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ABSTRACT The phenomenon ofManning-Oosawa coun-
terion condensation is given an explicit statistical mechanical
and qualitative basis via a dressed polyelectrolyte formalism
in connection with the topology ofthe electrostatic free-energy
surface and is derived explicitly in terms of the adsorption
excess of ions about the polyion via the nonlinear Poisson-
Boltzmann equation. The approach is closely analogous to the
theory of ion binding in micelles. Our results not only eluci-
date a Poisson-Boltzmann analysis, which shows that a frac-
tion of the counterions lie within a finite volume around the
polyion even if the volume ofthe system tends towards infinity,
but also provide a direct link between Manning's 0-the
number of condensed counterions for each polyion site-and
a statistical thermodynamic quantity, namely, the adsorption
excess per monomer.

Although our understanding of the structure of simple and
molecular liquids has increased dramatically over the past two
decades, the dynamics and the equilibrium properties of
polyelectrolytes are fundamental and major unsolved prob-
lems. Biopolymers are usually charged under physiological
conditions, and their biological functions are dictated by their
polyelectrolyte's behavior.A vast amount of experimental data
indicates that polyelectrolytes are characterized by several
universal or semiuniversal features as follows (1-4). (i) For a
rod-like configuration, there is a critical value of the dimen-
sionless linear charge density (3) &crit = l/lzl, where ±z is the
valence of the counterion.§ For ¢ > ncrit, counterions would
condense in a region near the polyion (3). (ii) For &crit > 1, the
number of condensed counterions, for each polyion site, is 1 -
1/. The fraction of polyelectrolyte charge not compensated by
the associated counterions is found to be invariant to salt
concentrations, even as large as 0.1 M or higher (3, 5). (iii)
Dynamical properties such as tracer diffusion coefficient (6),
low frequency conductivity (7), and electrophoretic mobility
(8) show a discontinuity at or near &crit. (iv) The scattering
vector of the coulomb peak qm scales as c112, where c is the
concentration of polyions (9).
The characteristics of polyelectrolytes and oligoelectrolytes

have been studied by various researchers by the Manning-
Oosawa counterion condensation approach to ionic solutions
(2-18). In this approach, if the linear charge density ¢ of the
polyion is larger than unity, then as the Debye screening length
K-1 increases towards infinity,¶counterions would condense
on the polyions to reduce ~ to unity (3-5). The uncondensed
counterions are treated in the Debye-Huckel approximations
(2, 3, 19). It is generally regarded, though not universally, that
the condensed counterions are "territorial" or delocalizedll
and not site-bound (3, 20, 21). In this report, a synthesis is made
of a dressed polyelectrolyte picture of polyions with statistical
mechanical techniques and the nonlinear Poisson-Boltzmann
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equation to investigate the following question: How are the
characteristics of counterion condensation connected with the
adsorption excess of the ions about the polyion through the
topology of the electrostatic free energy surface? Evans et al.
(22) have already shown how the thermodynamics of ion
binding in micelles emerges without evoking the concept of
Stern layers (23-26).**
We consider a polyelectrolyte chain of contour length L to

be a cylinder of radius R. A uniform linear charge density ~ =
QB/Ib is assigned to the chain, where lb = L/P is the average
linear charge spacing, QB is the Bjerrum length, and P is the
number of charged groups. The polyion is immersed in a 1:1
electrolyte solution (Fig. 1). For sufficiently high linear charge
densities, one anticipates that ions are "bound" to the polyion.
It is therefore useful to recast the system as a bare polyion plus
the bound ions (22-26). The solution is then an ideal mixture
formed by the free ions and the dressed chains (22, 23). Due
to charge neutrality, the species in solution interact by a
Donnan potential (22, 23). This was exploited by Evans and
coworkers (22, 23) to express the fraction of bound ions in
terms of a thermodynamic quantity-namely, the adsorption
excess. Observe that in the picture there is no actual binding
of the ions. The dressed polyion formalism will be valid if it
emerges that the fraction of counterions that are bound to it
is invariant to salt concentration over a range and agrees with
experiments.
Due to cylindrical symmetry, the ionic distribution around

the polyion depends on the radial distance r from the center
of the cylinder. We introduce scaled distance x = Kr, and
potential y = eT/kBT. T is the electrostatic potential which
satisfies the nonlinear Poisson-Boltzmann equation (15, 27).
The boundary condition is that as x approaches infinity, both
the potentialy and its slope, dy/dx, approach zero. Gauss' flux
theorem enables us to relate the surface charge density or and
the potential gradient (27).

or=X -= 2/xo.R
X = Xo = KR

[1]

We now show how the dressed polyion picture emerges from
the nonlinear Poisson-Boltzmann equation through a statis-
tical mechanical quantity-the so-called adsorption excess.

§¢ is the ratio of the Bjerrum length QB = e2/ekBT to spacing between
the negatively charged phosphate charges, s is the dielectric constant
of the solvent, kB is Boltzmann's constant, and e is the electronic
charge.¶For a 1:1 electrolyte, the Debye length K-1 = A (ce + 2cs), where A
= 4we2/kBT and T is the absolute temperature. Cs and ce are the salt
and the equivalent polymer concentrations, respectively.

liThe counterions translate and mix in a region ofvolume Vp - 8ireNav
(~ - 1)Ib3, where Nay is Avogadro's number and e here is base of the
natural logarithm (3).
**The innermost region of the double layer is called the Stern layer.
The hydrodynamic shear surface separates the Stern layer from the
Gouy layer.
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FIG. 1. A rod-like polyion. The dielectric constant of the solvent is
E. If one ignores coulombic end effects, Gauss' flux theorem (27)
enables us to use a cylindrical surface to relate the surface charge
density to the potential gradient.

The electrostatic free-energy per monomer for charging the
polyion is fgelec= 1/rfgyo(0(')do', whereyo = y(xo) (22, 23, 28).
The adsorption excess per monomer y = -/3K/2 (ageiec/aK)
about the polyion is related to the local surface slope of the
electrostatic free energy (22, 23, 28). Our viewpoint is that to
elucidate the observed limiting law in polyelectrolytes, what is
required is the construction of accurate slopes of the electrical
free energy, not the solution of the entire nonlinear Poisson-
Boltzmann equation for the potential in terms of charge
densities (22, 23, 28).

It is useful to introduce the surface charge density via the
Poisson-Boltzmann equation as

Y°/dy\ dy
0r2 = 4 sinh2(yo/2) - 2 .dx)x [2a]

Since the main contribution to the integrand comes from the
region around y = yo, one approximates the integrand as

2/xof oO(dy/dx)dy (22, 23, 28). To proceed further, we evaluate
or by a self-consistent renormalization (22, 23, 28) based on the
known result for a planar surface-i.e., by choosing dy/dx

dy/dx -oa sinh(y/2)/sinh(yo/2), [2b]
such that dy/dx also satisfies Eq. 1. Substituting Eq. 2b in Eq.
2a and carrying out the integral we obtain

c2 = 4 sinh2(yo/2) + 4cr/xo sinh(yo/2)[cosh(yo/2) - 1].
[2c]

An explicit expression for the surface charge density is ob-
tained by solving Eq. 2c

ar = 2/xo{cosh(yo/2)
- 1/cosh(yo/2) + 1}1/2[1 + (1 + w2)1/2], [2d]

where w = x0 (z + 1)/2 and z = cosh(yo/2).
Since the Gibbs free energy per monomer for charging the

polyion, 13gelec, can be expressed as (22, 28)
w

3gelec = Yo - (2/xoO) [1 + (1 + w2)1/2]dw/w, [3]
one obtains the adsorptionexcess per monomer

one obtains the adsorption excess per monomer

Arguments based on the Mayer cluster expansion show that if
KL >> 1, counterion condensation occurs for a rigid cylindrical
polyion (13). In this limit, and for large z, we find that the
adsorption excess per monomer is

1 ( 1. [5]

Consequently, for ¢ > 1, y is identical to 0-the number of
condensed counterions for each polymer site as assigned by the
counterion condensation formalism (3). Our results not only
elucidate a Poisson-Boltzmann analysis that shows that a
fraction of the counterions lie within a finite volume around
the polyion even if the volume of the system tends towards
infinity (14) but also provide a direct link between 0 and a
statistical thermodynamic quantity-namely, the adsorption
excess per monomer.
The dressed polyion formalism is constructed to describe the

case when the counterions condense on the polyion. Observe
that Eq. 4 is identical in form to the ion binding adsorption
equation in micelle solutions by Hayter (28). Evans and
coworkers (22, 23) showed, without resorting to Stem layers,
how an ion binding picture emerges. These authors took into
account both the opposing interfacial forces at the micelle-
water interface and the free energies to transfer the hydro-
carbon tails from water to an interior region that is nonpolar
(22, 23). If the micelle is a sphere of radius R and N is the
aggregation number (22, 23), then the scaled distance x0 and
scaled potentialyo play the same role as in the polyelectrolyte
system. Further, the degree of ionization, defined as 1 - y, in
micelle (22, 23, 28) and polyelectrolyte systems is invariant to
salt concentrations in the limit of infinite dilution (3, 4, 22, 23).
How accurate is the joining of the planar and the cylindrical

solutions? This point has been analyzed in detail by Hayter
(28) and by Evans and coworkers (22, 23) for ion binding in
micelles by using Poisson-Boltzmann analysis. Hayter (28)
finds that it is inconsistent to directly use the exact planar
curvature dy/dx = -2 sinh (y/2) instead of Eq. 2b. Use of the
exact planar curvature would lead to failure under conditions
of low screening (28).
The formalism proposed here can accommodate a descrip-

tion of the association constants (29) for chemical binding of
ions, such as H+, to the polyion in an univalent electrolyte. We
accomplish this by a synthesis of a "charging" process (29) and
theories of liquid state (30) with the dressed polyion picture via
the nonlinear Poisson-Boltzmann equation. Eqs. 1-4 can also
be generalized to deal with asymmetric electrolytes (unpub-
lished data). In this case, however, there is an additional
subtlety and one must replace the classical Debye length K-1
by the real Debye length A since the two quantities are not
equal (31).tt This would enable us to study the important
effects due to pH and charge regulation.
Our analysis of counterion condensation via the Poisson-

Boltzmann equation is in agreement with various Monte Carlo
simulations. By including dielectric saturation effects and the
helical nature of DNA phosphate backbone, Jayaram and
coworkers (32, 33) showed via detailed Monte Carlo simula-
tions that the salt dependence of the associated counterions
are in agreement with Manning's counterion condensation
formalism. In another Monte Carlo study, Mills et al. (34) find
that the number of counterions enclosed within 2.4 nm of the
center of an atomistically detailed d(AT)6*d(AT)5 is indepen-
dent of the various conformations of the polyion. Pack and
coworkers (35) have defined the bound ions in DNA as those
whose electrostatic potential energy is less than the negative of
the thermal fluctuation energy. By carrying out Poisson-
Boltzmann and Monte Carlo simulations of atomistically de-

[4] ttFor a 2:1 electrolyte at 0.1 M, A is 18% smaller than K-1 (31).
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-/ = (21xooa)[(l + W2)1/2 (1 + X02)112].
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tailed and cylindrical models of DNA, they find that the
fraction of bound ions are in agreement with counterion
condensation (35). Although Rossky and coworkers (36, 37) do
not find evidence of a singularity at or near ~ = 1, they do find
qualitative agreement between the hypernetted chain integral
equation description of rod-like DNA and predictions of
counterion condensation. A recent molecular dynamics sim-
ulation on salt-free polyelectrolytes was carried out by Stevens
and Kremer (38). By explicitly including the full coulombic
interactions between the monomers and between the coun-
terions and the monomers, these authors find the osmotic
pressure to be in good agreement with experimental data (38).
However, with an increase in the density of monomers a
change in the conformation from stretched to coil is observed
(38).
U.M. is indebted to G. Manning for penetrating discussions, en-
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literature on polyelectrolytes. U.M. would like to thank V. Bloomfield
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