the
peaks between 50 and 300 m/z that were not related to known contaminants (Table 1 and
Fig. S4). However, the resulting model may not be applicable towards identifying the
differentiation stage of other cell samples if the peaks with high VIP scores were related to
sample-specific contaminants, and not cell biomolecules.

Extent of Intra-Population Variation between HCs from Mice that Differ in Age
This approach to identifying HC differentiation status would have greater applicability if the
PLS-DA model could be constructed using the spectra of cells that were harvested from
different mice as those in the test set. However, primary cells from different mice exhibit
auto-specific and age-related differences in cell surface chemistry.32,34 Though subtle, these
differences may increase the intra-population spectral variance between the calibration and
test cells to a level that is detrimental to identifying cell differentiation stage. To investigate
whether such changes in cell surface chemistry induce detectable spectral variance within
each HC population, PCA was performed on the spectra of cells that were harvested from
two sets of C57BL/6 mice that differed in age: 10-month-old (old) and 2- to 4-month-old
(young) mice. These two age groups were selected because HSCs from mice of these ages
exhibit identical surface antigen expression but significant functional and epigenetic
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differences.34–36 Note that the intra-population spectral variation detected between these old
and young cells is likely larger than that exhibited by the cells that are used to study HSC
fate decisions (typically < 6 months of age).38,45–48

The B cells from the old and young mice were not separated on the first principal
component (PC) of the PCA model (Fig. S5). This indicates the linear combination of mass
peaks whose intensities varied the most (26%) within this B cell population was not caused
by auto-specific or age-related changes in cell chemistry. However, the B cell spectra from
the young and old mice were separated on PC2 and PC3; the young B cells had positive
scores on PC2 and PC3, whereas the old B cells had negative scores on PC2 and/or PC3
(Fig. 3A). The majority of the peaks with high negative loadings on both PC2 and PC3, and
therefore, higher normalized intensities in the spectra of the B cells from the old mice, were
mainly related to lipids (m/z 86, 166, 168, 182, 184, and 224). In contrast, many of the peaks
with high positive loadings on PC2 and PC3, and higher normalized intensities in the spectra
of B cells from the young mice, were related to amino acids (m/z 51, 130, 155, 178, 179,
205, 263, and 279). This suggests that the B cells from the young mice had a higher ratio of
proteins to lipids on their surfaces than the B cells from the old mice.

For the PCA models constructed for the CLPs and HSPCs, the first PCs captured
approximately half of the spectral variance in the data set and separated the spectra of cells
from the old and young mice (Fig. 3B – 3C). Thus, the major source of spectral variation in
the HSPC and CLP populations could be attributed to age-related and auto-specific
differences in cell surface chemistry. In both models, the CLPs and HSPCs from the young
mice had positive scores on PC1 and PC2, whereas the CLPs and HSPCs from the old mice
had negative scores on PC1 and/or PC2. The peaks with high negative loadings on PC1 and
PC2 were mainly related to lipids, whereas peaks that were mainly related to amino acids
had high positive loadings on these two PCs (Fig. 3B – 3C). Thus, like the B cells, the
surfaces of the CLPs and HSPCs from the old mice have lower protein to lipid ratios than
the surfaces of the CLPs and HSPCs from the young mice.

Though a more extensive study that employs a larger number of mice would be required to
confirm these results, this preliminary data suggests that all three HC populations exhibit an
age-related decrease in the protein to lipid ratio on the cell surface. This finding is consistent
with previous work that demonstrated glycerolipid metabolism increases in the tissues of
aged mice.49 However, complementary metabolic profiling analyses would be required to
exclude the possibility that age-related increases in protein misfolding lead to an increase in
the degradation or intracellular accumulation of protein,50 and a decrease in the protein to
lipid ratio on the aged HCs.

Effects of Intra-Population Variation between the Calibration and Test Spectra on the
Identification of HC Differentiation Stage

We next assessed whether the intra-population spectral variance detected with PCA was
significant enough to compromise the identification of HC differentiation stage. The spectra
of 30 B cells, 25 CLPs, and 29 HSPCs that were harvested from the old mice were used to
construct a PLS-DA model that was used to identify the differentiation stage of the 20 B
cells, 20 CLPs, and 14 HSPCs in the test data set from the young mice. Self-identification of
the old B cells, CLPs, and HSPCs in the calibration set was achieved with ≤4% error (Figure
4A – 4C, Table 2), demonstrating the variance between the calibration cells was well-
captured by the model. The peaks with high VIP scores (Fig. 4D – 4F) were similar to those
in Fig. 2D – 2F. Identification of the differentiation stage of the test HCs from the young
mice using this model was less accurate, as the errors for identifying the test B cells, CLPs,
and HSPCs from the young mice were 19%, 26% and 11%, respectively (Table 2). Thus,
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auto-specific and age-related differences in the calibration and test spectra appeared to
compromise the identification of HC differentiation stage.

Finally, we investigated whether use of the complete peak set improved the precision of
identifying HC differentiation stage. The errors in identifying the calibration cells were ≤6%
(Table 2), respectively, which is similar to that achieved with the cell-related PLS-DA
model. Inclusion of the mass peaks that were related to unknown biomolecules in the
analysis was detrimental to identifying the differentiation status of the test cells from the
young mice; the prediction error rose to 34%, 26%, and 49% for the test B cells, CLPs, and
HSPCs, respectively (Table 2, Fig. S6). Thus, the peaks not related to amino acids,
phosphocholine, or fatty acids varied significantly between the spectra in the calibration and
test sets. Additional work towards identifying the parent molecules that produced the
unknown peaks with high VIP scores is required to determine whether the spectral variation
between the calibration and test cells was due to contaminant molecules or changes in cell
surface chemistry.

DISCUSSION AND CONCLUSION
Biomaterial substrates that exhibit orthogonal gradients in composition and stiffness have
the potential to permit elucidation of the combination of cues that induce specific HSC fates.
The rarity of these cells in the body makes quantitative single cell analysis methods
particularly valuable. To realize this potential, robust methods must be developed to identify
the differentiation stages of individual HSCs at distinct regions on a biomaterial. For this
purpose, we have shown that TOF-SIMS data encodes for the surface chemistries exhibited
by distinct HC populations, and PLS-DA can translate this chemical data into HC
differentiation stage. Because PLS-DA uses numerical algorithms to quantify the probability
that a HC is at the specified differentiation stage, this approach is more objective and less
prone to inter-user variability than traditional immunolabeling methods. Additionally, cell
surface chemistries that may be distinctive of individual organisms or aging are also
encrypted in the TOF-SIMS data. Differences between the auto-specific and age-related
surface chemistries exhibited by the cells in the calibration and test sets induce spectral
variance that compromises the identification of HC differentiation stage. Consequently, the
cells employed to construct the PLS-DA model should be from the same age group as the
unknown cells in the test set to optimize precision.

Having demonstrated the feasibility of identifying the differentiation stages of individual
primary HCs with location specificity by multivariate analysis of TOF-SIMS data, we
expect ongoing work may enable the identification of additional HC subpopulations. To
improve our capacity to detect subtle changes in HC phenotype, we are currently
incorporating additional distinct HC subpopulations to construct a next generation of PLS-
DA models. Most significantly, the HSPC population used in the current analyses contains a
mix of stem and progenitor cells with differential long-term stem cell potential (Fig. 1).
Future work that examines significantly more rare hematopoietic subpopulations (i.e. LSK
CD150+CD244−CD48−)15 that are specifically enriched for the most primitive HSCs
subpopulations and show significant age-related changes in stemness48 would likely
enhance our ability to identify early HSC fate decisions. Overall, we expect that use of this
approach to identify the differentiation stages of individual HCs within combinatorial
biomaterials will greatly facilitate correlating HSC fate decisions to environmental cues,
critical to the design of ex vivo culture systems in order to control HSC bioactivity.

Our data indicate that the ratio of proteins to lipids on the surfaces of B cells, CLPs, and
HSPCs decreases as the age of the donor mouse increases. Though we limited discussion of
this observation to comparison with current knowledge in the field, this finding
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demonstrates that information on the cell surface chemistries that differ between HC
populations may be acquired with this approach. Presently, the amount of compositional
information that can be extracted from the data presented herein is restricted by two factors;
our ability to ascertain the origins of the peaks with high importance towards identifying
each HC population, and the quality of the mass spectra. Published databases of TOF-SIMS
peaks that are related to lipids,22 amino acids,16,29 and nucleobases51 facilitate interpreting
TOF-SIMS data. Identification of the mass peaks associated with glycans, cholesterol, and
other cell surface molecules would also aid this effort. The low mass range that could be
detected with our instrumentation and use of unit mass binning, which reduced the mass
resolution such that multiple molecules likely contributed to each spectral peak, ultimately
limit the compositional information that might be extricated from our data. Use of a TOF-
SIMS instrument with a cluster ion source that enhances the yields of high mass ions52 and a
mass spectrometer with higher mass resolving power and sensitivity would greatly enhance
interpreting the population-specific spectral variance and identifying HC differentiation
stage. Alternatively, a MALDI-TOF with sufficient spatial resolution to analyze individual
cells may enable the more sensitive acquisition of mass spectra with a wider mass range and
higher mass resolution from individual HCs. We expect that with the aforementioned
improvements in technology and databases, multivariate analysis of TOF-SIMS data may
also enhance efforts to elucidate the biomolecular changes that occur during differentiation
or accompany age-related deficits in HC function.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cellular constituents of HSC-mediated hematopoiesis. The blue, green, and red envelopes
indicate the cell populations used in this study. The HSPC population (Lin−Scal+cKit+) used
in our study (blue envelope) contains long-term HSCs (LT-HSCs) capable of sustained
hematopoietic reconstitution, short-term HSCs (ST-HSCs) capable of limited hematopoietic
constitution, and multipotent progenitors (MPPs) which retain lymphoid/myeloid lineage
plasticity. B cell lymphopoiesis is marked by MPP progression to a common lymphoid
progenitor (CLP, green envelope) cell capable of generating all T lymphocytes, B
lymphocytes, dendritic cells (DC), and natural killer (NK) cells. B lymphopoieis further
progresses through a sequence of defined precursor populations: pre-pro-B cell, pro-B cell,
pre-B cell, immature-B cell (Im-B), and finally mature B cell (red envelope).6 Additional
cell constituents depicted: CMP, common myeloid progenitor; MEP, megakaryotic/erythroid
progenitor; GMP, granulocyte/monocyte progenitor. Image modified from Passegue et al.53
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Figure 2.
Identification plots and VIP score plots for the PLS-DA models constructed using the cell-
related peaks in the calibration spectra of HCs that were harvested from the same mice as
the cells in the test set. The cells that exceeded the classification threshold (red dashed line)
in the prediction plots were identified as (A) B cells, (B) CLPs, and (C) HSPCs. The VIP
score plots for this model show the importance of each mass peak towards the identification
of the (D) B cells, (E) CLPs, and (F) HSPCs. Peaks with VIP scores greater than unity are
important for identifying the indicated population.
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Figure 3.
PC score and loadings plots were constructed using the spectra from the B cells (A), CLPs
(B), and HSPCs (C) that were harvested from the old and young mice. The region within the
dashed blue line on each score plot represents the border for the 95% confidence limit of the
entire PC model. The loading plots for each cell type show the extent that each mass peak
contributed to the variance captured by the indicated PC.
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Figure 4.
The differentiation stages of HCs harvested from young mice were identified using a PLS-
DA model that was created using the cell-related peaks in a calibration set of spectra from
HCs harvested from old mice. The cells that exceeded the threshold (red dashed line) were
identified as (A) B cells, (B) CLPs, and (C) HSPCs. The VIP score plots show the
importance of each mass peak towards the identification of the (D) B cells, (E) CLPs, and
(F) HSPCs.
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