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How do we find a target embedded in a scene? Within the
framework of signal detection theory, this task is carried
out by comparing each region of the scene with a
‘‘template,’’ i.e., an internal representation of the search
target. Here we ask what form this representation takes
when the search target is a complex image with uncertain
orientation. We examine three possible representations.
The first is the matched filter. Such a representation
cannot account for the ease with which humans can find a
complex search target that is rotated relative to the
template. A second representation attempts to deal with
this by estimating the relative orientation of target and
match and rotating the intensity-based template. No
intensity-based template, however, can account for the
ability to easily locate targets that are defined
categorically and not in terms of a specific arrangement of
pixels. Thus, we define a third template that represents
the target in terms of image statistics rather than pixel
intensities. Subjects performed a two-alternative, forced-
choice search task in which they had to localize an image
that matched a previously viewed target. Target images
were texture patches. In one condition, match images
were the same image as the target and distractors were a
different image of the same textured material. In the
second condition, the match image was of the same
texture as the target (but different pixels) and the
distractor was an image of a different texture. Match and
distractor stimuli were randomly rotated relative to the
target. We compared human performance to pixel-based,
pixel-based with rotation, and statistic-based search
models. The statistic-based search model was most
successful at matching human performance. We conclude
that humans use summary statistics to search for complex
visual targets.

Introduction

How do we find a target embedded in a scene? A
long-standing school of thought proposes that we do so

by comparing local regions of the scene with a
template, i.e., an internal representation of the object
we’re looking for (DeValois & DeValois, 1990; Gra-
ham, 1989; Green & Swets, 1966; Marr, 1982;
Verghese, 2001). For a fixed target image in white
noise, the optimal form of this internal representation is
a matched filter. The response of a matched filter is a
linear combination of visual inputs across a localized
region of the scene. The largest responses occur when
the input is similar to the search target. The template
response is a measure of similarity between the thing
we’re looking at and the thing we’re looking for, at
each possible location where that thing might be.

Physiological instantiations of such filters are to be
found throughout the visual system. For example, the
visual system is composed of multiple spatial frequency
and orientation channels (Blakemore & Campbell,
1969; Campbell & Robson, 1968; DeValois & DeVal-
ois, 1990). A simple cell in primary visual cortex (V1)
represents such a channel, tuned for a particular spatial
frequency and orientation (Hubel & Wiesel, 1968). It
thus acts as a matched filter, i.e., a template for a
rudimentary stimulus such as an edge, a line, a patch of
grating, etc., at that frequency and orientation.

Linear matched filters have been used extensively to
simulate human visual processing in psychophysical
tasks. They have been shown to accurately predict
performance in search tasks for geometric shapes
(Burgess, 1985; Burgess & Colbourne, 1988; Burgess &
Ghandeharian, 1984; Rajashekar, Bovik, & Cormack,
2006), gratings. (Burgess, 1981; Najemnik & Geisler,
2005, 2008, 2009), and blob-like targets (Abbey &
Eckstein, 2009; Barrett, Yao, Rolland, & Myers, 1993;
Eckstein, Abbey, & Bochud, 2009). Below we suggest
that a template of a different form, i.e., one that
employs various statistics derived from the responses of
nonlinear filters, may provide a more valid and
biologically plausible representation of the template
used in tasks involving more complex stimuli.
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Common experience tells us that the thing we’re
looking for will rarely appear in the exact form that we
expect. An example is shown in Figure 1. The search
target is the texture patch in the top row. The task is to
locate the image in row A that is the same pixel-for-
pixel as the target. Most observers will find it relatively
easy, given a glance at the two images of reasonable
duration, to locate the matching image in spite of the
difference in orientation. How can a template-matching
model account for our ability to find a search target
with uncertain orientation with so little effort?

If the observer’s task is to determine the presence of
a line of a particular frequency and unknown
orientation, signal detection theory suggests that the
observer monitors the outputs of multiple templates
tuned to all possible orientations. The log-likelihood of
the stimulus given each template response is summed
across all templates. The observers responds, ‘‘The line
is present,’’ if the likelihood ratio exceeds a threshold
(Green & Swets, 1966). Primary visual cortex contains
a representation of edges varying in size and orienta-
tion. It is unlikely, however, that this type of matched-
filter representation operates in search for stimuli more
complex than an edge, since it would require the

availability of a cell tuned to every possible image at
every possible orientation—an implausibly large num-
ber of cells. Thus, template matching does not provide
a good account of our ability to detect a complex
search target at unpredictable orientation.

Although multiple templates are unlikely to play a
part in search for complex images, it is possible that a
single, learned template may be mentally rotated and
thereby provide a rotation-invariant representation of
the target. It is been suggested, for example, that mental
rotation is used to match an abstract shape to a rotated
version of that shape (Cooper, 1976; Shepard &Metzler,
1971). We propose that a human observer might
mentally rotate a learned image template for visual
search. When observers are presented with an image that
may be a rotated version of the target, they estimate the
angle of rotation as the difference in the filter
orientations of the subbands (representing the responses
of multiple spatial frequency- and orientation-tuned
channels) with maximum power in the decompositions
of the target and the image being matched. The template
is then rotated by the estimated rotation angle, and the
template match proceeds as usual.

While a rotated template may account for the relative
ease with which we search for a complex target of
unknown orientation, it does not explain the ease of
search for targets defined statistically rather than by a
specific configuration of pixels. Figure 1 shows an
example. The search target is the texture patch in the top
row. The task is to locate the image in row B that
consists of the same type of tree bark as that in the target
image. For most observers, this task is trivially easy in
spite of the fact that the correct image (on the right) is
entirely different from the target image in terms of the
arrangement of pixel intensities. A pixel-based template-
matching model cannot account for how easy it is to
identify such textural ‘‘stuff.’’ Search seems to use a
template tuned to the textural qualities of the image.

How might a textural template manifest in the visual
system? Portilla and Simoncelli (2000) provided a
texture analysis algorithm that might also serve as a
biologically plausible model of how textures are
represented visually. In it, an image is decomposed
using localized linear filters at a range of orientations
and spatial scales. The resulting oriented subbands at
each spatial frequency are analogous to the outputs of a
population of simple cell-like filters covering the spatial
extent of the image. The image is decomposed twice in
this way using two sets of filters that have identical
orientation and spatial frequency but orthogonal
phase. The filter pairs are used to derive local energy
and phase. The linear filter outputs are correlated
across scales, and local energy and phase are correlated
within and across subbands, resulting in a representa-
tion of the image in terms of a vector of correlation
coefficients. General pixel statistics (mean, variance,

Figure 1. Two search tasks. Most observers can rapidly identify

the image in row A that is identical to the top image, in spite of

the difference in orientation. Identifying the image in row B that

consists of the same type of tree bark as the top image is

trivially easy, in spite of the fact that the two images are entirely

different, pixel-for-pixel.
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skew, kurtosis, and range) are also derived and
contribute to the representation.

How might this statistical representation be com-
puted in the brain? A cascade of cells, with the outputs
from V1 feeding into similar orientation- and frequen-
cy-tuned cells in V2, with interposed nonlinearities, can
account for our ability to localize more complex stimuli
such as edges formed from abutting texture elements
rather than changes in luminance (Landy & Graham,
2003; Landy & Oruç, 2002). A further cascade with
outputs from the previous level converging onto cells in
subsequent levels results in increasingly sophisticated
response properties, such as cells in area V4 that appear
to respond selectively to complex shape (Tanaka, 2003;
Wang, Tanifuli, & Tanaka, 1998). These cascades of
linear filters and nonlinearities could form the substrate
for computing a texture representation like that
described by Portilla and Simoncelli (2000).

There are several lines of evidence to suggest that the
Portilla and Simoncelli (2000) model provides an
effective model of human representation of visual
stimuli. Portilla and Simoncelli’s algorithm allows for
the synthesis of new texture images using the coeffi-
cients derived from the analysis of a texture image. The
synthesized textures can be discriminated from the
original image with foveal scrutiny, but are generally
indistinguishable from the original when viewed briefly
or in the periphery. Selectively leaving out sets of
coefficients from the synthesized textures leads to
systematic changes in texture appearance and increases
observers’ ability to discriminate them from the
originals (Balas, 2006).

The phenomenon of ‘‘crowding’’ (Bouma, 1970; Pelli
& Tillman, 2008) occurs when identification of a
stimulus is impaired in the presence of nearby flanking
stimuli. It has been suggested that crowding results
from the pooling of the stimulus and flankers for the
computation of such a texture representation, where
the pooling region size increases with retinal eccen-
tricity (Balas, Nakano, & Rosenholtz, 2009). In this
theory, the portions of an image that fall within a
pooling region are represented in terms of a single set of
summary statistics. As a result, the representation
hopelessly entangles the features of discrete objects
within the pooling region. A pooled summary-statistic
representation has also been shown to predict perfor-
mance in peripheral search for a target among
distractors (Rosenholtz, Huang, Raj, Balas, & Ilie,
2012). The size of the pooling region as a function of
retinal eccentricity has been shown to correspond to the
size of receptive fields of cells in area V2 of the visual
cortex (Freeman & Simoncelli, 2011).

In this viewpoint, at some stage of cortical process-
ing the retinal image is represented as a collection of
texture statistics for each of a large collection of
pooling regions extending across the visual field

(Freeman & Simoncelli, 2011; Rosenholtz, Huang, &
Ehinger, 2012). The increase in size of the pooling
regions with eccentricity reflects the loss of visual
information in the periphery (Balas, 2006; Rosenholtz,
Huang, Raj et al., 2012). Objects falling within
multiple, tiny pooling regions near the center of the
visual field appear distinct while the features of those in
the periphery appear jumbled.

Just as a rotated matched filter may be used to match
rotated images, the statistical representation of a
texture may be ‘‘rotated’’ to match rotated textures. In
fact, with the texture representation, the ‘‘rotation’’ of
the representation is computationally trivial. Suppose
one wants to use the set of texture statistics for an
upright texture as a template to match against an image
one suspects has been rotated by 458. The list of texture
statistics consists of correlations of energy and phase
values of various oriented filters. For example, one
statistic might be the correlation between the energy in
the outputs of 08 and a 458 filters of a certain spatial
scale. After rotation of the template, this statistic need
only be relabeled as the correlation between 458 and 908
filters. Thus, a rotation merely relabels (permutes) the
list of texture statistics.

Further, the texture statistics themselves may be used
to estimate the rotation angle. Suppose that across the
multiscale and multi-orientation decomposition of the
target, the subband with greatest power happens to have
a 908 orientation, and that in the decomposition of the
matching image the peak power subband has a 1358
orientation. Using this information, one may estimate
the rotation as 1358 – 908¼ 458. Using this estimate, we
can permute the statistical representation of the target to
form a ‘‘rotated’’ template that can then be compared to
the statistical representation of the match image.

In the current study, we ask what computation
humans use to search for a complex target with
unknown orientation. We measured observers’ perfor-
mance in the two search tasks pictured in Figure 1. In
one condition, observers were presented with an image
of a texture that served as the search target for that
trial. They were then presented with two potential
matches to the target. One, the match, was the same
image as the target. The second, the distractor, was a
different image of the same textural material as the
target [i.e., a resynthesis using the Portilla & Simoncelli
(2000) model]. Both the match and the distractor were
randomly rotated relative to the target (Figure 1A).
The observers’ task was to indicate which stimulus was
the match. In the second condition, the search target
was also a texture image. But the match was a different
resynthesized image of the same textural material as the
target and the distractor was a randomly selected
resynthesized image of a different texture (Figure 1B).
Thus, our task requires the observer to perform a pixel-
based match in the first condition and a statistic-based
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match in the second. We compared observers’ perfor-
mance to that of three model searchers that utilize
either a pixel-based or statistic-based strategy. We
describe the models and predictions for their perfor-
mance below.

Observers’ performance was compared to the pre-
dictions of three model searchers. The first model, the
pixel-based searcher (PBS), uses the target as a matched
filter, correlating it with the match and distractor
images, and ignoring the possibility that the test images
may have been rotated. Note that although the
correlation of the target and the match or distractor is
performed in image space (i.e., as pixels), it would be
equivalent to do so in the space of responses of oriented
linear filters at multiple scales as long as that multiscale,
multi-orientation representation is a ‘‘tight frame,’’ as is
the case for the subband representation used by Portilla
and Simoncelli (2000). Needless to say, this model
proves not to be robust to image rotation.

The second model, pixel-based search with rotation
(PBSr), uses the target as a matched filter, but rotates
the image before correlating it with the test images
based on an estimate of the relative orientation of the
two images. The estimate of relative orientation is
based on the subbands with maximum power in a
multiscale, multi-orientation image decomposition as
described above.

The third model is a statistic-based searcher (SBS). It
uses the same multiscale, multi-orientation decompo-
sition to derive local energy and phase and computes a
template based on correlation statistics of these values
[a portion of the texture descriptor described by Portilla
& Simoncelli 2000)]. This template is then ‘‘rotated’’
(permuted) based on the same estimate of the relative
orientation of the target and test image as in PBSr, and
is correlated with an identically computed statistical
representation of each test image.

As noted above, our task involves a pixel-defined
match in the first condition and a statistically defined
match in the second. We predict that the PBS model will
perform well in the pixel-defined match when the match
is not rotated relative to the target. Its performance
should be at chance when the match and distractor
stimuli are rotated. The PBSr strategy should perform
well at the pixel-defined match independent of the
orientation of the match and distractor stimuli. Both
pixel-based models should fail at the statistic-based task.
On the other hand, we expect the SBS model to perform
poorly at the pixel-based task and well at the statistic-
based task, independent of the orientation of the
statistically defined match and distractor images.

We fit each model to the human data in both
conditions (each model has two parameters we describe
in the Methods). We found that the SBS model was
more predictive of human performance than the pixel-
based models (PBS and PBSr).

Methods

Participants

An author (JFA) and three additional male subjects
(NYU graduate students and post-docs) participated in
four sessions completed on separate days. All subjects
other than the first author were compensated in the
amount of $10 per session and were naive to the
purpose and background of the study. All had normal
or corrected-to-normal vision. Subjects signed a con-
sent form approved by the NYU University Committee
on Activities Involving Human Subjects.

Apparatus

Stimuli were presented using Psychtoolbox for
Matlab (Brainard, 1997; Pelli, 1997) on a gamma-
corrected, 36 · 27 cm, Sony Multiscan G400 monitor
(Sony, Tokyo, Japan) with a resolution of 1600 · 1200
pixels, a refresh rate of 75 Hz, and a mean luminance of
40 cd/m2. The monitor was powered by a Dell Precision
T3400 PC (Dell, Round Rock, TX) using an Nvidia
GeForce 9800 GT video card (Nvidia, Santa Clara,
CA). Eye position was monitored using an SR
Research Eyelink1000 desktop eyetracker with a
sampling rate of 1000 Hz, controlled using the Eyelink
Toolbox Matlab interface (Cornelissen, Peters, &
Palmer, 2002; Eyelink, Ottawa, Ontario, Canada).

Stimuli

All 486 stimulus images were selected from a
database of 256 · 256 pixel, grayscale textures. The
database consists of Brodatz (1996) images and
photographs compiled by the Laboratory for Compu-
tational Vision at NYU.

We expected that performance on these discrimina-
tion tasks would depend on the degree to which the
texture patches have content at one or many dominant
orientations. In both conditions, the potential matches
to the target were randomly rotated relative to the
template image. In the SBS model, the correlation
between the local energy of oriented subbands of the
image decompositions for the template and for the
rotated potential matches were computed. Rotated
images with oriented content that spans the full range
of orientations should produce higher template re-
sponses than those with oriented content confined to a
narrow range. For the former, rotating the image
changes the local energy in each oriented subband less
than for the latter. Thus, we would like to ensure that
matches and distractors have the same degree of
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‘‘orientedness,’’ i.e., a similar distribution of power
across oriented subbands. We predicted performance to
be more rotation-invariant for images that have
content spanning a wide range of orientations but
performance may be impaired when the content is
concentrated at a single orientation. Thus, we classified
each image in the database with regard to its relative
amount of oriented content.

We classified each image by first performing a
pyramid decomposition using the steerable, Fourier-
domain filters described by Portilla and Simoncelli
(2000). Matlab code for implementing the steerable
pyramid is publicly available at: http://www.cns.nyu.
edu/;eero/STEERPYR/. The decomposition starts by
generating high- and low-pass filtered versions of the
original image. It then samples the image at increas-
ingly coarse spatial scales by recursively downsampling
(by a factor of two) and low-pass filtering the low-pass
images. Each low-pass image is split into oriented
subbands. We used four spatial scales and 16 orienta-
tions per scale for the classification.

We calculated the power spectral density, P, for the
subband at each spatial scale, S, and orientation, h:
PS,h ¼ (1/N)

PN
i¼1 jFS;hðxi; yiÞj2, where N is the number

of samples at a given spatial scale and the Fs are the
complex-valued filter responses; the real and imaginary
parts correspond to the responses at each location to
two filters having orthogonal phase.

Images in which the content is concentrated at a
single orientation will have values of PS,h that peak at a
single h for a given value of S. Images with more
broadly distributed oriented content will have multiple
peaks. To quantify this, we found the scale, Smax, that
contains the maximum power over h: Smax¼ arg maxS
(maxh PS,h), h ¼ {0, (p/16),. . ., etc. (15/16)p}. We then
defined the orientation index, x, to be the coefficient of
variation (SD/mean) of PSmax;h over h.

The images were coarsely divided into three orienta-
tion classes using this criterion. Class 1 contains images
with values of x . 0.6 and content concentrated at a
single orientation. Class 2 contains images with 0.2 , x
, 0.4 and content at two or three orientations. Class 3
contains images with x , 0.1 and content distributed
across all orientations. We then visually inspected the
images in each class and selected 16 from each that fall
unequivocally into three qualitative classes. The images
selected from Class 1 have a single dominant orientation
(and a single peak within PSmax;h). Those from Class 2 are
‘‘plaid-’’ or ‘‘grid-like’’ (and have two peaks within
PSmax;h). Images from Class 3 are ‘‘blob-like’’ (and have
essentially flat profiles within PSmax;h). Example stimuli
from each class are shown in Figure 2.

The 16 images from each orientation class served as
stimuli in the experiment. In Condition 1, the target/
match stimuli were generated by synthesizing eight new
images from each of the original 48 (i.e., 16 images · 3
orientation classes) using Portilla and Simoncelli’s
(2000) texture analysis and synthesis algorithms (ex-
amples are shown in Figure 2). Target/match stimuli
were the same image pixel-for-pixel. Distractors in
Condition 1 were a different set of 8 · 48 images
synthesized from the same originals as the target/match
stimuli. Distractors in Condition 1 were paired, on each
trial, with a target/match stimulus that was synthesized
from the same original.

For Condition 2, target stimuli were selected from the
original 48 (unsynthesized) images. Match and distractor
stimuli were selected from the 8 · 48 set of match and 8
· 48 set of distractor stimuli, respectively, used in
Condition 1. Thus, match stimuli in Condition 2 had the
same statistical content as the target image but a
different arrangement of pixels. Match stimuli in
Condition 2 were paired, on each trial, with a distractor
that was synthesized from a different original (and hence
with different statistical content than the target/match).

All stimulus images were windowed within a 256-
pixel–diameter disc. The contrast of the image content

Figure 2. Example images.We defined three classes according to

the degree of orientedness (see text). The original images

served as target stimuli in Condition 2. Synthesized images

served as target stimuli in Condition 1 and as all match and

distractor stimuli.
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appearing within the window was normalized to a
mean luminance of 40 cd/m2 and a SD of 13 cd/m2.
Match and distractor stimuli were randomly rotated by
08, 458, 908, 1358, or 1808 on each trial (matches and
distractors were rotated by the same amount on each
trial) prior to being windowed and normalized.
Nearest-neighbor rotation was used throughout. Only
these five orientations were included because pilot
experiments indicated that performance for orienta-
tions between 1808 and 3608 mirrored performance
between 1808 and 08.

Procedure

Subjects viewed the computer monitor from a
distance of 57 cm with head position constrained by a
chinrest. Each block began with a nine-point calibra-
tion of the eyetracker. The trial sequence is shown in
Figure 3.

Each trial began with a central fixation cross flanked
by two circular, 68-diameter binary noise masks
centered 128 left and right of fixation. The subject
fixated the cross and pressed a key. If the subject’s eye
position was greater than 18 from the cross, a central
red ‘‘X’’ appeared briefly, instructing the subject to
fixate and try again to initiate the trial. When the trial
was successfully initiated, the noise masks were replaced
on both sides by the target stimulus for that trial. The
target stimuli were displayed for 350 ms after which
they were replaced by the noise masks for 500 ms. The
noise masks were then replaced by the match and
distractor stimuli, which appeared at positions (left or
right) that were randomly selected for each trial. After
350 ms, noise masks replaced the stimuli. If the subject’s

eye position moved more than 18 from fixation between
target onset and match/distractor offset, the trial was
canceled and rerun later in the session. If the trial was
successfully completed, a question mark appeared in
place of the fixation cross instructing the subject to
indicate by keypress the side on which the match
stimulus had appeared. Auditory feedback in the form
of high- and low-pitched tones indicated at the end of
each trial whether their choice was correct or incorrect.

The size of the stimulus images (68 diameter) and
their position (128 eccentricity) were selected in order to
place them within a single pooling region according to
Bouma’s law (Bouma, 1970; Pelli & Tillman, 2008).
Given this placement, we can assume that each image is
represented, in terms of the SBS model, by a single set
of summary statistics.

On each trial, the target, match, and distractor
stimuli were selected from the same orientation class.
Stimuli from the three classes were evenly and
randomly intermixed within each condition. Each of
the 1,920 match and distractor images (48 images · 8
synthesized copies · 5 orientations) appeared once in
each condition. In Condition 1, each of the 384
(synthesized) target images (48 images · 8 copies)
appeared five times. In Condition 2, each of the 48
(unsynthesized) target images appeared 40 times.

The experiment was completed in four sessions on
different days. Observers completed each condition in
two consecutive sessions of 960 trials each. The order in
which the conditions were run was counterbalanced
across subjects. In Condition 1, subjects were instructed
that the match stimulus was exactly the same as the
target and that the distractor was a different stimulus of
the ‘‘same textural stuff.’’ In Condition 2, subjects were
instructed that the match was of the same textural stuff
as the target and that the distractor was of a different
textural stuff. In each condition, observers were told
that the match and distractor stimuli would be
randomly rotated (each by the same amount) between
08 and 1808 relative to the target. Observers completed
40 practice trials at the beginning of the first session of
each condition to ensure that they understood the
instructions and stimulus characteristics.

Models

Pixel-based searcher

Our pixel-based searchermodel is depicted in Figure 4.
It is based on a standard signal-detection-theoretic ideal
observer (Abbey & Eckstein, 2009; Geisler, 2010; Green
& Swets, 1966; Lu & Dosher, 2008; Palmer, Verghese, &
Pavel, 2000). The observer treats the target as a matched-
filter template and compares it to both the match and
distractor images. Note that the target, match, and
distractor images analyzed by each of our models are the
same images viewed by the human observers in the

Figure 3. Trial sequence for the experiment.
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experiment. The results of the comparison are passed
through a nonlinearity and corrupted by noise to provide
a basis for predicting human performance data. To be
specific, let T be the windowed and normalized target
image. We rearrange the pixel values of T as a column
vector t. The match and distractor images are similarly
represented as vectors m and d respectively, and
correlated with t. The resulting correlation coefficients
are fullwave rectified and passed through a power
function (i.e., nonlinear transducer function) with
exponent xPBS. This effectively passes the response
through a nonlinear transducer function that accounts
for typical Weber’s Law-like behavior on the part of the
observer (Foley & Legge, 1981; Legge, 1981; Lu &
Dosher, 2008). Thus, the template response, r, of the PBS
model to the match image is given by:

rMPBS ¼
mT�t
jjmjj jjtjj

����
����
xPBS

and analogously for the response rDPBS to the distractor.
The PBS observer chooses the image with the highest
corresponding template response. We assume the com-
parison process is corrupted by Gaussian noise, so that
the probability of choosing correctly is:

pPBSðcÞ ¼ U
rMPBS � rDPBS

rPBS

� �
;

where U is the cumulative standard normal distribution.
The predicted proportion correct for a condition is the
average over all trials of the predicted probability correct
for each trial in that condition (i.e., for the triad of target,
match and distractor images presented in that trial). The
two parameters (xPBS and rPBS) were adjusted to fit the
data in both conditions by maximum likelihood. The fit
was carried out (for all models) using a custom grid-
search technique in which the range of parameter values
tested was iteratively shrunk to converge on those
corresponding to the maximum binomial likelihood. The
search was terminated when the maximum likelihood
parameters changed with a tolerance of less than 0.01.

Pixel-based searcher with rotation

The PBSr model, shown in Figure 5, behaves
identically to the PBS observer except that the target
image is rotated before being compared to the match
and distractor images by an estimate of the relative
orientation of the pair of images being compared. The
estimate of relative image orientation is based on a
multiscale, multi-orientation representation of the
images by determining, for each image, the subband
with the highest power. The estimate of relative image
orientation is the difference of the orientations of these
highest power subbands.

Prior to the pyramid decomposition, each 256-pixel–
diameter, windowed, and normalized target image, T,
distractor image, D, and match image, M, were
centered within a 256 · 256 matrix with the nonimage
elements equal to the mean luminance. The resulting
images were then decomposed into a 16 subband,
multiscale, multi-orientation representation, TS,h, with
four frequency bands/scales S and four orientations h �
{0, p/4, p/2, 3p/4}. At each scale, size m · m, the
oriented subbands were point-wise multiplied by a m ·
m binary mask, with the central m-diameter disk
(corresponding to the filtered image) equal to 1, and all
other elements equal to 0.

The filters used for the decomposition provide a
steerable basis (Freeman & Adelson, 1991; Portilla &
Simoncelli, 2000). That is, weighted combinations of
the four oriented subbands at each scale can be used to
generate filter responses at any orientation at that
scale. Using this technique, the PBSr calculates the
power, PS,h’, of each of the masked, oriented subbands
at each scale of the decomposed target image, for h0 �
{0, p/16, . . ., (15/16)p}:

PS;h 0 ¼ 1

n

XN
i¼1

jFS;h 0ðxi; yiÞj2;

where N is the number of samples at a given spatial
scale, and n equals the number of nonzero elements of
the mask at that scale. F represents the complex-
valued filter responses.
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Figure 4. The PBS model. Encoding phase: The image (here, the match), is encoded in terms of pixel values contained in vector m.

Template response: m is correlated with a similar representation, t, of the target image. The result is rectified, passed through a

power function, and corrupted by additive noise, Nc, yielding noisy scalar response value, rMPBS. Decision phase: The observer derives

a similar response to the distractor, rDPBS, and compares it to rMPBS. The stimulus yielding the maximum response is the observer’s

choice for the match stimulus.
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It then finds the orientation that contains the
maximum power for any value of S: hTmax ¼ arg
maxh0(maxSPS,h0) (and analogously for the match and
distractor images, yielding hMmax and hDmax). The
original, nondecomposed, 256-pixel–diameter match
image M is rotated by hTmax � hMmax and, similarly, the

distractor image D, by hTmax � hDmax.
These rotated images are then represented as vectors

(m and d) and compared to the target image in exactly
the same fashion as for PBS. Again, two parameters
(now called xPBSr and rPBSr) were adjusted to fit the
data in both conditions by maximum likelihood.

Statistic-based searcher

The SBS model, depicted in Figure 6, begins by
decomposing the target, match, and distractor images
into the same multiscale, multi-orientation representa-
tion as PBSr, and uses the same technique to estimate
the relative orientation of the target versus match or
distractor images (e.g., DhM¼hTmax� hMmax). Note that, as
with PBSr, each oriented subband of the decompositions
is masked so that the nonimage elements equal 0. We use
the relative orientation to ‘‘relabel’’ the subband
decomposition of the match image, forming decompo-
sition M0 where M

0

S;h ¼ MS;h þ DhM (and similarly for the
distractor image resulting in rotated decomposition D0).

The multiscale, multi-orientation decomposition is a
set of complex-valued responses at each location in
each subband. The real and imaginary parts of the
responses correspond to the outputs of a quadrature
pair of linear filters that have the same orientation and
spatial frequency tuning, but differ in phase by 908
(Heeger, 1992; Simoncelli, Freeman, Adelson &
Heeger, 1992). The local power (magnitude), P, and
phase, /, of the linear filter responses are computed:

PS;hðx; yÞ ¼ RS;hðx; yÞ2 þ IS;hðx; yÞ2

/S;hðx; yÞ ¼ tan�1 IS;hðx; yÞ
RS;hðx; yÞ

� �
;

where R and I are the real and imaginary parts,
respectively, of the responses within each subband (e.g.,
TS,h).

Next we derive two classes of statistics. The first class
includes, (a) the central 7 · 7 neighborhood of the
autocorrelation (computed using the standard fre-
quency-domain calculation) of each subband PS,h,
(b) the cross-correlation of each oriented subband PS,h

with every other subband within each scale, and (c) the
cross-correlation of each PS,h with the corresponding
subband at the next coarser scale, PSþ1,h. The second
class is the cross-correlation of /S,h with the corre-
sponding subband at the next coarser scale, /Sþ1,h.
These are two of the four classes of statistics in the
Portilla and Simoncelli (2000) texture model. They have
been shown to correspond to specific visual qualities of
natural textures made evident by leaving each out of
the texture synthesis algorithm (Balas, 2006). Broadly
speaking, the magnitude correlations represent low
frequency, repetitive content across the image. The
phase correlations represent shading and depth-from-
shading qualities of the image. The other two classes
(excluded from the model) are (a) first-order pixel
statistics (i.e., mean, variance, skew, kurtosis, and
range of pixel intensities) and (b) the autocorrelation of
the linear filter outputs at each spatial frequency
independent of orientation. The pixel statistics repre-
sent the absolute luminance and contrast of the image.
By normalizing the contrast of all stimulus images, we
rendered this class of statistics essentially useless for the
purpose of discriminating the images and thus it was
excluded from the model. The linear filter autocorre-
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Figure 5. The PBSr model. Encoding phase: The image is subjected to a multiscale and multi-orientation decomposition from which it

derives an estimate of the orientation of the image, hmax, relative to the target (see text). It rotates the original (nondecomposed)

image so that its maximum power subband is aligned with that of the target. The vectorized, rotated, intensity-based representation

(of the original, nondecomposed image), m, constitutes the search template. Template response: An intensity-based representation,

t, of the target image is formed, as in the PBS model, and correlated with m. The result is rectified, passed through a power function,

and corrupted by additive noise, Nc, yielding noisy scalar response value, rMPBSr. Decision phase: The observer derives a similar

response, rDPBSr, to the distractor and compares it to rM. The stimulus yielding the maximum response is the observer’s choice for the

match stimulus.
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lations represent high-frequency repetitive content in

the image. By simulating the performance of the SBS

model in our task, given arbitrary values of the

nonlinearity (xSBS) and noise (rSBS) (see below), we

found that leaving this class of statistics out of the

model did not qualitatively change its predictions and

thus it is excluded for the sake of parsimony. Excluding

the magnitude and phase correlations did substantially

change the predictions of the model within the context

of our task.

The resulting vector of correlation coefficients is
used as the search template. The statistics computed for
the two classes are combined into a single vector t for
the statistical representation of the target. The rotated
match and distractor representations (M0 and D0) are
similarly processed to yield statistical representations m
and d. These vectors are processed in the same manner
as the image vectors in PBS and PBSr to model
performance. Again, two parameters (now called xSBS

and rSBS) were adjusted to fit the data in both
conditions by maximum likelihood. Note that the
‘‘rotation’’ of the target representation does not rotate
the image data within each subband, but only relabels
the subbands so that appropriate orientation subbands
of the target and match or distractor can be compared.
This should affect only the autocorrelation statistics,
which are not rotated to align with those of the match
or distractor’s autocorrelation.

In all three models, fullwave rectification of template
correlation values was used, rather than halfwave
rectification, because it provides a better fit to the
human observers’ performance (see Results). The
power function applied to template correlations leads
to model behavior analogous to adding signal-depen-
dent noise to the correlation values.

Results

We calculated the proportion of correct responses
for the human observers and compared them to the
best-fit values of the PBS, PBSr, and SBS models.
Figure 7 shows human and model proportion correct
averaged across subjects and orientation classes (data
and model fits for individual subjects and for all
orientation classes are shown in Figure 1 of the

Figure 6. The SBS model. Encoding phase: The image is subjected to a multiscale and multi-orientation decomposition. The

orientation of the highest power subband, hmax, is derived as in the PBSr model. The subbands are ‘‘relabeled’’ and a new

decomposed version of the image, M0, is constructed in which the maximum power subband of the image is aligned with that of the

target. (Note that the actual image is not rotated.) The local energy, P, and phase, /, are derived and correlated within and across

subbands (see text) resulting in statistic vector, m. Template response: m is correlated with a similar representation, t, of the target

image. The result is rectified, passed through a power function, and corrupted by additive noise, Nc, yielding scalar response value,

rMSBS. Decision phase: The observer derives a similar response, rDSBS, to the distractor and compares it to rMSBS. The stimulus yielding

the maximum response is the observer’s choice for the match stimulus.

Figure 7. The predicted proportion of correct responses of the

PBS, PBSr, and SBS models averaged across subjects and

orientation classes plotted as a function of match and distractor

orientation relative to the target. The across-subjects averages

of the human data for each condition are plotted with each

model prediction for comparison. Error regions show the SE

derived by bootstrapping.
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Supplement). The best fitting values of x and r for each
model are shown in Table 1.

Several patterns are apparent. First, the PBS model
(Figure 7, column 1) predicts a high proportion correct
in Condition 1 when a pixel-based match is called for
and the match/distractor images are presented at the
original orientation. It predicts chance performance
when the match/distractor images are rotated relative
to the target. It also predicts chance performance in

Condition 2 when a statistic-based match is required.
Second, the PBSr model (Figure 7, column 2), as
expected, predicts no effect of match/distractor orien-
tation on proportion correct. It predicts above-chance
performance in Condition 1 and at-chance performance
in Condition 2. Third, the SBS model (Figure 7,
column 3) predicts relatively poor performance across
orientations in Condition 1 and better performance in
Condition 2. Human observers show a pattern quali-
tatively similar to that of the SBS model with poor
performance in Condition 1 and better in Condition 2
across orientation classes and match/distractor orien-
tations.

As we predicted, there is a slight improvement in
performance in Condition 1 as the amount of oriented
content in the images increases (i.e., going from
orientation Class 1 to Class 3) for the SBS model
(Figure 8). Human observers in Condition 1 show an

Subject xPBS rPBS xPBSr rPBSr xSBS rSBS

1 0.82 0.11 0.80 0.17 0.45 0.03

2 0.81 0.20 0.50 0.25 0.57 0.17

3 0.64 0.25 0.44 0.25 0.43 0.15

4 0.79 0.15 0.82 0.24 0.64 0.13

Table 1. The best-fit parameters for each subject and model.

Figure 8. Proportion of correct responses for each orientation class in each condition averaged across subjects plotted as a function of

match and distractor orientation relative to the target. As predicted, there is an increment in proportion correct for the SBS model in

Condition 1 as the orientation content of the images increases (from Class 1 to Class 3). Error bars show the SE derived by

bootstrapping.
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improvement going from Class 1 to 2, but no
improvement for images in Class 3. The pattern of
improved performance is not apparent for the pixel-
based model observers in Condition 1 or for human
and model observers in Condition 2.

We quantified the effect of condition, orientation
class, and match/distractor orientation on the human
observers’ proportion correct using a repeated-mea-
sures ANOVA (2 conditions · 3 orientation classes · 5
match/distractor orientations). We find a significant
main effect of condition on proportion correct, F(1, 3)
¼ 425, p , 0.001, reflecting the observers’ overall
improvement in performance in Condition 2 over
Condition 1. We find a significant main effect of
orientation class, F(2, 6) ¼ 22.7, p¼ 0.02, and a
significant main effect of match/distractor orientation,
F(4, 12) ¼ 9.74, p ¼ 0.02. There were no significant
interactions.

Next, we compare human performance (across
conditions, orientation classes, and match/distractor

orientations) to that of each model by way of Pearson’s
v2 tests. Tests comparing each subject’s performance to
SBS model predictions did not achieve significance,
v2(28) ¼ 38, 24, 26, 30, all ps . 0.05. Tests for all
subjects showed a significant difference between human
performance and PBS model predictions, v2(28)¼ 806,
426, 411, 491, all ps , 0.001, and between human
performance and the PBSr model predictions, v2(28)¼
770, 422, 404, 471, all ps , 0.001.

We hypothesize that a pixel-based model should do
well at predicting human performance in Condition 1
when a pixel-based match is called for, and provide less
accurate predictions in Condition 2 when a statistic-
based match is required. Conversely, a statistic-based
model should do poorly at predicting performance in
Condition 1 and better in Condition 2. We quantified
the comparison of model predictions and human
performance in each condition using a v2 test. The
results are shown in Table 2. The PBS model
predictions in Condition 1 are not significantly different
from human performance for Subjects 2 and 3. The
PBSr model’s predictions are not significantly different
from all four subjects’ performance in Condition 1.
Both pixel-based models fail to predict performance in
Condition 2, as expected. Contrary to our hypothesis,
the SBS model’s predictions are not significantly
different from human performance in Condition 1, as
well as Condition 2, for all subjects.

We compare the three models in their ability to
predict human performance. Since each model has the
same number of parameters, we can simply compare the
likelihood of their respective fits to the data. Figure 9
shows the log-likelihood of each model for each subject
(summed across stimulus sets, conditions, and orienta-
tions). The SBS model outperforms the PBS and PBSr
models by a substantial margin for all subjects.

Evidence for a dual pixel- and statistic-based
search strategy

The two tasks our observers performed had sub-
stantially different requirements. In Condition 1, a
pixel-by-pixel comparison was required, whereas Con-

Subject

Condition 1 Condition 2

PBS PBSr SBS PBS PBSr SBS

v2 p v2 p v2 p v2 p v2 p v2 p

1 52.9 ,0.001 14.1 0.37 20.1 0.10 753.5 ,0.001 756.9 ,0.001 18.1 0.15

2 15.5 0.28 10.6 0.65 14.5 0.34 411 ,0.001 411.9 ,0.001 9.9 0.70

3 19.2 0.12 11.4 0.58 14.5 0.34 391.7 ,0.001 392.7 ,0.001 11.3 0.59

4 29.9 0.005 6.9 0.90 21.3 0.07 461.7 ,0.001 464.2 ,0.001 8.8 0.79

Table 2. The v2 statistics and p values for the goodness-of-fit tests for each model in each condition. p values for model predictions
that differ significantly from the human data are shown in bold.

Figure 9. Log likelihood of the fits of the SBS, PBS, and PBSr

models to each subject’s data. Greater values indicate a better fit.
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dition 2 required a qualitative comparison of textures,
so that one might predict that subjects would use a
pixel-based strategy in Condition 1 and a statistic-
based strategy in Condition 2. Thus, we next ask
whether the search strategy employed by human
observers was task-dependent. Did they use a pixel-
based template when the match was defined by pixels in
Condition 1 and a statistic-based one when the match
was defined by statistics in Condition 2? Or, did they
use a statistic-based template for both?

We fit each of our pixel-based search models, PBS
and PBSr, to each subject’s data in Condition 1 (across
all three orientation classes) by maximum likelihood,
each with one value of x and one value of r. We fit the
SBS model to the data in Condition 2 with one value of
xSBS and one value of rSBS. We then compared the
likelihood of these two four-parameter fits (PBS/SBS
and PBSr/SBS) to that of the two-parameter SBS
model fit to both conditions, using the Akaike
information criterion (AIC; Akaike, 1974). (Note that a
likelihood ratio test is not called for here since the
models are not nested.) The AIC essentially compares
the negative log likelihoods of each model fit but
penalizes each model depending on the number of
parameters in the fit. Smaller values of the AIC indicate
a better fit. Figure 10A shows the difference in AIC
values for the four- and two-parameter models for each
subject. The negative values for the comparison PBSr/
SBS to the SBS model are evidence for a dual strategy.
However, we also calculated the less conservative
Bayesian information criterion (BIC), which is similar
to the AIC except that it considers the total number of

trials being fit. We get mixed results using the BIC
(Figure 10B), obtaining negative differences for the
model comparisons for Subjects 1 and 4 (evidence for a
dual strategy) and positive differences for Subjects 2
and 3 (indicating a lack of evidence for a dual strategy).
Note also that the PBSr model predicts no effect of
orientation on human observers’ performance—a
prediction that is contradicted by our finding above of
a significant effect of orientation. The PBSr model can
be rejected on the basis of that result alone. We
conclude that the present evidence is not sufficient to
indicate the use of a dual strategy.

Evidence for use of only a subregion of the
stimulus images

In Condition 1 of our experiment, the observer’s task
was to locate the image that was identical, pixel-for-
pixel, to the learned template. A pixel-based searcher
need not use all pixels in the images to carry out the
task. Textures, and natural images in general, are
redundant (Attneave, 1954; Barlow, 1961; Hyvarinen,
Hurri, & Hoyer, 2009). The observer need not consider
a region of the image in which the pixel values change
very little when a single pixel from the region may
suffice to summarize its content. Pixel-based search in
our task could proceed by comparing a small,
minimally redundant region of the image to a similar
region of the learned template. In fact, all subjects
remarked that they used such a strategy, selectively
attending to a small region of the target stimulus and

Figure 10. (A) Evidence for a dual strategy. Graphed here are differences in the AIC for dual models and AIC for the SBS model. The

dual models use either the PBS or PBSr model in Condition 1 and the SBS model in Condition 2. Negative values in green indicate that

the dual strategy PBSr/SBS provides a better fit to the data than the SBS model alone. (B) Differences in the BIC between the dual

models and SBS model. Positive values in green indicate lack of support for a dual strategy (see text).
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then searching the match/distractor stimuli for the
same content.

Adopting such a strategy of using only the least
redundant region of the images in Condition 1 may
improve the performance of the pixel-based searcher.
To investigate this, we simulated pixel-based searchers
that carry out the task in Condition 1 using the most

‘‘salient’’ region of the target, match, and distractor
stimuli. We assume here that the most salient, least
redundant region of the image is the one in which the
pixel values vary the most with respect to the mean
pixel value of the image. The most salient region is thus
that with the highest average local contrast. Our
simulation employed an information-theoretic saliency
algorithm (Bruce & Tsotsos, 2009; Itti, Koch, &
Niebur, 1998) that effectively calculates the local
contrast at each pixel in the image and then averages it
across small regions. Each windowed and normalized
target, match, and distractor image was decomposed
into a 16-band multiscale, multi-orientation represen-
tation TS,h. A histogram of the filter responses was
derived for each subband. We calculated the probabil-
ity, p(I), of sampling each intensity value, I, in a given
subband from that subband’s respective histogram. We
then derived the self-information, –ln(p[I]), for each
intensity value within each subband. The resulting self-
information matrices (with size equal to that of the
respective subband of TS,h) were upsampled and
summed resulting in a 256-pixel–diameter saliency map
for that image. We computed the average self-
information within each of nine 128-pixel–diameter (38
diameter) regions of the saliency map, placed so that
they tile the image (Figure 11). The 128-pixel–diameter
circular region of the image with the highest average
self-information was extracted and used to simulate the
search tasks for each condition (in place of the original
256-pixel–diameter image).

Figure 12 shows model fits in each condition,
averaged across subjects and stimulus classes. Average
proportion correct for the human subjects is plotted for
reference (data for individual subjects and orientation
classes are shown in Figure 2 of the Supplement). The
PBS model (red) and the PBSr model (green) are the
predictions for pixel-based searchers that use the most
salient region of the target, match, and distractor

Figure 11. Example of the method for selecting the most salient region of target, match, and distractor images. (A) Sample 256-pixel–

diameter image. (B) The image’s saliency map (see text). (C) The nine 128-pixel–diameter subregions of the saliency map in red with

the region containing the highest average salience outlined in white.

Figure 12. The predicted proportion of correct responses of the

PBS and PBSr models averaged across subjects and orientation

classes plotted as a function of match and distractor orientation

relative to the target. The across-subjects averages of the

human data for each condition are replotted with each model

prediction for comparison. The PBS and PBSr model predictions

assume use of only the most salient region of the images in

Condition 1 and the entire image in Condition 2.
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images in Condition 1 and the entire image in
Condition 2.

We compared the likelihood of each model’s fit to
the data. The log-likelihoods are shown in Figure 13.
As without use of the salient region, the SBS model
provides a better fit to the data.

We also used the AIC, as above, to compare the
likelihoods of fits assuming the use of a dual strategy in
which pixel-based search, using the most salient regions

of the images, is used in Condition 1 and a statistic-
based strategy, using the entire image, is used in
Condition 2. The results are shown in Figure 14A. We
again obtain negative values for the AIC differences
comparing the PBSr/SBS to the SBS model and mixed
results using the BIC (Figure 14B). As before, the
PBSr/SBS model using the most salient region makes a
qualitatively incorrect prediction in comparison to the
human data in that it predicts no effect of match/
distractor orientation on performance. The PBSr/SBS
model can still be rejected on those grounds.

Finally, we compared each pixel-based model using
the entire image to the same model using the most salient
region in Condition 1. We obtain positive values for AIC
difference comparing the PBS model using the salient
regions to the PBS model using the entire image and
comparing the PBS/SBSmodel using the salient region to
the PBS/SBS model using the entire image. Use of the
salient region in both cases provides a better fit to the
data in Condition 1 when the match/distractor stimuli
are not rotated relative the target. There is a slight
decrement in performance assuming use of the salient
region, particularly apparent in the PBS model, when the
match/distractor stimuli are rotated relative to the target.

Evidence for full- versus halfwave rectification

As noted above, the use of fullwave rectification in
our models provided a better fit to the human data. We
verified this by generating predictions from each model
using halfwave rectification, i.e., negative values of the

Figure 13. Log likelihood of the model fits in Figure 12. Greater

values indicate a better fit.

Figure 14. (A) The AIC values derived by fitting the PBS and PBSr models to Condition 1, using the most salient regions, and SBS model

to Condition 2 minus the AIC for the fit of the SBS model (using the entire image) to both conditions. Negative values in green

indicate evidence for a dual strategy. (B) Differences in the BIC values between the dual models and SBS model. Positive values in

green indicate lack of support for a dual strategy (see text).
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correlations, r, were set to 0. The log likelihoods of the
resulting predictions for each model were compared to
those utilizing fullwave rectification (as shown in
Figure 9). Note that negative values of r did not occur
in the PBS or PBSr model; thus halfwave versus
fullwave rectification had no bearing on their predic-
tions. We compared the log likelihoods of the SBS
model predictions by taking the difference between that
derived using fullwave and that derived using halfwave
rectification. Positive values of the difference indicate a
better fit utilizing fullwave rectification. The values for
Subjects 1–4 are: �8.6, 2.1, 3.4, and 3.7, respectively.
Thus, fullwave rectification provides a better overall fit
to the data for three of the four subjects.

Discussion

We compared human performance to that of three
models in a search task with complex images. Our
statistic-based searcher uses linear filter responses to
derive the local magnitude and phase. It uses correla-
tions between neighboring magnitudes and phases as
the search template. Our pixel-based searchers use the
target image as the search template. The statistic-based
searcher was shown to more accurately reflect human
performance. It predicted the relative ease with which
humans are able to identify a target based on its
textural content, as compared to when the target is
defined by a specific arrangement of pixels. It also
predicted human observers’ above-chance performance
in locating a randomly rotated, pixel-defined target as
well as the relative ease of locating a pixel-defined
target when it is at or near the original orientation.
Whereas the PBS model can predict human observers’
performance at detecting the pixel-defined target at the
original orientation, it predicted at-chance performance
for targets that did not appear at the original
orientation, and the PBSr model predicted equal
performance across orientations.

Thus, a model of visual search that uses nonlinear
filter responses and their correlations does well at
predicting human performance in a search task in
which the precise form of the search target is unknown
to the observer, either because it appears at an
unpredictable orientation or is specified only in terms
of its general textural content. Our statistic-based
model yielded good predictions of human performance
regardless of whether the search target was defined as a
pixel-based or statistic-based match suggesting that
observers use a statistical template independent of
stimulus characteristics or task demands. A statistic-
based search model offers a viable, biologically
plausible model of human search for complex visual
targets.

Keywords: texture, visual search, image statistics
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