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Abstract
In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differenti-
ation mechanisms of zebrafish (Danio rerio).We show that the data obtained from most studies are compatible with
polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These
loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on
a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes
both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination
systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile
ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways
were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our
opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation.
Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will
result in further deepening of our knowledge as well as identification of additional pathways and genes associated
with these processes in the near future.
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ZEBRAFISH SEX: LOTSOF
QUESTIONSANDONLYA FEW
ANSWERS
Teleosts (ray-finned fishes) form the largest group of

extant vertebrates with more species than the rest of

the other vertebrates combined [1]. The rich diver-

sity of teleosts is observed not only in their pheno-

types and behavior (review: [2]), but also in the

varieties of their reproductive processes that seem

to utilize all known sex determination (SD) mech-

anisms described for other vertebrates (see reviews [3,

4]). It is believed that the common ancestor of

teleosts diverged from that of land vertebrates

about 410 million years ago (Mya), well before the

split of placental mammals from the latter lineage

(ca. 180 Mya) [5]. Therefore, it is not surprising

that the evolution of sex determination systems

between teleosts and the well-studied mammals

show substantial differences. The diversity of

reproductive systems in teleosts allows them to con-

tribute to comparative studies on the evolution of

SD mechanisms.

One of the most popular model organisms among

teleosts is the zebrafish (Danio rerio). Natural habitats

of the zebrafish stretch from South Asia (e.g.

Pakistan, Nepal and India) to Southeast Asia (e.g.

Myanmar) [6]. This small-bodied freshwater species

is most commonly found in slow or stagnant waters,

such as rivers, ponds and paddy fields [6, 7]. The

ambient water temperature at these natural habitats

typically ranges from 26–32�C [7].

Among the reasons that make zebrafish a popular

laboratory model is its short generation time. In the

laboratory, zebrafish reach reproductive maturity at

around 3–4 months. Despite its relatively small size,

the species is quite fecund: mature females kept

under ideal conditions often produce 200–300 eggs

regularly on a weekly basis. However, offspring sex
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ratios can vary over a wide range, including extreme

male or female bias. Experiments that require a cer-

tain sex ratio necessitate the identification of specific

breeding pairs that have been tested earlier and were

shown to produce the desired proportion of males/

females in their offspring. The identification, main-

tenance and regular breeding of these pairs could be

a time-consuming task.

Although many reviews have been published on

SD and gonad differentiation of teleosts (see, e.g. [3,

4, 8–19]), those focusing on zebrafish sex have been

few and far between until very recently [11, 20–22].

Over the past few decades, there have been conflict-

ing reports on the mode of SD in zebrafish; some of

them predicted genetic mechanisms [23–26], where-

as others pointed toward environmental clues [27,

28]. According to our knowledge, ours is the first

review that provides a detailed overview on studies

spanning nearly four decades in order to improve our

knowledge on the elusive SD and gonad differenti-

ation mechanism of zebrafish.

ZEBRAFISH SEX IS DETERMINED
PRIMARILY BYGENETIC FACTORS
ANDNOTENVIRONMENTALONES
In vertebrates, sex is determined either by genetic

mechanisms (genetic sex determination or GSD;

reviews: [3, 18, 29]) or by the environment (envir-

onmental sex determination or ESD; reviews: [3, 4,

8, 12, 15, 30]). Although SD has only been analyzed

in a small subset of the 32 000 fish species (reviews:

[3, 15]), there are plenty of examples for species

with GSD (e.g. Japanese medaka [31], threespine

stickleback [32] and Patagonian pejerrey [33]) and

ESD (e.g. American eel [34] and bluehead wrasse

[35]). In some teleosts, SD (or gonad differentiation)

can be overridden by environmental effects,

most often temperature (thermal effect (TE) on

GSD; review: [36]).

In GSD, the sex of an individual is determined

primarily by genes/chromosomes inherited from the

parents. There are two major forms of GSD: (i) SD

by a single sex chromosomal pair or chromosomal

sex determination (CSD) and (ii) SD by several (i.e.

more than one) genetic factors or polygenic (multi-

genic) sex determination (PSD). In our opinion, the

latter includes those with multiple sex chromosome

types (e.g. several Lake Malawi cichlid species [37]),

weak sex chromosomes easily and often overridden

by autosomal modifiers (e.g. X/YþA or ZWþA

according to Devlin and Nagahama [3]) and those

regulated by several autosomal loci without any sign

of sex chromosomes (e.g. European seabass [38]).

To find out whether zebrafish uses GSD or not,

we conducted several experiments [26]. Repeated

mating of the same breeding pairs yielded offspring

groups with very similar sex ratios, even when they

were reared in uncontrolled environmental condi-

tions (i.e. variations were expected in rearing density,

amount of feed and ambient water temperature

[26]). We also performed a selective breeding experi-

ment, whereby factorial crosses were made with four

to six siblings in every generation and brooders

for the new generation were chosen from the

family that produced the highest bias toward the

required direction. With this approach, we generated

families with severely biased sex ratios within a short

period of time (three to four generations), especially

toward male excess [26].

Strong influence of parental genotype on the sex

of zebrafish offspring was also described by Abozaid

et al. [39, 40]. They observed that offspring from

gynogenetic males showed stronger effect of heat-

induced masculinization than progenies sired by

wild-type males. In addition, they also found that

progeny sex ratios from the same breeding pairs

were highly reproducible [39].

As indicated by its name, ESD is dependent on

a signal from the surrounding environment to deter-

mine the gonadal fate (i.e. testis or ovary) of an

organism (review: [41]). Species utilizing ESD do

not have sexual dimorphism at the genomic level.

The most common type of ESD mechanism studied

is temperature-dependent SD, in which sex is a func-

tion of the ambient temperature during early devel-

opment. This mode of SD is quite common among

reptiles [42, 43], but it has only been shown to exist

in a few teleost species (review: [36]). Although sev-

eral environmental factors, including dissolved

oxygen [44] and growth rate [27] have been found

to influence sex ratio of zebrafish, the effect of tem-

perature on sex was studied most extensively [39, 40,

45, 46]. Studies on various teleost species, including

zebrafish, showed that elevated water temperature

affected different gonadal processes, including apop-

tosis, estrogen biosynthesis and germ cell meiosis [45,

47, 48]. When zebrafish juveniles were subjected to

high water temperatures during the period of gonad

transformation and differentiation, oocyte apoptosis

and decreased activity of gonadal aromatase were

observed, resulting in increased male bias at adult-

hood [45]. In European seabass (Dicentrarchus labrax),
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high temperature caused increased DNA methyla-

tion of the aromatase promoter, resulting in

decreased expression and male-biased sex ratio [47].

Apparently, masculinizing effect of high temperature

is not restricted to the gonad differentiation period

in zebrafish, as families exposed to increased tem-

perature during larval stage (5–42 h postfertilization)

also produced significantly more males [39].

Interestingly, in the latter experiment some families

tended to be more sensitive to heat-induced

masculinization than others [40]. This showed that

interaction between genotype and the environment

exists in zebrafish.

All in all, the above studies showed that zebrafish

sexual development could be affected by various

environmental factors. However, none of the envir-

onmental factors exerted a strong effect on sex

within their natural range, and some of them

seemed to be largely dependent on the fish geno-

type. These data argue against zebrafish being a true

ESD species, further supporting the earlier conclu-

sion by Piferrer’s group that this is a TE on GSD

species [36].

ZEBRAFISH SEX IS DETERMINED
BYMULTIPLE LOCI (WITHOR
WITHOUT SEXCHROMOSOMES)
In the best known form of SD that is found in mam-

mals and avians as well as many other vertebrate spe-

cies, including some teleosts, there is a so-called

‘master switch’ that typically resides on a special

chromosomal pair, the well-differentiated sex

chromosomes [9, 49, 50]. If the ‘master switch’ is

on the ‘heterogametic’ member of the sex chromo-

somal pair that is present in only one of the two sexes

(male-specific Y or female-specific W), then it will

initiate the biological programs in representatives of

that sex only. On the other hand, if the ‘master

switch’ is located on the ‘homogametic sex chromo-

some’ that is present in both sexes, then the outcome

will be determined by a dosage-based mechanism

(e.g. Drosophila melanogaster [51]). In addition to the

classical, well-differentiated sex chromosomes, there

are vertebrate species with undifferentiated sex

chromosomal pairs, where both the so-called

proto-X and proto-Y might contain the master

switch, but in a different allelic form (e.g. Takifugu
rubripes [52]). In this review, we will summarize the

results of over two dozen studies—performed with

several different methods— that have been

conducted for the identification of sex chromosomes

in zebrafish.

The traditional method for identification of sex

chromosomes is detection of a heteromorphic

chromosomal pair in one of the two sexes through

karyotyping. Highly differentiated sex chromosomes

(e.g. most mammalian ones) are easily distinguished

cytogenetically due to their distinct size difference

(heteromorphism) caused by suppression of recom-

bination and degeneration of the heterogametic sex

chromosome (reviews: [53–55]). Search for a hetero-

morphic chromosomal pair in zebrafish started nearly

half a century ago when its karyotype was described

[56]. Since then there were a number of publications

on zebrafish karyotypes, the majority of them did

not observe any size dimorphic chromosomal pair

[56–65], but see potential indications for a ZW/ZZ

system [66, 67]. It must be noted here that pairing of

the zebrafish chromosomes on karyotypes is difficult

due to their monomorphic nature, whereas the usage

of different stains resulted in different chromosome

banding patterns [63], making cross-validation of the

results from different experiments challenging.

Arkhipchuk [68] found differentiated sex chromo-

somes in about 10% of the ca. 2000 teleost karyo-

types he reviewed. As species with undifferentiated

sex chromosomes containing a short nonrecombin-

ing region (i.e. proto-X/proto-Y) is not cytogeneti-

cally recognizable, the exact proportion of teleost

species with sex chromosomes might be larger.

Comparative analysis of meiotic recombination

rates in males versus females can also be used to

detect sex chromosomal systems. Species with het-

erogametic sex chromosomal pairs usually display

different recombination rate that is sex-specific due

to suppression of recombination between the pair

of sex chromosomes [69]. Using genetic mapping

approach, the Postlethwait’s lab compared the

recombination rate between a double-haploid zebra-

fish male [70] and female [71, 72]. They reported

that the male androgenetic map had lower recom-

bination rate relative to the female gynogenetic map

[70]. Later, they also confirmed these results in

normal (wild-type) zebrafish [25]. However, it was

also suggested that the lower recombination rate

observed in male zebrafish is most likely due to

lesser numbers of human mutL homolog 1 (Mlh1) foci

in male genome and not because of recombination

suppression [73]. The latter observation was sup-

ported by data obtained through synaptonemal com-

plex karyotyping [74, 75], which did not find any
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difference between the two sexes. These results led

to the conclusion that zebrafish is unlikely to have a

pair of highly differentiated sex chromosomes.

Whole genome manipulation (or induced par-

thenogenesis) techniques are also used for identifica-

tion of species with CSD (reviews: [76–80]). The

approach is based on the exclusion of the paternal

or maternal genome from the inheritance by irradi-

ation of sperm or egg, followed by inhibition of

first cell division. This will result in duplication of

the remaining haploid genome, hence the name

double haploids. Double haploids generated by the

exclusion of paternal genome are called gynogen-

otes, whereas those generated by the elimination of

maternal genome are named androgenotes. In the

presence of a pair of differentiated sex chromosomes,

double haploids have equal chances to inherit either

of them. For species that are male heterogametic

(XY), the expected sex ratio of F1 double haploids

from gynogenesis would be 100% females

(Figure 1A). On the other hand, for female hetero-

gametic species (ZW), F1 gynogenotes are expected

to have a 1:1 male to female phenotypic sex ratio

(Figure 1B), assuming full survival of F1 with WW

sex chromosomal set that does not occur in nature.

Crossing of WW female with a normal male (ZZ)

should produce an all-female progeny (Figure 1B).

The reverse is true for androgenesis, whereby F1

double haploids from male heterogametic species

should have an equal proportion of males and fe-

males (again, assuming full survival of YY males),

while female heterogametic species should produce

100% male androgenotes. For this review, we col-

lated data from four sets of zebrafish gynogenesis

experiments [81–84] and one androgenesis experi-

ment [28]. The number of double haploids obtained

per experiment ranged from 5 to 146 and sex ratio

showed high variation from 0% to 95% females

(summary of data available in Table 1). Some of

these data seem to be incompatible with the XX/

XY sex chromosomal system, others with the ZZ/

ZW system, whereas the rest do not seem to fit

either of the two options. Taken together, they

seem to argue against the presence of a strong sex

chromosomal system with primary effect on SD in

zebrafish.

The third experimental technique used for

detecting the presence of sex chromosomes is based

on analyzing sex ratios of offspring produced by

crossing sex-reversed individuals with wild-type

partners (review: [3, 85]). In an XX/XY species,

when sex-reversed (srXX) neo males produced by

masculinization of genetic females are crossed with

wild-type females, a monosex female offspring is

expected (Figure 1C). However, in ZW/ZZ species,

the proportion of females in the progeny of

srZW�ZW cross is expected to be between 75%

and 50% (Figure 1D), depending on the relative sur-

vival rate of the WW individuals compared with

ZW. When neo females generated by feminization

of genetic males are crossed with wild-type males,

the expected sex ratios are: 25–33% females for XX/

XY (depending on the survival of the YYs) and

100% males for ZZ/ZW.

Over the years, numerous experiments were per-

formed to achieve hormonal sex reversal of zebrafish

(a set of examples available in Table 1 of [21]).

However, according to our knowledge, most of

them did not report on the offspring sex ratio pro-

duced by sex-reversed neo males or females. We

only managed to find a single study that successfully

masculinized zebrafish by hormone treatment and

identified ‘super females’ among the resulting F1

fish [23]. When these ‘super females’ were crossed

with normal males, severely female-biased (90–98%)

offspring was produced. This led them to suggest that

zebrafish has a ‘female dominance chromosomal-

based SD mechanism’. In our view, this proposed

mechanism is identical to the female heterogametic

system (ZW/ZZ) that has been found to be incom-

patible with zebrafish SD based on data obtained

earlier by several genome manipulation experiments

(Table 1). Unfortunately, there is no indication in

the publication whether the authors have attempted

to identify the proposed sex chromosomes (or any of

their markers).

As described earlier, masculinization of zebrafish

can also be achieved by high temperature applied

during the gonadal transformation window ([39,

40, 45]; review: [36]). In an experiment conducted

by Abozaid etal. [40], F1 neo males produced by heat

treatment were backcrossed to their mother (normal

female) for offspring sex ratio analysis. The F1 gen-

eration had an average of 16% males, which had a

notable difference from the expected sex ratio for

both a male heterogametic (expected: no males)

and female heterogametic (expected: 50% males) sys-

tems. Surprisingly, the F2 progenies had sex ratios

very similar to the expected value of a female het-

erogametic sex system. However, as the F1 progeny

sex ratio could not be explained by either of the two

sex chromosomal systems, the authors concluded
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Figure 1: Inferring the type of sex chromosomal system by progeny sex ratio as a result of genome manipulation
or artificial sex reversal. (A) Performing gynogenesis on male heterogametic species will produce an all-female
(XX) F1 offspring. (B) For the female heterogametic species (assuming full viability of all genotypes), gynogenesis
will produce F1 progeny with about 1:1 sex ratio and all F1 females will have WW sex chromosomes. [In case
of WW lethality, an all-male (ZZ) F1 offspring will be produced, whereas partial survival of WWs will yield
intermediate results]. When F1 females (WW) are crossed with normal males (ZZ), their F2 offspring will be all
female (ZW). (C) When hormone- or temperature-based masculinization is performed in a male heterogametic
species, crossing of sex-reversed neo-males (srXX) with normal females will produce all-female F1 offspring.
(D) For female heterogametic species (assuming full viability of all genotypes), the expected phenotypic sex ratio
in the F1 progeny, from crossing the sex-reversed neo-male (srZW) with normal female (ZW), will be 25% males
and 75% females. Among the F1 females, one-third of them will have WW sex chromosomal pair that does not
normally occur in nature and yield an all-female offspring when crossed with a normal male (ZZ). (If WWs
showed lethality, then 33% ZZ males and 67% ZW females will be expected, whereas their partial survival will
yield intermediate results).

Table 1: Data from induced parthenogenesis experiments on zebrafish yield sex ratios incompatible with one or
both sex chromosomal systems

Double
haploid

Strain Number
of double
haploid

Observed
sex ratio
(percent
female)

Type of sex
chromosome
excluded

Remark Reference

Gynogenotes Wild 8 0 XX/XY If ZW/ZZ, thenWWs are inviable [81]
Gynogenotes Golden 8 0 XX/XY If ZW/ZZ, thenWWs are inviable [81]
Gynogenotes gol-mix 15 <20 both Per family sex ratios cover the range from <20% to >80% [82]
Gynogenotes gol-mix 146 <20 both Per family sex ratios cover the range from <20% to >80% [82]
Gynogenotes gol-FL1 28 92 both Per family sex ratios cover the range from <20% to >80% [82]
Gynogenotes C29 85 95 ZW/ZZ If XX/XY, thenYYviability is high [83]
Gynogenotes Unknown Unknown 6 XX/XY If ZW/ZZ, the viability of WWs is very low [84]
Androgenotes AB 5 0 both Sex ratio of progeny is highly skewed in some families [28]
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that at least two or more autosomal factors might be

involved in zebrafish SD further strengthening indi-

cations against the compatibility of zebrafish SD with

a simple sex chromosomal system.

The most direct way to search for sex chromo-

somes is to look for genomic differences between the

male and female genomes. Polymerase chain reaction

(PCR)-based methods such as random amplified

polymorphic DNA (RAPD) [86] and amplified

fragment length polymorphism (AFLP) [87] are the

most popular molecular methods for isolation of

sex markers, but other procedures have also been

used [88]. Information obtained from sex markers

can be used to identify the type of GSD mechanism

the organism is utilizing (review: [89]). We screened

through the zebrafish genome using our improved

PCR-based assay method, called fluorescent Motif

Enhanced Polymorphism (fluoMEP), which com-

bined the simplicity of RAPD and the higher

throughput of AFLP [90]. Using fluoMEP, we man-

aged to isolate male-specific sex markers from two

fish species known to have sex chromosomes, i.e.

guppy (Poecilia reticulata) and rosy barb (Puntius concho-
nius) [26, 91–94]. However, we could not find any

universal sex marker after detailed comparative

analysis of the zebrafish males and females genomes

in two strains (AB and wild-type) using the same

method [26]. This is likely due to the fact that

there are no universal major structural differences

between the chromosomal sets of the zebrafish

sexes in these two strains.

The availability of the whole zebrafish genomic

sequence [95, 96] has enabled the use of higher reso-

lution genomic tools to search for sex chromosomes.

One such technique is array comparative genomic

hybridization (aCGH), which screens the whole

genome at regular intervals for copy number variable

regions (CNVRs) between two different samples [97,

98] and was recently used to study genetic diversity of

different zebrafish strains [99]. In a well-differentiated

sex chromosomal system, the SD region should

be unique to the heterogametic sex chromosome.

As a consequence, it should show different copy

numbers between the two sexes; hence, it is possible

to search for such sex chromosomes using aCGH.

To screen through the zebrafish genome at higher

resolution than fluoMEP, we custom-designed an

aCGH oligonucleotide microarray that can detect

CNVRs longer than 50 kb. Two strains of zebrafish

(AB and Singapore-based wild-type) were screened

using the custom-designed aCGH array. No universal

sex-linked CNVR was detected from the two pairs

of zebrafish families tested [26]. These data and

the fluoMEP results further strengthen the notion

that there are no substantial differences between

the zebrafish sexes that would be uniform for every

strain.

Genome-wide linkage analysis is another molecu-

lar technique that takes advantage of whole genome

sequences. DNA markers are used to search for

loci that show significant association with the trait

of interest. For zebrafish, three labs had performed

single-nucleotide polymorphism (SNP)-based gen-

etic linkage mapping on F2 generation for which

the grandparents were derived from two different

zebrafish strains, followed by full-sib crosses of the

F1 hybrids [24, 25, 95]. Altogether, five different

regions on four chromosomes (i.e. chromosome 3,

4, 5 and 16) were identified (Table 2). Although all

crosses involved an AB strain grandparent, none of

the putative sex-associated regions were consistent

between any two labs. The detection of five different

sex-associated regions from three independent

genome-wide studies indicates that zebrafish SD is

a complex trait, where multiple autosomal factors

and not just one pair of sex chromosome, if any,

will instruct individuals to assume one of the two

sexes. These data also indicate that there might be

differences among the various zebrafish strains with

regard to the gene sets that play a role in the SD

mechanism.

The pathways involved in gonad differentiation

are highly conserved among the vertebrates, with

many of the genes having the same functions [15,

22, 100–104]. Candidate gene approach as well as

large-scale comparative transcriptomic analysis (such

as microarray), were used to identify potential master

sex determining (MSD) genes. Such a gene is

typically only carried by one of the sexes and the

chromosome with MSD gene is the sex chromo-

some. Thus, mapping of genes with sexually

dimorphic expression level onto the genome pro-

vides a means to detect sex chromosomes. Using

this approach the MSD gene for Patagonian pejerrey

(Odontesthes hatcheri) and rainbow trout (Oncorhynchus
mykiss), amhy [33] and sdY [105], respectively, were

identified and mapped to the Y chromosome.

Zebrafish also shared many of the common candidate

genes involved in gonad differentiation (refer to

Table 2 of [21]). There were also several large-scale

comparative transcriptomic studies performed be-

tween the zebrafish sexes and they identified many
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genes showing sex dimorphic expression level [106–

110]. However, no zebrafish chromosome has sig-

nificant clustering of these genes and to date no pri-

mary SD switch with preferential role was identified.

The identification of a MSD gene works most effi-

ciently when the genetic sex of the fish species can

be determined at larval stage. This is because the

MSD gene might be expressed only during early

developmental stages, like the expression of amhy
in male Patagonian pejerrey is observed only up to

20 weeks after hatching [33]. Therefore, for an

organism like the zebrafish that does not have distinct

sexual dimorphism during the larvae stage, ‘blind

analysis’ of a large number of samples collected at

multiple time points from families with known sex

ratios must be performed, making these experiments

tedious and expensive.

ZEBRAFISH SEX DETERMINATION
IS POLYGENIC
The data reviewed so far on sex chromosome

searches in zebrafish shows the following: (i) there

is no cytogenetic evidence of heteromorphic

chromosomal pair; (ii) the observed progeny sex

ratios from various genome manipulation studies

did not concur with those expected from a simple

sex chromosome model; (iii) lack of substantial,

universal differences between genomes of the two

sexes in multiple strains and (iv) genome-wide link-

age analysis identified multiple regions on different

chromosomes associated with SD. All these results

convincingly indicate: (i) high level of variability of

the SD process among different zebrafish strains and

(ii) the likely absence of strong, highly differentiated

sex chromosomes in all zebrafish varieties. At the

same time, the reviewed data also point to strong

influence of parental genotypes on progeny sex

ratio. In such cases the most probable SD mechanism

is PSD (reviews: [111–113]). (In our opinion, a weak

sex chromosomal pair that is not present in every

strain and unable to control sexual development

of vast majority of individuals due to the action of

multiple autosomal modifiers would not exclude

zebrafish from this category). Due to the complexity

of the mechanism, there are only a few publica-

tions on this system and in addition to zebrafish,

currently only few fish species, including several

Lake Malawi cichlid species [37], several tilapia spe-

cies [114, 115], European seabass [38] and green

swordtail [113], were reported to utilize this mode

of SD.

According to Bull [111], the criteria for PSD sys-

tems are as follows: (i) wide range of progeny sex

ratio among different families; (ii) strong influence

from parental genotype and (iii) sex ratio response

to selection. Our and other’s data on zebrafish ful-

filled all these three criteria. First, we observed huge

differences in the progeny sex ratio (4.8–97.3%

males) among 62 zebrafish families of various strains

[26]. Second, at least two independent studies

found strong parental genotype influence on the

progeny sex ratio by performing repeated crossings

of the same breeding pair [26] and crossing of gyno-

genetic males with different normal females [39, 40].

Finally, we were able to prove sex ratio response

to selection by maintaining sex-biased zebrafish

lines and decreased progeny sex ratio variation

among families from the same line through selective

breeding [26].

Table 2: At least five sex-associated regions were identified in zebrafish strains by genome-wide studies

Cross-typea Method Marker densityb (kb) Chr Chr location (Zv9) Genetic interval References

IN�AB SNP typing 3.80 5 44 453 011^46 626 084 1.7 cM [24]
IN�AB SNP typing 3.80 16 12 952 287^16 952 809 3.5 cM [24]
AB#�NA SNP typing 357.38 4 60 837 953^62 094 675 >1 cM [25]
NA� AB# SNP typing 295.82 4 60 837 953^62 094 676 >1 cM [25]
NA� AB# SNP typing 295.82 3 15 234 176^29 193 306 5.8 cM [25]
AB�Tu SNP typing 13.62 16 �19^22 Mb N/P [95]
AB�AB; Toh�Toh aCGH 15.74 N/A N/A N/A [26]

Note: aFor the first three studies [24, 25, 95], brooders from two different varieties were crossed (males shown first), then F1 full-sib cross was
performed to produce the F2 mapping family. For the fourth study [26], two pairs of brooders each from two strains were crossed.The parents
and four of their offspring from each cross were analyzed.
bBased on1.714Gb genome size (GregoryTR. Animal Genome Size Database. http://www.genomesize.com).
IN, wild-type from Northeast India; AB, AB stock; AB#, AB stocks derived from Streisinger’s original AB line; NA, Nadia stocks originated from
Indianwild-type from the Kolkata region;Tu,Tubingen line;Toh, a farm-derived strain from Singapore; N/P, not provided; N/A, not applicable.
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HOWDOES PSDWORKAND
WHICH GENESARE INVOLVED?
In a polygenic system, the sex of an individual is not

determined by the presence or absence of a special

chromosome. Instead, decision is made by the allelic

combinations of loci, whose products are involved

in the SD process (Figure 2). These loci are typically

dispersed throughout the genome, but in some spe-

cies a few of them might be located on a preferential

pair of chromosomes. In other words, the presence

of sex chromosomes, per se, should not exclude PSD.

The complexity of PSD system is the result of

different allelic combinations with variable effect

on gonad differentiation. Protein products of several

genes located on different chromosomes are involved

in SD with some having pro-female function while

others promoting maleness. Different alleles of the

same gene can have strong or weak effect. If we

assigned a binary code to the allele effect (strong¼ 1

and weak¼ 0), then the sex of this PSD species

could be predicted by simply comparing the sum

of male to female alleles. Gonad differentiation

would be directed to the sex with the highest pro-

portion of strong alleles (more detailed explanation is

available in Figure 2).

Needless to say, the maximum number of vari-

ations (i.e. allelic combinations) in the germ cells

would drastically increase in parallel with increasing

number of loci involved; for eight loci it would be

128 (27), whereas for a dozen it would be 2056 (211).

These calculations exclude those females that are

heterozygous for all loci, otherwise the numbers

would be twice higher. This is in sharp contrast

with CSD systems, where the total number of

genetic varieties for the SD loci among the gametes

is two.

One characteristic of the PSD system is that rep-

resentatives of the two sexes show a much higher

Figure 2: A simplified mechanistic model for a PSD system based on the involvement of four autosomal genes. In
this theoretical PSD system, protein products of four genomic loci determine sex.Two of the protein products per-
form a function that pushes the gonad toward femaleness D and E loci, while the remaining two are proteins with
pro-male function A and B loci. For simplicity, it is assumed that (i) for every locus there is a strong (larger shape
and upper case letter) and weak (smaller shape and lower case letter) effect allele; (ii) the effect of the four
strong alleles are equal and the same is true for the four weak alleles at a lower level and (iii) the four products
do not exert any direct effect on the functions of each other. If we assign a binary code to the alleles (strongç1
and weakç0), then the outcome could be predicted by simply comparing the sum of male and female alleles
(assuming that in case of a tie the individual would continue to develop into a female). In this system, a weak male
that has two strong male alleles and one strong female allele (A) could produce sperm cells of different sexual geno-
types [see (B) and (C) for examples], among them some that would have excess of pro-female alleles [see (C)].
Similarly, a weak female with one strong male and two strong female alleles (D) could also produce oocytes with
excess strong female alleles (E) or more strong male alleles (F). Symbols with different shapes label genes located
on four different autosomes. Ratios of strong male to strong female alleles are indicated in brackets.
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level of variation than that in CSD systems. This

variation is then passed over to the next generation

in the form of highly variable offspring sex ratios

among different combinations of parental pairs.

When the same zebrafish male is crossed with three

different females, sex ratios of the resulting families

spread over a surprisingly wide range (Figure 3),

providing additional indication that only part of the

complexity due to allelic diversity is observed here.

Such a wide variation in the sex ratio of PSD species

(Figure 4A) differs markedly from the narrow range

observed in the four families produced by a CSD

species (Figure 4B).

Unfortunately, it is still not known: (i) how many

genes regulate PSD in zebrafish; (ii) what are these

genes and (iii) how much, if any, is the overlap

among these gene sets and those of other PSD

species in vertebrates. Data obtained from the two

genome-wide linkage studies mentioned above [24,

25] provided first set of indications toward the

genomic regions that are likely to contain subset of

these genes in zebrafish. They found genes with roles

in gonad differentiation (dmrt1 and fancg) and sex

hormone biosynthesis (cyp21a2 and hsd17b1) to be

closely located to the proposed SD regions [24,

25]. Another feature of PSD is the cumulative

effect of multiple genes involved in SD. Different

allelic combinations exerting variable effects further

complicate the process. Experimental evidence for

the cumulative effect of the allelic combinations

was observed on sex-linked loci reported by

Bradley and colleagues (see Supplementary Table 4

of [24]). Given the fact, that the two SD regions

identified by them accounted for only 16% of the

sex variance trait [24], we propose that there could

be a large number of genes involved in zebrafish SD.

MOLECULARREGULATIONOF
GONADDIFFERENTIATION IN
ZEBRAFISH ISACOMPLEX
PROCESS
The complexity of zebrafish gonad differentiation

process was first reported by Takahashi [117], who

Figure 3: The combination of parental ‘SD allele sets’ have a profound effect on the sex ratio of the offspring.
Using bigenic genotyping data from the offspring groups analyzed by Bradley et al. (SupplementaryTable 4 of [24]),
we have created imaginary crosses using one male genotype with three different female genotypes. The parental
genotypes were chosen in such a way that they could only produce a single genotype per cross that was among
those detected by the authors.Wide range of sex ratios obtained and two opposite sexes with the same SD geno-
type both indicate a higher level of complexity than what could be explained by participation of just two loci in
the SD process.On the pie charts, checkered background indicates males, and solid background indicates females.
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pointed out that every individual starts to form an

ovary (later it was named ‘juvenile ovary’) and future

males later have to undergo a transformation before

they can start to produce a testis. The ‘juvenile ovary’

is made up of mostly oogonia and primary oocytes

[118]. First histological sign of ‘juvenile ovary’ phase

can be observed from zebrafish as young as 2.5 weeks

post-fertilization (wpf) to around 4 wpf [117, 118].

Likewise, the extent of ‘juvenile ovary’ phase was

found to vary among individuals from a few days

to more than a week [119]. Following the ‘juvenile

ovary’ phase, the gonad either continues to develop

into a functional ovary or undergoes a drastic trans-

formation to form a testis (review: [21]).

The hallmark of this ‘juvenile ovary to testis’ trans-

formation process is a rapid degeneration and even-

tual elimination of oocytes by an apoptotic (or

programmed cell death) wave that was first described

by Uchida and colleagues [84]. Although the primary

signal that triggers the wave is still unknown, it is

likely that it acts through a change of hormonal

environment of the oocytes that result in increased

ratio of male to female hormones. The number of

primordial germ cells also seems to play a role in

the transformation process: their complete or partial

depletion leads to testis development [120, 121]. In

addition, germ cells are also important for mainten-

ance of ovarian function in adults [122]. The devel-

opment of transgenic zebrafish lines that showed

differential reporter signals between the developing

female (strong fluorescence) and male (weak fluores-

cence) gonads [123–125] has opened up new possi-

bilities to analyze the underlying processes.

The overall nature of gonad differentiation and trans-

formation processes were described [21], the devel-

opmental time limits were determined [117, 118] and

expression profiles of a few genes (e.g. cyp19a1a, amh
and cyp11c1) have been analyzed [22, 126, 127].

The improvement of platforms, especially the

broadening application of expression microarrays

and characterization of mutants with relevant pheno-

types (e.g. fanclnkhg10aEt/nkhg10aEt [128], nanos3fh49/fh49

[129]), has allowed researchers to start looking for

large-scale changes and study the involvement of

major developmental pathways. Through the ana-

lysis of a zebrafish line with mutation in the Fanconi
anemia complementation group L (fancl; NM_212982)

gene, the Postlethwait’s lab has obtained new infor-

mation on the regulation of apoptotic processes

during gonad transformation [130]. According to

Figure 4: Offspring sex ratios show much higher level of variability for zebrafish (PSD) than Nile tilapia (CSD).
(A) Crossing a single zebrafish male with four different female partners yielded offspring groups with very different
sex ratios (13.1^81.8% males; data are from [26]). (B) Crossing a Nile tilapia male (XY) with four different female
partners (XX) yielded offspring groups with very similar sex ratios (data are from [116]). Checkered bars indicate
males, and solid bars indicate females.
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their results, tumor protein 53 (Tp53; [131]) activates

the apoptotic processes in the male gonads resulting

in the removal of oocytes and thereby tilting the

balance toward testicular differentiation [128].

The involvement of NF-iB (nuclear factor of

kappa light polypeptide gene enhancer in B cells;

[132]) pathway in zebrafish gonad differentiation

was discovered recently. Juvenile zebrafish subjected

to heat-killed bacteria showed a sharp increase in

female bias at adulthood: transcriptomic analysis of

the underlying processes identified the upregulation

of NF-iB pathway through induced inflammation as

the cause [133]. When the pathway was chemically

inhibited, the resulting adult sex ratio shifted toward

increased proportion of males [133].

We have performed a microarray-based transcrip-

tomic analysis of developing gonads using the

Tg(vasa:vasa-EGFP) line developed by Olsen lab

[123]. The analysis of differentially expressed genes

indicated potential involvement of canonical Wnt

(or Wnt/beta-catenin) signaling pathway [134] that

was shown earlier to play an important role in mam-

malian ovary formation and maintenance (reviews:

[135, 136]). Subsequent downregulation of the

pathway through transgenic inhibition has resulted

in a significant decrease of the proportion of males,

providing functional proof for its importance in ovary

formation [and possibly maintenance (Sreenivasan

and Jiang, personal communication)].

To summarize the current status: one pro-male

(Tp53-activated apoptosis) and two pro-female

(NF-iB and canonical Wnt) pathways were found

to be involved with gonad transformation and dif-

ferentiation in zebrafish. Two of them (possibly all

three) have an effect on apoptotic processes that con-

trol the fate of cell types in developing gonad. The

shift of balance of these three pathways into one or

the other direction will tilt the hormonal balance

through the steroidogenic pathway and eventually

push the development toward one of the two

gonad types (Figure 5). As the involvement of add-

itional pathways seems very likely, further studies

will be needed to unravel all the details of this

beautiful and complex process. We have preliminary

data that seem to indicate that some environmental

factors affecting zebrafish sex are also likely to act

through altering some of these processes into one

or the other direction.

Figure 5: Shift in the balance of pro-male and pro-female pathways will determine direction of gonad differenti-
ation in zebrafish. Three major developmental pathways (Tp53-apoptosis, NF-iB and canonical Wnt) have been
shown to participate in the process. The number of germ cells also has a profound effect on the final outcome
(data not shown). In the males (left), numbers of primary oocytes originating from the ‘juvenile ovary’ are low, tp53
is upregulated, apoptotic processes are fully active and the NF-iB as well as canonical Wnt signaling pathways are
both downregulated.The hormonal balance is shifted towardmaleness. In the females (right), the number of primary
oocytes originating from the ‘juvenile ovary’ is high, the NF-iB pathway and canonical Wnt signaling pathways are
both upregulated, whereas tp53 is downregulated. Apoptosis is inhibited and the hormonal balance is shifted
toward femaleness. The timing and causative effects of these processes are not fully understood.
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CONCLUDING REMARKSANDAN
OUTLOOKTOTHE FUTURE
Despite having a PSD system, the downstream

cascade of sex differentiation in zebrafish is still

likely to involve several pathways and genes that

were shown earlier to play a role in other vertebrates

(review: [20]). On the other hand, their role and

position in the cascade might vary across the different

vertebrate groups [137, 138].

A molecular event, which involves multiple auto-

somal genes, such as PSD, will require a complex net-

work of regulations to ensure proper development.

Additional regulatory mechanisms, involving DNA

methylation, histone modification and noncoding

RNAs, are likely to contribute to these processes.

Recent data showed that epigenetic regulatory

mechanisms contribute to SD and reproductive

organ development in plants and animals (review:

[139]). With advances in next generation sequencing

and the improved zebrafish genome assembly [95, 96]

concerted analysis of the transcriptome, genome,

miRNome and gonadal methylome will soon

become a routine tool helping us to uncover add-

itional genes and pathways as well as their interactions.

All this will lead to a more detailed understanding

of these hitherto elusive ‘complicated affairs’.

Key Points

� Zebrafish SD is genetic; environmental factors exert only
secondary effects onto the sexual development of this species.

� Most data indicate that SD in zebrafish is not based primarily on
the action of sex chromosomes.

� The zebrafish has PSD system, i.e. more than one autosomal
genes have an effect on the direction of gonad differentiation
(with or without contribution from sex chromosomes).

� The main characteristics of PSD observed in zebrafish include:
(i) cumulative effect of multiple genes on SD; (ii) wide ranging
familial sex ratios (including severely biased lines) that are stable
in repeated crosses; (iii) strong influence from parental geno-
types and (iv) a large number of expected sexual genotypes
among the gametes, not just two as in CSD species.

� There are at least three developmental pathways involved with
gonad transformation and differentiation, the contribution of
several others is expected.
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80. Horváth L, Orbán L. Genome and gene manipulation in
the common carp. Aquaculture 1995;129:157–81.

81. Hörstgen-Schwark G. Production of homozygous diploid
zebra fish (Brachydanio rerio). Aquaculture 1993;112:25–37.

82. Pelegri F, Schulte-Merker S. The zebrafish: Genetics and
genomics. In: Detrich III HW, Westerfield M, Zon LI (eds).
Method. Cell Biol. San Diego, CA, USA: Academic Press,
1999:1–20.

83. Streisinger G, Walker C, Dower N, et al. Production of
clones of homozygous diploid zebra fish (Brachydanio rerio).
Nature 1981;291:293–6.

84. Uchida D, Yamashita M, Kitano T, et al. Oocyte apoptosis
during the transition from ovary-like tissue to testes during
sex differentiation of juvenile zebrafish. J ExpBiol 2002;205:
711–8.

85. Pandian TJ, Sheela SG. Hormonal induction of sex reversal
in fish. Aquaculture 1995;138:1–22.

86. Williams JGK, Kubelik AR, Livak KJ, et al. DNA poly-
morphisms amplified by arbitrary primers are useful as
genetic-markers. Nucleic Acids Res 1990;18:6531–5.

87. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique
for DNA fingerprinting. Nucleic AcidsRes 1995;23:4407–14.

88. Chen JJ, Du QY, Yue YY, et al. Screening and identifica-
tion of male-specific DNA fragments in common carps
Cyprinus carpio using suppression subtractive hybridization.
J Fish Biol 2010;77:403–13.

89. Charlesworth D, Mank JE. The birds and the bees and
the flowers and the trees: lessons from genetic mapping of
sex determination in plants and animals. Genetics 2010;186:
9–31.

90. Chang A, Liew WC, Chuah A, et al. FluoMEP: a new
genotyping method combining the advantages of randomly
amplified polymorphic DNA and amplified fragment length
polymorphism. Electrophoresis 2007;28:525–34.

91. Kirankumar S, Anathy V, Pandian TJ. Hormonal induc-
tion of supermale golden rosy barb and isolation of
Y-chromosome specific markers. Gen Comp Endocrinol
2003;134:62–71.

92. Kirankumar S, Pandian TJ. Production and progeny testing
of androgenetic rosy barb Puntius conchonius. J ExpZool Part A
2004;301A:938–51.

Zebrafish sex is complicated 185



93. Nanda I, Feichtinger W, Schmid M, et al. Simple repetitive
sequences are associated with differentiation of the
sex-chromosomes in the guppy fish. J Mol Evol 1990;30:
456–62.

94. Tripathi N, Hoffmann M, Willing EM, et al. Genetic link-
age map of the guppy, Poecilia reticulata, and quantitative
trait loci analysis of male size and colour variation. ProcBiol
Sci 2009;276:2195–208.

95. Howe K, Clark MD, Torroja CF, et al. The zebrafish ref-
erence genome sequence and its relationship to the human
genome. Nature 2013;496:498–503.

96. Patowary A, Purkanti R, Singh M, et al. A sequence-based
variation map of zebrafish. Zebrafish 2013;10:15–20.

97. Pinkel D, Segraves R, Sudar D, et al. High resolution
analysis of DNA copy number variation using comparative
genomic hybridization to microarrays. Nat Genet 1998;20:
207–11.

98. Pinto D, Darvishi K, Shi X, et al. Comprehensive assess-
ment of array-based platforms and calling algorithms for
detection of copy number variants. Nat Biotechnol 2011;
29:512–20.

99. Brown KH, Dobrinski KP, Lee AS, et al. Extensive genetic
diversity and substructuring among zebrafish strains
revealed through copy number variant analysis. Proc Natl
Acad Sci USA 2012;109:529–34.

100. Wilkins AS. Moving up the hierarchy: A hypothesis on the
evolution of a genetic sex determination pathway. Bioessays
1995;17:71–77.

101. Morrish BC, Sinclair AH. Vertebrate sex determination:
many means to an end. Reproduction 2002;124:447–57.

102. Graham P, Penn JK, Schedl P. Masters change, slaves
remain. Bioessays 2003;25:1–4.

103. Bagheri-Fam S, Sinclair AH, Koopman P, et al. Conserved
regulatory modules in the Sox9 testis-specific enhancer
predict roles for SOX, TCF/LEF, Forkhead, DMRT,
and GATA proteins in vertebrate sex determination. Int J
Biochem Cell B 2010;42:472–7.

104. Graves JAM, Peichel CL. Are homologies in vertebrate sex
determination due to shared ancestry or to limited options?
Genome Biol 2010;11:205.

105. Yano A, Guyomard R, Nicol B, et al. An immune-related
gene evolved into the master sex-determining gene in
rainbow trout, Oncorhynchus mykiss. Curr Biol 2012;22:
1423–8.

106. Sreenivasan R, Cai M, Bartfai R, et al. Transcriptomic
analyses reveal novel genes with sexually dimorphic expres-
sion in the zebrafish gonad and brain. PLoS One 2008;3:
e1791.

107. Wen C, Zhang Z, Ma W, et al. Genome-wide identifica-
tion of female-enriched genes in zebrafish. DevDyn 2005;
232:171–9.

108. Small CM, Carney GE, Mo Q, et al. A microarray analysis
of sex- and gonad-biased gene expression in the zebrafish:
evidence for masculinization of the transcriptome. BMC
Genomics 2009;10:579.

109. Zheng W, Xu H, Lam SH, etal. Transcriptomic analyses of
sexual dimorphism of the zebrafish liver and the effect of
sex hormones. PLoSOne 2013;8:e53562.

110. Santos EM, Kille P, Workman VL, et al. Sexually
dimorphic gene expression in the brains of mature
zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2008;
149:314–24.

111. Bull JJ. Evolution of Sex Determining Mechanisms. Melon
Park, CA, USA: Benjamin-Cummings Publishing
Company, 1983.

112. Moore EC, Roberts RB. Polygenic sex determination.
Curr Biol 2013;23:R510–2.

113. Kosswig C. Polygenic sex determination. Experientia 1964;
20:190–9.

114. Desprez D, Briand C, Hoareau MC, etal. Study of sex ratio
in progeny of a complex Oreochromis hybrid, the Florida
red tilapia. Aquaculture 2006;251:231–7.

115. Cnaani A, Lee BY, Zilberman N, et al. Genetics of sex
determination in tilapiine species. SexDev 2008;2:43–54.

116. Tessema M, Müller-Belecke A, Hörstgen-Schwark G. Effect
of rearing temperatures on the sex ratios ofOreochromisniloticus
populations. Aquaculture 2006;258:270–77.

117. Takahashi H. Juvenile hermaphroditism in the zebrafish,
Brachydanio rerio. Bull Fac FishHokkaidoUniv 1977;28:57–65.

118. Maack G, Segner H. Morphological development of the
gonads in zebrafish. J Fish Biol 2003;62:895–906.

119. Wang XG, Bartfai R, Sleptsova-Freidrich I, et al. The
timing and extent of ‘juvenile ovary’ phase are highly
variable during zebrafish testis differentiation. J Fish Biol
2007;70:33–44.

120. Siegfried KR, Nusslein-Volhard C. Germ line control of
female sex determination in zebrafish. Dev Biol 2008;324:
277–87.

121. Slanchev K, Stebler J, de la Cueva-Méndez G, et al.
Development without germ cells: The role of the germ
line in zebrafish sex differentiation. Proc Natl Acad Sci USA
2005;102:4074–9.

122. Dranow DB, Tucker RP, Draper BW. Germ cells are
required to maintain a stable sexual phenotype in adult
zebrafish. Dev Biol 2013;376:43–50.

123. Krøvel AV, Olsen LC. Expression of a vas::EGFP trans-
gene in primordial germ cells of the zebrafish. MechDevelop
2002;116:141–50.

124. Hsiao CD, Tsai HJ. Transgenic zebrafish with fluorescent
germ cell: a useful tool to visualize germ cell proliferation
and juvenile hermaphroditism in vivo. Dev Biol 2003;262:
313–23.

125. Onichtchouk D, Aduroja K, Belting HG, et al. Transgene
driving GFP expression from the promoter of the zona
pellucida gene zpc is expressed in oocytes and provides
an early marker for gonad differentiation in zebrafish.
DevDyn 2003;228:393–404.

126. Rodrı́guez-Marı́ A, Yan Y-L, BreMiller RA, et al.
Characterization and expression pattern of zebrafish anti-
Müllerian hormone (amh) relative to sox9a, sox9b, and
cyp19a1a, during gonad development. Gene Expr Patterns
2005;5:655–67.

127. Wang XG, Orban L. Anti-Mullerian hormone and 11
beta-hydroxylase show reciprocal expression to that of aro-
matase in the transforming gonad of zebrafish males. Dev
Dyn 2007;236:1329–38.
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