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a b s t r a c t 

Redox signaling is implicated in different physiological and pathological events in the vasculature. Among the

different reactive oxygen species, hydrogen peroxide (H 2 O 2 ) is a very good candidate to perform functions

as an intracellular messenger in the regulation of several biological events. 

In this review, we summarize the main physiological sources of H 2 O 2 in the endothelium and the molecular

mechanisms by which it is able to act as a signaling mediator in the vasculature. 
c © 2014 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ).
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Endothelial cells (ECs) line the inner surface of the cardiovascular

system acting as a natural barrier between the blood and the rest of

organs and tissues. This metabolically active monolayer organ is con-

stantly exposed to different biomechanical and biochemical stimuli

to which it responds by preserving the integrity and homeostasis of

vascular function [ 1 ]. Accumulating evidence indicates the important

role of redox signaling in the triggering and mediation of these actions.

Historically, oxidative stress and thus, the increased production of re-

active oxygen species (ROS), have been closely related with endothe-

lial dysfunction, with involvement in the pathogenesis of several car-

diovascular diseases such as hypertension, diabetes or atherosclerosis

among others [ 2 –5 ]. However, a large body of research has demon-

strated a key role for ROS as physiological regulators of intracellular

signaling pathways involved in the function of vascular endothelium

[ 6 ]. 

Redox signaling 

For many years, ROS were described as unwanted toxic products of

cellular metabolism able to cause molecular damage (including DNA,

proteins and lipids), cell and tissue dysfunction. Substantial evidences

in the past decades have proved that although high oxidant exposure

or low antioxidant defense are implicated in the pathogenesis of sev-

eral cardiovascular diseases such as atherosclerosis, hypertension or

diabetes, ROS are important signaling molecules playing an essen-

tial role in the regulation of a large variety of different cell signaling

processes [ 6 –8 ]. 
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Although the term ROS include all the chemical species derived

from the incomplete reduction of molecular oxygen (O 2 ), it is impor-

tant to mention that different redox-active species have completely

different biological properties including reactivity, half-life or lipid

solubility that have important implications in their action. Thus, the

specificity and the selectivity of the different ROS are dictated by their

chemical reactivity [ 9 ]. 

Among the different ROS, hydrogen peroxide (H 2 O 2 ) fulfills the

prerequisites for serving as an intracellular messenger and acting as a

cell-signaling molecule. H 2 O 2 is a small and non-polar molecule able

to diffuse across biological membranes. It is ubiquitously produced

and its longer half-life makes it suitable to act as a second messenger

exerting prolonged effects in different signaling pathways [ 10 ]. 

To better understand the role and the effect of H 2 O 2 in redox

signaling it is critical to focus on the main sources of H 2 O 2 in the

vasculature and on the nature of this ROS as a two-electron oxidant. 

Sources of hydrogen peroxide in the endothelium 

Intracellular generation of ROS in endothelial cells both occur un-

der physiological as well as pathophysiological conditions. In the

endothelium it predominantly arises from four enzymatic systems

which include the different isoforms of NAPDH oxidases (NOXs, see

below for precisions), xanthine oxido-reductase, uncoupled endothe-

lial nitric oxide synthase (eNOS) and mitochondrial respiration com-

plexes [ 1 , 2 ]; however other sources such as the arachidonic acid

metabolizing enzymes lipoxygenase and cyclooxygenases or the cy-

tochrome P450 have been also described [ 11 ] ( Fig. 1 ). 

All these sources primarily catalyze the reduction of molecular

oxygen after the acceptance of one electron and lead to the formation

of superoxide radical anion (O 2 
•−), a ROS extremely unstable that

dismutates to H 2 O 2 either spontaneously or enzymatically catalyzed

by superoxide dismutase. Of note, some enzymes, such as glucose

oxidase or xanthine oxidase have been described to directly produce

 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 

http://dx.doi.org/10.1016/j.redox.2014.02.005
http://www.sciencedirect.com/science/journal/22132317
http://www.elsevier.com/locate/redox
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.redox.2014.02.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:rosa.bretonromero@gmail.com
mailto:slamas@cbm.csic.es
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.redox.2014.02.005
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Fig 1. Sources of reactive oxygen species in the vascular endothelium.The major 

sources of ROS in the endothelium include NADPH oxidase isoform 4, eNOS uncoupling, 

mitochondrial respiration and xanthine oxidase. Other sources such as lipoxygenase, 

cyclooxygenase or cytochrome P450 also contribute to ROS generation in the vascular 

endothelium. 

Fig 2. Protein thiol modifications by hydrogen peroxide.H 2 O 2 induces cysteine dimer- 

ization (R–S–S–R) via the formation of the unstable intermediate sulfenic acid (R–SOH). 

Disulfides can form between cysteines located in the same protein (intramolecular 

disulfides), in different proteins (intermolecular disulfides), or between the protein 

thiol and glutathione (S-glutathionylation). In the presence of high concentrations of 

H 2 O 2 , the sulfenic acid can become further oxidized to sulfinic (R–SO 2 ) or sulfonic 

(R–SO 3 ) acid. 
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 2 O 2 by donating two electrons to oxygen [ 11 ]. In the case of the 

OX4 isoform (the most abundant NADPH oxidase in the endothe- 

ium), there is some controversy about the ROS produced. Whereas 

ome groups have described NOX4 as the only vascular homolog that 

irectly produces H 2 O 2 [ 12 ], others have proposed that the O 2 
•− pro- 

uced by NOX4 is rapidly converted to H 2 O 2 , which becomes almost 

ndetectable [ 13 ] ( Fig. 2 ). 

The main features of these enzymes are summarized as follows: 

ADPH oxidase 

In contrast to other oxidases which produce ROS as a byprod- 

ct of their catalytic function, NOX family enzymes have no known 

iosynthetic or catabolic function but synthesize ROS as their pri- 

ary function [ 14 , 15 ]. They are a family of seven trans-membrane 
electron transporters that catalyze the transfer of electrons across bi- 

ological membranes from the electron donor NADPH to O 2 , leading 

to the generation of O 2 
•− [ 16 ] and according to some reports H 2 O 2 

[ 12 , 17 , 18 ]. All NOX isoforms have six trans-membrane alpha helices 

with cytosolic N- and C-termini and they are differentially expressed 

and regulated in specific tissues. In endothelial cells, whereas NOX1, 

NOX2, NOX4 and NOX5 isoforms have been identified under physi- 

ological and pathophysiological conditions [ 19 ], NOX4 is by far the 

most abundant NADPH isoform [ 20 , 21 ]. In addition this isoform is 

the most distantly related member of the family. While its activity 

is dependent on p22phox, it does not require any cytosolic subunits 

such as p47phox, p67phox, p40phox or Rac, as other NOX isoforms 

do [ 22 ]. 

Xanthine oxidoreductase 

Xanthine oxidoreductase, termed as xanthine oxidase (XOR), is 

another potential source for ROS in the vasculature [ 23 ]. It is an iron–

sulfur molybdenum flavoprotein enzyme that catalyzes the last steps 

of purine metabolism, the transformation of hypoxanthine and xan- 

thine to uric acid, with O 2 
•− or H 2 O 2 generation as by-products [ 24 ]. 

It exists in two forms, as xanthine dehydrogenase (XDH) and as xan- 

thine oxidase (XO) [ 25 ]. The XDH activity present in the vascular 

endothelium is converted into XO by processes including thiol oxida- 

tion and / or proteolysis. The ratio between XO and XDH in the cells 

is critical to determine the amount of ROS produced by these en- 

zymes [ 26 ]. Increases both in the expression and activity of XO have 

been related to vascular diseases [ 27 , 28 ]. In the last decade, XOR has 

been proposed as capable to produce NO 

• itself [ 29 , 30 ] adding a new 

essential vascular role for this enzyme in biological tissues [ 25 ]. 

Uncoupled eNOS 

NO 

• is produced in mammals by a family of nitric oxide synthase 

(NOS) enzymes. There are three different isoforms, two of them con- 

stitutively present (the endothelial nitric oxide synthase, eNOS or 

NOS3, and the neuronal nitric oxide synthase, nNOS or NOS1), and 

one which is inducible (iNOS or NOS2). They are all flavin- and heme- 

containing enzymes that act as homodimers shuttling electrons from 

the NADPH bound at the C-terminal (reductase domain) to the N- 

terminal heme (oxidase domain), reducing O 2 and incorporating it 

into the guanidine group of l -arginine to produce l -citrulline and NO 

•. 

However, in the absence of cofactors ( l -arginine, tetrahydrobiopterin 

(BH4) or both) NOSs can become a source of O 2 
•− in endothelium 

[ 31 ], thus becoming “uncoupled” to their primary role of NO 

• syn- 

thesis. This uncoupling involves the conversion of NOS enzyme to a 

monomer which generates O 2 
•− instead of NO 

• [ 32 ]. Uncoupling of 

eNOS has been related to different cardiovascular diseases that concur 

with endothelial dysfunction such as atherosclerosis, hypertension, 

hypercholesterolemia or diabetes [ 33 –36 ]. 

Mitochondria 

Mitochondria represent the major intracellular source of ROS un- 

der physiological conditions. Notwithstanding, ROS production by 

mitochondria can also be enhanced by several intracellular stimuli. 

Mitochondrial ROS production is a consequence of oxidative phos- 

phorylation linked to aerobic respiration within the mitochondrial 

electron transport chain (ETC). This machinery is situated in the inner 

mitochondrial membrane and it is able to catalyze electron transfer 

using more than 80 peptides organized in four complexes [ 37 ]. The 

transfer of electrons usually leads to the formation of ATP by the fifth 

complex; however, at eight different sites along the respiratory chain, 

electrons derived from NADH or FADH can directly react with oxy- 

gen and generate O 2 
•− [ 38 ]. Electron leakage from the ETC causes 

partial reduction of molecular oxygen to O 2 
•− instead of reduction 

to H 2 O. It is predicted that 1–2% of the O 2 consumed is converted 

into ROS [ 39 ]. Mitochondrial O 2 
•− dismutation by MnSOD leads to 
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Table 1 

Redox-induced effects on the vascular endothelium by MAPK. 

MAPK 

Effect of thiol 

modification 

Effect on the 

endothelium References 

Erk1 / 2 Activation Growth and 

proliferation 

[ 59 , 60 ] 

Activation Vasodilation [ 61 ] 

Barrier 

dysfunction 

[ 62 ] 

Activation Actin 

cytoskeleton 

reorganization 

[ 63 , 64 ] 

p38 MAPK Activation Vasodilation [ 65 ] 

Activation Actin 

cytoskeleton 

reorganization 

[ 63 , 66 ] 

Activation Increase 

endothelial 

permeability 

[ 67 –69 ] 

JNK Activation Apoptosis [ 70 –72 ] 

ERK5 Activation Inhibit 

endothelial 

apoptosis 

[ 73 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the formation of H 2 O 2 inside the mitochondria [ 40 ]. The tight reg-

ulation of mitochondrial ROS is essential for avoiding the accumu-

lation of ROS and oxidative damage, thus permitting the signaling

role of these species. Although the function of mitochondrial H 2 O 2

in several redox-dependent processes has been extensively reviewed

[ 41 , 42 ], data in human vasculature are very limited [ 43 ]. 

Molecular targets of hydrogen peroxide 

H 2 O 2 is a mild oxidant and hence relatively inert to most

biomolecules; nevertheless it is able to induce reversible, covalent

modifications of cysteine thiolate residues located in active and al-

losteric sites of specific proteins resulting in alterations on their ac-

tivity and function. Any protein containing a deprotonated cysteine

residue is susceptible to be oxidized by H 2 O 2 [ 44 ]; thus the sensitivity

of the protein to oxidation depends on the ionization constant (pKa)

and the local environment of the cysteine residue. Because the pKa of

the sulfhydril group of most cysteines residues is around 8.5, they are

protonated at physiological pH (Cys–SH), and so, inert to H 2 O 2 oxida-

tion. However, there are certain proteins which exhibit a lower pKa

(5,6) and thus under physiological conditions they contain cysteine

thiolate anions prone to react with H 2 O 2 under second order kinetics.

H 2 O 2 is capable of oxidizing those cysteine residues via the formation

of an unstable intermediate cysteine sulfenic acid (R–S–OH), and pro-

duce disulfides (R–S–S–R) [ 45 , 46 ]. Different kinds of disulfide bonds

can occur depending on whether they are produced between cys-

teines within the same protein (intramolecular disulfide bond [ 47 ])

or between cysteines located in two different molecules producing a

homo- or hetero-dimer (intermolecular disulfide bond [ 48 ]). In addi-

tion, disulfides can also form a mixed-disulfide between glutathione

and the thiol of another protein (S-glutathionylation), or with amides

to form sulfenyl amide (–SN–) [ 49 ]. Protein thiols can undergo further

two-electron oxidations by H 2 O 2 to form sulfinic (R–SO 2 H) or sulfonic

acid (R–SO 3 H). Once a cysteine thiol has been oxidized, it needs to be

reduced back if the signal has to be ended, and the cells are provided

by different enzymatic and non-enzymatic systems responsible for

this process. Disulfides and sulfenic groups can be reduced either

by thioredoxins (TRXs) and peroxiredoxins (PRXs), while the mixed-

disulfide reduction is driven by glutaredoxins (GRXs) [ 50 ]. Sulfinic

acid groups can be reduced to sulfenic by the sulfiredoxins (SRXs) a

family of ATP-dependent enzymes [ 51 ], and overoxidation to sulfonic

acid is considered to be biologically irreversible. 

Different proteins are capable to be modified by H 2 O 2 includ-

ing phosphatases, transcription factors, ion channels, antioxidant and

metabolic enzymes, structural proteins and protein kinases among

others [ 19 ]. In the next section, we focus on the interaction between

ROS and protein kinases that are involved in the control of the vascular

function. 

Protein kinases constitute a highly diverse group of enzymes that

alter the function of target proteins by catalyzing the phosphoryla-

tion of tyrosine, threonine, and / or serine residues [ 52 ]. A significant

number of them are sensitive to redox signaling as they bear redox-

sensitive cysteines, either in the primary kinases themselves or in

upstream regulatory proteins. Some serine / theonine protein kinases

are modified by a direct redox modification of susceptible cysteines.

For example protein kinase C (PKC) contains a cysteine rich domain

susceptible to oxidation [ 53 ], or the nonreceptor tyrosine kinase Src

in which endogenous H 2 O 2 oxidizes Cys-245 and Cys-487 in the ki-

nase domain resulting in the activation of the protein [ 54 ], whereas

tyrosine kinases are mainly activated in an indirect way, because of

the oxidative inactivation of the protein tyrosine phosphatases (PTP)

which control their phosphorylated state. All PTPs contain cysteine

residues in their catalytic domains that are essential for their catalytic

activity and exist as a thiolate [ 55 , 56 ]. This is frequently the mech-

anism of the ROS-mediated signal for an important group of protein
kinases, widely involved in cell signaling, the mitogen-activated pro-

tein kinases (MAPK). 

MAPKs are key components of signaling pathways triggered by

G-protein-coupled receptors, tyrosine kinase receptors, integrins and

cytokines. They are a large family of serine / theonine kinases that

requires tyrosine and threonine phosphorylation in the loop for acti-

vation [ 57 ]. They consist of four families of proteins: the extracellular

signal regulated kinase (Erk1 / 2), p38 MAPK, jun N-terminal kinase

(JNK) and the extracellular signal-regulated kinase 5 (ERK5), all of

them reported as targets of H 2 O 2 . The ERK cascade is principally in-

volved in proliferation, differentiation, growth and cell survival, JNK in

apoptosis / inflammation and p38 MAPK in cell motility and inflam-

matory responses [ 58 ]. Thus the panoply of consequences derived

from their redox regulation is quite ample. 

In Table 1 we summarize the findings regarding the activation of

MAPK by hydrogen peroxide and their role in vascular endothelial

function. 

H 2 O 2 regulation of endothelial function 

In vascular endothelial cells, ROS gained attention as impor-

tant second messengers by regulating the activity of signaling pro-

teins, enzymes and ion channels in endothelial cells. H 2 O 2 modu-

lates different aspects of endothelial cell function, including endothe-

lial cell growth and proliferation, survival, endothelium-dependent

vasorelaxation, cytoskeletal reorganization, inflammatory responses

and endothelium-regulated vascular remodeling, among others [ 11 ].

Whereas a modest increase and a tight controlled regulation of H 2 O 2

is essential for the maintenance of vascular homeostasis, an aber-

rant redox signaling, usually induced by an excessive production of

ROS and / or by decreases in antioxidant activity, may contribute to an

alteration in vascular function and lead to vascular disease [ 74 , 75 ]. 

We now discuss two situations where hydrogen peroxide exerts a

profound influence on endothelial cells. 

Cell growth, proliferation and angiogenesis 

Endothelial cells growth and survival are dependent on several

factors coupled to the intracellular production of O 2 
•− and H 2 O 2

[ 76 ]. For example, the growth regulating p90RSK protein [ 59 ] and

the early growth factor 1 (Egf1) [ 77 ] are activated in endothelial cells

by a redox-dependent activation of Erk1 / 2 MAPK by H 2 O 2 . More-

over, several studies have demonstrated that ROS mediate numerous
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Fig 3. Laminar shear stress regulation of vascular tone.Hydrogen peroxide activation of 

p38 MAPK is a fundamental mechanism for laminar shear stress-mediated endothelium 

vasodilation. 
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ngiogenic effects including migration, proliferation and tube forma- 

ion, through a tight regulation between H 2 O 2 and the key angio- 

enic growth factor VEGF [ 78 ]. On one side, H 2 O 2 upregulates VEGF 

RNA and protein expression and VEGF-induced VEGFR2 activation 

 59 , 79 , 80 ], inducing angiogenic-related responses. However, VEGF is 

lso able to activate one of the main sources of ROS in vascular en- 

othelial cells, NADPH oxidase [ 81 , 82 ]. 

It is important to note that these beneficial effects on the vas- 

ulature are only produced by physiological concentrations of H 2 O 2 

here endothelial cell growth and angiogenesis are necessary, as in 

epairing ischemia damage [ 83 ]. However, supraphysiological levels 

f H 2 O 2 impair proliferation and / or decrease viability [ 84 , 85 ] or could

ven induce hypertrophy when diffusing to the smooth muscle [ 86 ]. 

egulation of vascular tone and vascular relaxation 

The effects of ROS on vascular tone are not uniform since they 

epend on the specific ROS molecule, its concentration, and the vas- 

ular bed that is affected among other factors [ 87 ]. In general, O 2 
•−

avors vasoconstriction because it reduces the bioavailability of nitric 

xide (NO 

•) by reacting with it, and by generation of peroxynitrite 

 88 , 89 ]. In contrast, H 2 O 2 induces vasodilation in different vascular 

eds, such as mesenteric [ 90 , 91 ], coronary [ 92 , 93 ] or pulmonary ar-

eries [ 94 ]. The increment of H 2 O 2 in vascular segments of transgenic 

ice with endothelial-specific NOX4 overexpression, lead to an in- 

reased vasodilation and reduced basal blood pressure [ 95 ]. H 2 O 2 

eneration contributes to the physiological regulation of the vascular 

one in different ways. It was found to be an endothelium-derived 

yperpolarizing factor [ 96 , 97 ] or an activator of the potassium chan- 

el [ 98 ], but its vasorelaxing effect has been closely related to nitric 

xide production. Indeed, H 2 O 2 leads to the stimulation of eNOS and 

he subsequent production of nitric oxide via the activation of dif- 

erent signaling pathways such as PI3K / Akt [ 61 , 99 ] and Erk1 / 2 [ 61 ].

urthermore, we have recently described the involvement of H 2 O 2 in 

NOS activation that may contribute to the protective role of laminar 

hear stress (LSS) in the vascular endothelium. We proposed a model 

n which LSS promotes the formation of signaling levels of H 2 O 2 , 

hich in turn activate p38 MAPK and eNOS, increasing NO. synthesis 

nd protection of endothelial function [ 65 ] ( Fig. 3 ). Moreover, H 2 O 2 

as been described not only as capable of activating eNOS, but also 
for upregulating its expression [ 100 ]. A major regulator of vasodila- 

tion in the vasculature is the protein kinase PKG1 α [ 101 ]. PKG1 α is 

also sensitive to oxidation by H 2 O 2 through the formation of a disul- 

fide bond [ 102 ], accounting for the activation of the protein, and the 

related increased vasodilation independently of cGMP levels [ 103 ]. 

Conclusions 

Hydrogen peroxide acts as a signaling second messenger in the 

vasculature. Its targets in the cardiovascular system are diverse, and 

include different protein kinases, which convey a wide array of ef- 

fects to the endothelium. Although increased H 2 O 2 might result in an 

alteration of vascular reactivity and lead to toxicity and the develop- 

ment of vascular disease, signaling levels of H 2 O 2 play a key role in 

vascular function and homeostasis. 

Source of funding 

Ministerio de Econom ́ıa y Competitividad SAF 2012-31338 (S.L.), 

CSD 2007-00020 (S.L.), JAE-CSIC predoctoral fellowship (RB) and Fun- 

daci ́on Renal “I ̃ nigo Alvarez de Toledo”. 
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