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Adipose fins are appendages found on the dorsal midline between the dorsal

and caudal fins in more than 6000 living species of teleost fishes. It has been con-

sistently argued that adipose fins evolved once and have been lost repeatedly

across teleosts owing to limited function. Here, we demonstrate that adipose

fins originated repeatedly by using phylogenetic and anatomical evidence.

This suggests that adipose fins are adaptive, although their function remains

undetermined. To test for generalities in the evolution of form in de novo

vertebrate fins, we studied the skeletal anatomy of adipose fins across 620

species belonging to 186 genera and 55 families. Adipose fins have repeatedly

evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated

evolution of fin rays in adipose fins suggests that these fins can evolve new

tissue types and increased structural complexity by expressing fin-associated

developmental modules in these new territories. Patterns of skeletal elaboration

differ between the various occurrences of adipose fins and challenge prevailing

hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus

far, barely studied model for exploring the evolution of vertebrate limbs and the

roles of adaptation and generative biases in morphological evolution.
1. Introduction
The fins and limbs of vertebrates are a classic model for studying both homoplasy

and serial homology [1–4]. On the basis of position, vertebrate fins can be categor-

ized as two kinds: paired and unpaired. Pectoral and pelvic fins are paired bilaterally

and are homologous to tetrapod fore- and hindlimbs, respectively [5]. Caudal,

dorsal, anal and adipose fins are unpaired median fins, positioned on the body mid-

line. In vertebrates, the evolution of new fins is rare [5]. Fin number and skeletal

anatomy are diagnostic characters for major vertebrate clades, suggesting that

these characters are conserved in phylogeny and constrained in development.

For instance, pectoral fins appear to have evolved only once, and pelvic fins are a

synapomorphy of jawed vertebrates [6,7]. New fins can originate by either the sub-

division of an existing fin domain—one module becoming two—as in the dorsal fins

of some acanthopterygians [8], or by de novo origin—a new appendage developing

in a location where there was not one previously. Pectoral fins are an example of de

novo fin origin, the developmental programme of median fins having been recruited

from paraxial to lateral plate mesoderm [9,10].

Fins that originate de novo are first observed in the palaeontological record

as rudimentary outgrowths, which secondarily evolve greater anatomical and

functional complexity [6]. Dermal skeleton appears first and is followed by

endoskeleton, the presumed first direct evidence of muscular attachment and

active control in fins [6]. The consistency of these patterns across fin systems

suggests a common route for evolving new, complex appendicular systems.

Although these patterns are discovered from study of the palaeontological

record, their generality can be tested through analysis of extant diversity.

Adipose fins are appendages found in more than 6000 species of living teleosts,

the major radiation of ray-finned (actinopterygian) fishes [11,12]. Adipose fins are
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defined by their position on the dorsal midline between the

dorsal and caudal fins, and also by theiranatomy, which appears

less complex than the other fins of extant fishes [13]. Generally,

adipose fins lack the endoskeleton, dermal skeleton and

associated musculature that characterize the other fins found

in extant fishes [14,15]. Instead, adipose fins tend to be passive

structures supported by rods of collagen oriented along the

proximodistal axis of the fin called actinotrichia, which sand-

wich a subdermal space composed of either adipose tissue, as

in some Siluriformes [15–17], or a non-adipose tissue, loosely

termed ‘connective matrix’ [17–19]. Adipose fin diversity is

not well characterized, and the evolution, development and

function of these structures remain poorly understood.

Hypotheses of adipose fin evolution are rooted in questions

of homology and whether adipose fins are adaptive. Garstang

[20] postulated that adipose fins were vestigial and homologous

to the second dorsal fin that is plesiomorphic in gnathostomes,

seen today in Latimeria and many chondrichthyans. Bridge [21]

similarly concluded from anatomical study that adipose fins

were vestigial. But, recognizing a single dorsal fin to be the

primitive condition of ray-finned fishes, Bridge argued that adi-

pose fins represented the degeneration of a second dorsal fin,

which itself originated by the subdivision of the actinopterygian

dorsal fin. Fossils, however, do not support either of these

hypotheses. Within ray-finned fishes, structurally elaborated

second dorsal fins (i.e. with dermal skeleton, endoskeleton

and associated musculature) are found almost exclusively

within the Acanthopterygii, which lack adipose fins [8]. Study

of the fossil record highlights two lineages of non-acanthopter-

ygian fishes that have evolved two dorsal fins: macrosemiids

(e.g. †Agoultichthys chattertoni [22]), an extinct clade of gingly-

modian fishes [23]; and †Placidichthys, an extinct genus of

Halecomorphi [24,25]. Thus, most who have considered adi-

pose fin evolution have concluded that the rudimentary

appearance of these fins is plesiomorphic [15,19,26–30]. It is

generally thought that adipose fins evolved once within the

Actinopterygii, usually on the basis of their apparently limited

function [19,26,28,29,31,32]. Some have proposed that their phy-

logenetic distribution might be best explained by homoplasy

[15,27]; however, these hypotheses have never been tested.

Recent large-scale phylogenetic analyses are transforming

our understanding of the evolution of teleost fishes [33–35],

and hypotheses of character evolution must be revisited in the

light of these new phylogenies. Here, we test competing hypo-

theses of adipose-fin origin and conclude that adipose fins

have evolved repeatedly. We also characterize adipose fin skel-

etal anatomy for a diversity of fishes to test for similar patterns

of structural elaboration among independent derivations of adi-

pose fins and compare these patterns with what is known from

the fossil record of other fins. Adipose fin skeletal evolution is

highly homoplastic, differs significantly between instances of

adipose fin origination and exhibits patterns of elaboration not

observed in the fossil record of other fins. Finally, we discuss

how fins, as serial homologues, originate and evolve.
2. Methods
(a) Ancestral-state reconstruction
To test how many times and in which groups adipose fins originated,

we reconstructed a phylogeny of ray-finned fishes using the pub-

lished data from Near et al. [34], which is comprised of 7587 base

pairs from multiple nuclear genes for 232 actinopterygian fishes
and 36 fossil age constraints. Using BEAST [36] with the same strat-

egy as the original study, we recovered a pool of post-burn-in trees

with a consensus topology that was congruent and similar in sup-

port of Near et al. [34] (electronic supplementary material,

figure S1). The resulting trees are ultrametric, with branch lengths

proportional to time. To account for evolutionary uncertainty,

models of ancestral-state reconstruction were run across a distribu-

tion of 200 trees sampled randomly from the posterior distribution

of post-burn-in trees generated by the Bayesian analysis.

Models of ancestral-state reconstruction were run treating the

adipose fin as a binary character. Each of the 232 terminal taxa

were coded for the presence or absence of an adipose fin with

reference to specimens at the Field Museum of Natural History

(Chicago, IL) and the literature (electronic supplementary

material, figure S1). Maximum-likelihood and maximum-

parsimony models of ancestral-state reconstruction were run in

MESQUITE [37]. Two likelihood models were considered: a Markov

k-state one-parameter (Mk1) probability model, and a Markov

k-state two-parameter (Mk2) probability model. The Mk1 model

defines the rate of transition between states as equal, whereas the

Mk2 model allows the rate of transition between two states to

differ, allowing for bias in the direction of character state trans-

formation. A likelihood ratio test was used to determine whether

MK1 or MK2 models produced a better fit of the data for each of

the 200 sampled topologies. The two-rate (Mk2) model of character

evolution fit the data significantly better than the one-rate (Mk1)

model over all trees (likelihood ratio test: p , 0.001, d.f. ¼ 1), and

so only results from the Mk2 model are reported. The MK2

model was run both by treating the root state frequencies as

equal and root state frequencies equal to equilibrium. Results

were consistent for each method, and results are shown only for

the model in which root state frequencies are equal to equilibrium.

(b) The evolution of form in adipose fins
To characterize the evolution of form in adipose fins, skeletal anat-

omy was studied making reference to (i) cleared and stained

specimens from the Fishes Collection at the Field Museum of

Natural History (Chicago, IL), (ii) photographs of X-rays uploaded

to the electronic collections of the California Academy of Sciences

(San Francisco, CA) and Le Muséum National d’Histoire Naturelle

(Paris, France) and (iii) the literature. A total of 746 specimens

belonging to 620 species, 186 genera and 55 families were studied

(table 1 and electronic supplementary material, table S1).

Additionally, the adipose fin skeleton of Mochokus niloticus was

characterized by making reference to micro-CT scans, which

were made available to us by Dr John Friel, Curator of Fishes at

Cornell University’s Museum of Vertebrates. The specimen

CUMV91386 was methanol-preserved, treated with iodine sol-

ution (I2M) following the methods from Metscher [38], and

portions of it were CT scanned at 1.2, 3, 12 and 41.5 mM resolution.

MIMICS (Materialise Inc.) was used to process the data and to

generate three-dimensional reconstructions of skeletal anatomy.
3. Results
(a) Adipose fins have evolved repeatedly
All models of ancestral-state reconstruction found support for

multiple origins of adipose fins within Teleostei. The Mk2 like-

lihood model finds support for an origin of adipose fins in the

group that includes Siluriformes and Characiformes, and again

independently in the Euteleostei excluding Lepidogalaxiidae

(figure 1). Specifically, adipose fins were likely absent in

the lineage that diverged from the Euteleostei and led to the

Otophysi (the clade composed of Siluriformes, Characiformes

and Gymnotiformes; figure 1, nodes f,h,i,k,n). Although absence



Table 1. Summary of specimens examined for adipose fin skeleton. Eschmeyer’s catalogue of fishes [12] was used to assign species to families. Ordinal-level
designations differ from Eschmeyer according to the tree recovered by Near et al. [34]—Osmeriformes have been split into: Osmeriformes, Retropinnidae,
Galaxiidae, Argentiniformes, Alepocephaliformes, Lepidogalaxidae. Although some species may have undergone taxonomic revision or synonymization, this
summary provides a reasonable indication of coverage.

families surveyed families recognized genera surveyed species surveyed valid species

Argentiniformes 2 4 3 5 89

Aulopiformes 5 16 6 12 261

Characiformes 14 22 107 223 2035

Galaxiiformes 1 1 1 1 50

Myctophiformes 2 2 11 16 258

Osmeriformes 3 3 7 10 35

Percopsidae 1 1 2 2 2

Retropinnidae 1 1 2 2 6

Salmoniformes 1 1 5 14 217

Siluriformes 21 37 33 326 3594

Stomiiformes 4 4 9 9 426

total 55 92 186 620 6973

total number of individuals surveyed: 745
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is recovered as unambiguously optimal in only a small fraction

of the trees, proportional probabilities consistentlyshow support

for adipose fins having been absent. The Mk2 likelihood model

also found equivocal support for the hypothesis that adipose

fins originated a third time, in the Percopsidae (figure 1, nodes

t–v). The parsimony model unambiguously found support

for the same three adipose fins origination events (electronic

supplementary material, figure S2).

(b) Adipose fins have repeatedly evolved endoskeleton
and dermal skeleton

Endoskeleton is found in the adipose fins of three taxonomi-

cally distinct groups: Horabagrus brachysoma (Siluriformes),

Stomiiformes and Myctophiformes (figure 2). In each case, the

adipose-fin endoskeleton was composed of a cartilaginous

plate, undifferentiated and generally positioned at the posterior

of the adipose fin base (figure 2a) [14,15]. The presence of stained

cartilage varied within genera (i.e. Neoscopelus and Spirinchus)

and even within a species (i.e. Salangichthys microdon).

Dermal adipose-fin spines formed from modified midline

scutes are found in three taxonomically distinct groups of

Siluriformes: a clade within Loricarioidei, which includes

Callichthyidae, Astroblepidae and Loricariidae; Sisor spp.
(Sisoridae); and some Amphilidae (observed in Phractura,

described in Andersonia [40] and Trachyglanis [41]; figure 2b–d).

In each case, spines are anterior to the adipose fin membrane,

posteriorly projecting and anteriorly bounded by additional

midline scutes.

Fin rays are found in the adipose fins of at least four tax-

onomically distinct groups of fishes: three catfish groups

and at least one characiform (figure 2e–k). Siluriformes

with adipose fin rays include Clarotes spp. (Bagridae)

[42,43], Phractocephalus hemioliopterus (Pimelodidae) [42] and

Mochokus spp. (Mochokidae) [40]. Within Characiformes,

adipose fin rays were observed in Colossoma macropomum
(Serrasalminae) and have also been described for C. brachypo-
mum, and Pygocentrus piraya [44,45]. In all lineages except
Mochokus, adipose fin rays are described as developing only

after fishes have achieved a large adult size [42,44,45]. This

may explain why some species previously reported with a

rayed-fin phenotype, were not observed with adipose fin rays

in our study (e.g. Clarotes laticeps, FMNH 50304; Pygocentrus
piraya, FMNH 69988). Pygocenrus is the only genus previously

described in the literature with a rayed adipose fin pheno-

type that we were unable to confirm. If P. piraya does indeed

exhibit this phenotype, it likely represents a fifth unique

origination of adipose fin rays, Colossoma and Pygocentrus
being phylogenetically distinct [46–48].

Adipose fin rays are similar in their morphology to the

lepidotrichia of other actinopterygian fins. They are composed

of segmented and bilaterally paired hemitrichia, but are distin-

guished by their lack of associated musculature (figure 2e–k). In

P. hemioliopterus, lepidotrichia segments appear to fuse to form

non-segmented dermal rods, though segmentation remains vis-

ible in the smallest rays (figure 2g,h). In some species, adipose fin

rays are separated by a thin fin membrane (e.g. C. macropomum
and Mochokus spp.), whereas in other species, adipose fin

rays are embedded in a thick fleshy fin (i.e. Clarotes spp. and

P. hemioliopterus). In addition to flexible fin rays, Clarotes spp.,
also develop an anterior spine in large individuals (figure 2f).
Conflicting accounts have been given as to how this spine devel-

ops: either through the elaboration of an anterior fin ray [42]

or by the fusion of ‘fulcra-like scutes’ [43]. Because of this devel-

opmental ambiguity, we have not included Clarotes spp., among

the list of taxa with dermal skeleton derived from dermal scutes.

The adipose fin rays of M. niloticus are significantly differen-

tiated along the anteroposterior axis. The two anterior-most

fin rays are unsegmented, and anterior fin rays have flared

bases (figure 2i,j).
4. Discussion
Homoplasy is defined as independently derived similarity [49].

It has been studied, thus far, in biological systems as a pattern
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that arises between lineages and can reflect the operation of

developmental constraints and natural selection [50,51]. Parts

of an organism evolve with degrees of independence and can
similarly exhibit derived similarity. For example, similarity

between the fore- and hindlimbs of crown group tetrapods is

a derived condition [7,52]. By studying anatomies that have
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evolved repeatedly, both between lineages and within an

organism, we might discover common trajectories and logic

in the routes by which adaptive landscapes are navigated.
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(a) Adipose fins have evolved repeatedly
New hypotheses of actinopterygian phylogeny provide

consensus on the relationships of major actinopterygian clades

[33–35]. Our result, that adipose fins have evolved repeatedly,

is based on the phylogenetic hypothesis of Near et al. [34] and

appears robust relative to minor topological changes among

euteleosts [35]. A few analyses have found Characiformes to be

paraphyletic, with Siluriformes nested within Characiformes

[53,54]. Although our analysis does not include trees of this top-

ology, characiform paraphyly is unlikely to change our result.

The analysis presented here includes trees of three alternative

topologies of the Otophysi, the clade composed of Gymnoti-

formes, Characiformes and Siluriformes. Each of the three

topologies recover the same result that adipose fins originated

in a common ancestor of Characiformes and Siluriformes.

There is equivocal evidence that Gymnotiformes might have

primitively possessed adipose fins. A fossil gymnotiform was

interpreted as having an adipose fin [55]; however, this interpret-

ation has been challenged [56,57]. It has also been proposed that

the ‘dorsal filament’ [58], an appendage found on the dorsal

midline of some apteronotid gymnotiformes, which lacks a

skeleton and musculature, is a transformed adipose fin. Assess-

ment of this hypothesis yielded inconclusive results [59].

Regardless, when the entire Otophysi clade is reconstructed as

primitively possessing adipose fins, our reconstructions still

support the hypothesis that adipose fins in this group evolved

independently from those in the Euteleosti.

Although adipose fins usually are composed of soft tissue

and preserve poorly, these fins have been identified in a

number of fossils as body outlines. In each case, they are

found on fishes belonging to families known already to possess

adipose fins [60–62]. If adipose fins originated only once in tel-

eost fishes, we would expect to find evidence of their loss in

multiple lineages; however, this is not the case. For example,

fossil Gonorynchiformes, which are abundant and often exqui-

sitely preserved [63], are never observed with an adipose fin.

Thus, although the occurrence of adipose fins in fossils was

not coded in our analysis of ancestral-state reconstruction, we

argue that treating these data independently is very likely to

impede our ancestral-state reconstruction, because the distri-

bution of fossil fishes with adipose fins is congruent with

what is predicted by our model. Finally, the only non-acanthop-

terygian actinopterygian fishes known to have elaborated

second dorsal fins are the macrosemiids [22] and Placidichthys
[24,25]. Both these Mesozoic holostean clades are nested

deeply within groups otherwise characterized by the presence

of a single dorsal fin. This suggests further instances of distinct

fin origination, but in these examples perhaps by subdivision of

the primary dorsal outgrowth.

In addition to the number of originations recovered by

ancestral-state reconstruction, detailed analysis of adipose-fin

variation within major actinopterygian clades suggests that adi-

pose fins might have originated twice more, in Cypriniformes

and in Clariidae (Siluriformes). The cypriniform Paracobitis
rhadinaeus is described with a ‘soft fin’ between the dorsal

and caudal fins [18,64]. Originally described in the appropri-

ately named genus Adiposia, the anatomy of its posterior fin is

reminiscent of the adipose fin of the madtom catfish, Noturus
exilis, and its structure is similar in its histology to other adipose

fins: a superficial epidermal layer covers fibrous rods, likely acti-

notrichia, which run proximo-distally and posteriorly and

sandwich a core of ‘connective tissue’ [18]. Related species

have been described with similar, but less prominent, exten-

sions of the midline anterior to the caudal fin on both the

dorsal and ventral midline [65]. Paracobitis rhadinaeus is nested

deep within the Cypriniformes [66], a clade that includes over

4000 species otherwise lacking adipose fins [11], and this struc-

ture thus originated within Cypriniformes. Additionally,

within the Clariidae, a group of air-breathing catfishes, there

is phylogenetic and anatomical evidence that adipose fins

may have been lost and subsequently re-evolved. Only three

of the 14 clariid genera possess adipose fins: Heterobranchus,
Dinotopterus and Encheloclarias [67]. Initially, it was proposed

that these fishes represented the primitive Clariidae condition,

the possession of an adipose fin and that the rest of the family

had lost the fin [68]. However, a recent phylogeny of clariid cat-

fishes recovers Heterobranchus and Dinotopterus nested well

within a clade of clariids lacking adipose fins [69]. The adipose

fins of Heterobranchus and Dinotopterus are anatomically unique

when compared with all other adipose fins. Remarkably, they

are supported by neural spines, which extend to the distal

margin of the fin [67,70]. Whether this distinct anatomy reflects

the independent derivation of an adipose fin of unique mor-

phology or secondary modification of a more typical adipose

fin is unclear. Regrettably, Encheloclarias is not included in

recent molecular phylogenetic analyses, and it remains to be

seen how its placement might affect interpretations of adipose

fin evolution within the group.

(b) Are adipose fins adaptive?
The repeated evolution of adipose fins raises the question—

what, if any, is the adaptive function of adipose fins?

Homoplasy is not unto itself evidence of adaptation, as it can

reflect non-adaptive processes [51,71]. However, natural selec-

tion readily purges fishes of their fins. For example, pelvic fins

have been lost at least 80 times in teleosts alone [72]. The main-

tenance of adipose fins for millions of years and the discovery

of unanticipated structural complexity in some fins [15,19]

implies functionality. Attempts have been made to identify

adipose fin function through an eco-morphological approach

[30], but fishes with adipose fins may be too varied in their

ecologies for such an approach to be broadly informative.

Adipose fins are found on fishes ranging in size from centi-

metres to metres in length; on fishes from diverse ecosystems,

ranging from montane rivers to the deep sea and on fishes

occupying nearly every trophic level that fishes hold, ranging

from planktivores, to molluscivores and piscivores. Discover-

ing the adaptive function of adipose fins might be best

achieved through biomechanical modelling and experimental

functional approaches, as in Reimche & Temple [29]. Accumu-

lating evidence suggests that some adipose fins function to

direct pre-caudal flow or serve as a flow sensor (reviewed in

reference [19]). These hypotheses are not mutually exclusive

and, given the diversity of adipose fins in their size, positioning

and composition, may not capture the full repertoire of adipose

fin functions.

(c) Homoplasy in the adipose fin skeletal evolution
Adipose fins have evolved several kinds of skeleton, and each

has evolved repeatedly. Endoskeleton appears to have evolved
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in adipose fins three times. This study highlights what is

known about adipose fin endoskeletal elements, but likely

underestimates the occurrence and therefore, too, the diversity

of endoskeletal supports. It is notable that X-rays did not

detect any adipose-fin endoskeleton, even in species expected

to have them, for example, those species belonging to a genus

in which endoskeleton had been previously described

(electronic supplementary material, table S1). It is also note-

worthy that Alcian blue does not always stain the acidic

polysaccharides (e.g. glycosaminoglycans) in cartilages. For

example, the adipose fin endoskeleton of H. brachysoma was

identified by analysis of histological sections and does not

stain with Alcian blue [15].

Two kinds of dermal skeleton have evolved in adipose

fins. First, anterior spines derived from modified scutes have

evolved in adipose fins three times, each time in the Siluri-

formes. Only one siluriform group, the Doradidae, has

evolved dermal plates, but not an adipose fin spine [73]. Promi-

nent spines at anterior boundary of fins are common in early

gnathostomes [5], which often exhibit similarly enlarged

scales and scutes immediately anterior to the fin spine (e.g.

Guiyu oneiros [74]). Second, fin rays have evolved in adipose

fins at least four times, but only in characiforms and siluriforms.

Adipose fin rays may evolve as a saltatory change. Two abnor-

mal individuals, both siluriformes, have been reported with

adipose fins possessing lepidotrichia [28,75]. These apparently

spontaneous transformations imply that simple developmental

or genetic changes can generate rayed-fin morphology in some

adipose fins.

Patterns of dermal skeletal evolution differ dramatically

between adipose fin originations. Dermal skeleton has evolved

independently in adipose fins at least seven times, but it has

only evolved within the clade that includes characiforms and

siluriforms, never within euteleosts. Different patterns of

dermal skeletal evolution might reflect differences between

these two groups in how adipose fins develop. Regrettably,

studies of adipose fin development are limited. Bender &

Moritz [76] characterized the timing of adipose fin development

in several species and, intriguingly, identified two major devel-

opmental modes, which they call characiform and salmoniform

types. Development of the characiform type is characterized by

adipose fin outgrowth after the complete reduction of the larval

fin fold. By contrast, salmoniform-type development is charac-

terized by adipose fins apparently developing as a remnant of

the larval fin fold. If these different developmental modes are
broadly representative of adipose fins in the Otophysi and Eute-

leostei, then it would be further evidence of their independent

origins and might explain differences in their propensity to

evolve dermal skeleton.
(d) The origin of vertebrate fins and limbs
Vertebrates seem to be constrained in their ability to evolve

new fins and limbs. When new fins do evolve, they originate

either by the subdivision of an existing fin domain or de

novo. Fully elaborated de novo fins are observed in mal-

formed fishes with some frequency [77–80]; however, this

seems not to be a realized route of evolutionary innovation.

Rather, fins that originate de novo are primitively rudimen-

tary in form and function, secondarily evolving greater

structural and functional complexity [6].

Primitively, adipose fins lack endoskeleton, dermal skel-

eton and associated musculature. Each of these components

has evolved in the adipose fins of some lineages (this study

and [15]). Adipose fins can evolve new tissue types and

increased structural complexity by expressing fin-associated

developmental modules in this new territory. This is best

exemplified by the repeated evolution of fin rays in adipose

fins, and has been proposed for adipose fin endoskeleton

[14] and musculature [15]. Broadly, high degree of develop-

mental similarity, and thus serial homology, between fins

may be a derived feature, general outgrowths converging

on similar forms owing to common functional demands

and biases in the generation of morphological variation.

Studies of the palaeontological record have identified a

common pattern of elaboration in de novo vertebrate fins,

with dermal skeleton evolving first and endoskeleton evol-

ving second [6]. Our analysis challenges the general nature

of this pattern. In adipose fins, endoskeleton repeatedly

evolves in the absence of dermal skeleton. Dermal and endos-

keleton, therefore, need not evolve in a hierarchical pattern;

the capacity to evolve one is not dependent on the presence

of the other. Multiple routes of elaboration are possible.
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