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Summary
Despite modern effective HIV treatment, hepatitis C virus (HCV) co-infection is associated with a
high risk of progression to end-stage liver disease (ESLD) which has emerged as the primary
cause of death in this population. Clinical interest lies in determining the impact of clearance of
HCV on risk for ESLD. In this case study, we examine whether HCV clearance affects risk of
ESLD using data from the multicenter Canadian Co-infection Cohort Study. Complications in this
survival analysis arise from the time-dependent nature of the data, the presence of baseline
confounders, loss to follow-up, and confounders that change over time, all of which can obscure
the causal effect of interest. Additional challenges included non-censoring variable missingness
and event sparsity.

In order to efficiently estimate the ESLD-free survival probabilities under a specific history of
HCV clearance, we demonstrate the doubly-robust and semiparametric efficient method of
Targeted Maximum Likelihood Estimation (TMLE). Marginal structural models (MSM) can be
used to model the effect of viral clearance (expressed as a hazard ratio) on ESLD-free survival and
we demonstrate a way to estimate the parameters of a logistic model for the hazard function with
TMLE. We show the theoretical derivation of the efficient influence curves for the parameters of
two different MSMs and how they can be used to produce variance approximations for parameter
estimates. Finally, the data analysis evaluating the impact of HCV on ESLD was undertaken using
multiple imputations to account for the non-monotone missing data.
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1. Introduction
The hepatitis-C virus (HCV) is a common co-infection for people infected with HIV, in
particular amongst injection-drug users (Alter, 2006). While HIV can be successfully
managed through highly active antiretroviral therapy, simultaneous treatment of both
infections is challenging. Effective treatment for HCV exists, and unlike HIV, HCV can be
cleared from the system both spontaneously and through HCV treatment (Sulkowski and
Thomas, 2005).

For those who fail to clear the virus, infection with HCV will become chronic and may lead
to cirrhosis, hepatocellular carcinoma and End Stage Liver Disease (ESLD), the condition
signaling imminent liver failure. ESLD is characterized clinically by the presence of ascites,
bleeding esophageal varices, spontaneous bacterial peritonitis and/or hepatic
encephalopathy. Co-infection with HIV has been shown to accelerate the natural history of
HCV (Merwat, 2011). Due to the reduction in mortality for co-infected patients who are
treated for HIV, ESLD and its complications have emerged as primary causes of morbidity
and mortality in the modern HIV treatment era (Operskalski and Kovacs, 2011). There is
evidence that highly active anti-retroviral therapy might negatively affect HCV-related
outcomes due to long term liver toxicity (Operskalski and Kovacs, 2011; Moodie et al.,
2009).

The Canadian Co-Infection Cohort (CCC) study (Klein et al., 2010) follows a group of HIV
and HCV co-infected participants over time, with follow-up appointments every six months.
Our scientific question of interest is whether clearance of HCV has a causal effect on ESLD-
free survival. Some of the statistical challenges involved in such an analysis include
identifying and adjusting for variables (baseline or time-varying) that affect both HCV
clearance and ESLD. In addition, various types of missing data might be caused by factors
closely related to ESLD. In this manuscript, we will refer to HCV clearance as our exposure
of interest, and ESLD as the survival outcome or failure event. In accordance with the causal
inference literature, a time-dependent variable affecting HCV clearance and ESLD status at
subsequent time-points will be called a time-dependent confounder.

Due to the concerns outlined above, standard survival modeling was deemed an
inappropriate approach. Kaplan-Meier and Cox proportional hazards modeling both rely on
the unlikely assumption that censoring and survival are independent. In addition, these
methods either ignore or over-adjust for time-dependent confounders affected by previous
exposure (Robins, 1986). Anti-retroviral therapy is one such confounder, as subjects may
inconsistently follow anti-retroviral therapy that affects both viral clearance (Cooper and
Cameron, 2002) and liver function (Operskalski and Kovacs, 2011), and previous
knowledge of HCV status may affect the prescription of anti-retroviral therapy in the CCC
study.

Marginal structural models (MSM) (Robins et al., 2000) have been developed to correctly
model the effect of time-dependent exposure on the outcome in the presence of time-
dependent confounders that are affected by previous exposure. In the survival context,
MSMs have been developed for the parameters of a Cox proportional hazards model
(Hernán et al., 2000). Weighting methods such as inverse probability of treatment weighting
(IPTW) (Cole and Hernán, 2008; Xie and Liu, 2005) and substitution estimators such as G-
computation (Robins, 1987) have been developed to fit MSMs. These methods properly
account for baseline and time-dependent confounders.

Targeted Maximum Likelihood Estimation (TMLE, van der Laan and Rubin 2006) is a
general framework that produces semiparametric efficient estimators. TMLE offers potential
improvements over double-robust efficient estimating equation methodology (such as
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Adjusted-IPTW, Robins and Rotnitzky 1992), in that it will never produce multiple
solutions, and that it can be constructed to preserve the natural bounds of the parameter of
interest in estimation. The flexibility of the estimating framework allows improvements in
estimation that can give TMLE an additional advantage in challenging situations such as
data sparsity (Gruber and van der Laan, 2010). TMLE has been used to produce estimators
for survival parameters (van der Laan and Gruber, 2012; Stitelman et al., 2012), general
longitudinal parameters (van der Laan, 2010; Rosenblum and van der Laan, 2010b;
Schnitzer et al., 2013; van der Laan and Gruber, 2012), and history-adjusted MSMs for
longitudinal data (Rosenblum and van der Laan, 2010a). A review of influence curves,
TMLE and a description of variance estimation is provided in the Supplementary Materials.

In this paper, we demonstrate an extension of a TMLE for longitudinal data to estimate
survival curves under different histories of viral clearance. In addition, we develop a TMLE
for the hazard model and derive the efficient influence curve. These techniques are then
applied to analyze the effect of viral clearance on ESLD. Variance estimation is made
possible using efficient influence curve inference, which produces a closed-form large-
sample approximation of the variance of the different estimators (i.e. a sandwich estimator
for the variance).

2. Modeling theory and procedures for the CCC study
In the CCC study, participants are scheduled for appointments every six months, with data
collected on risk behaviours, treatment status (on/off), lab tests describing disease
progression, and drug and alcohol use at each follow up visit. The HCV clearance time was
defined as the first visit where a subject was found to be RNA negative. In order to assess
the effect of clearing HCV, we are interested in estimating the probability of having ESLD
depending on when the patient has cleared the virus. Since we obtain time-dependent data,
the probability of ESLD can be calculated at each time point, which produces a survival
curve for each clearance time. We could then compare, for example, the difference in
survival curves for clearing HCV at the second time point versus clearing two years (or four
time points) later. In this example, the representation of viral clearance at time two is (0, 1,
1, …, 1) since we are defining “first viral clearance” as a monotone process. To correspond
with the longitudinal causal analysis literature, we will also refer to clearance time as
exposure pattern. An exposure pattern up until time k − 1 representing a clearance history

will be denoted as .

We choose a semiparametric estimator because it requires the parametrization of only a
component of the data generating density, thereby reducing our modeling assumptions. If a
semiparametric estimator is regular and asymptotically linear (RAL), it has an associated
influence curve. The influence curve is the unique function that determines the asymptotic
properties of the estimator, including the variance. An estimator associated with the efficient
(or minimal-variance) influence curve will also have minimal asymptotic variance amongst
RAL semiparametric estimators, and is therefore called semiparametric efficient (van der
Laan and Robins, 2003; Bickel et al., 1998). Estimating the density components of the
influence curve while solving the empirical mean of the influence curve set equal to zero for
the parameter of interest will produce an efficient estimator when this influence curve is
efficient. Semiparametric efficient estimators in causal inference have been produced in the
survival context (Robins and Rotnitzky, 1992; Scharfstein et al., 1999; Bang and Robins,
2005). These efficient causal estimators often have the added advantage of double-
robustness where only a component of the underlying density must be correctly specified for
asymptotic unbiasedness (van der Laan and Robins, 2003).

Schnitzer et al. Page 3

Biometrics. Author manuscript; available in PMC 2014 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The following section describes the development of a TMLE for a survival curve under a
given clearance time. Next, we develop theory and a procedure for estimating a marginal
model for the hazard of obtaining ESLD. As shown in D'Agostino et al. (1990), when the
event rate at all time points is small, as was true for our situation, this model is
approximately equivalent to a Cox model (as the estimated odds ratio provides a good
approximation of the hazard ratio). In the Supplementary Materials, we also demonstrate the
simpler construction of an MSM for the log-odds of survival.

2.1 TMLE for a survival outcome
In this subsection, we adapt the methodology of van der Laan and Gruber (2012) to obtain
an estimate of the marginal survival curve and the influence curve of the estimator. The

influence curve is used to approximate the variance of the estimator. Let  denote the
ESLD-free survival time that a subject would have obtained if they had experienced

exposure pattern  and remained uncensored, defined according to the
Neyman-Rubin counterfactual model (Rubin, 1974). The parameters of interest are the

survival probabilities  for a fixed exposure pattern  at discrete time

points t = 1, …, K. We will refer to  as the survival curve under exposure  at time t.
The survival curve can also be constructed separately for individual patient subgroups, V, if
that is of interest.

Suppose we observe independent and identically distributed discretized survival times, T,
and censoring times, C, for n subjects. In addition, we have information about a time-
dependent exposure of interest (HCV status) and potentially confounding covariates at each
time point. A corresponding censored observed data structure (without other variable
missingness) can be described as O (L0, A0, Y1, L1, A1, Y2, …, AK−1, YK), where the
subscripts indicate a time-ordering. The vector-variable L0 contains the baseline variables,
including all potential baseline confounders which we considered to be age, HIV duration,
HCV duration, gender, and education. The bivariate intervention nodes At ≡ {At(1), At(2)},
t = 0, …, K − 1 indicate categorical exposure and censoring status, respectively, at each time
point. Specifically, At(2) = 0 indicates that a subject is uncensored at time t (i.e. C > t), and
At(2) = 1 indicates censoring prior to or at time t (C ≤ t). The variables Lt, t = 0, …, K − 1
are time-dependent confounders. For instance, in our study, this includes CD4 cell count,
antiretroviral therapy, HCV treatment status, and whether the participant had reported
drinking alcohol in the past six months. Yt, t = 1, …, K is the survival status at time t where
Yt = 1 indicates continued ESLD-free survival (so that Yt = 1 if and only if T > t). We also let

,  and  indicate the variable history up to and including time t.

In order to describe the formulation of the efficient influence curve first developed by Bang
and Robins (2005) and used by van der Laan and Gruber (2012) to develop the TMLE, fix a
time t ≤ K and define the conditional probability of survival under a fixed history of
exposure as

Note that this conditional probability is zero if there was failure at the previous time point,

i.e. if Yt−1 = 0. Recursively define the conditional probabilities of the  (going
backwards starting with j = t) as
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Each  is therefore defined by taking the previous conditional expectation, 
and marginalizing over the intermediate covariate Lj−1 and Yj−1. Finally, the parameter

 can be identified as . Therefore, this target parameter is defined as a
function of the sequential conditional means. We can fit a model for the conditional
probability of being ESLD free, specified through the Q functions, and produce an estimate

of the target parameter by taking an empirical mean of the predicted values  for each
subject.

For each time-point, define  as the probability of being uncensored and exposed
according to  and in terms of the covariate history among the at-risk population (i.e. for
those uncensored and ESLD-free at time t − 1). This quantity can be decomposed as

Set  for notational convenience. Then the efficient influence curve,  for

the parameter  can be written as the sum of the t + 1 components

(1)

so that . We refer the interested reader to van der Laan and Gruber
(2012) for a derivation of this quantity. Inference performed using this influence curve will

be double robust: the estimator is consistent if either each , j = t + 1, …, 2or each

 j = t, …, 1contain the truth.

2.2 Fitting procedure for the TMLE
For a given time, t and HCV-clearance pattern, , a TMLE estimate for ESLD-free

probability of survival,  can be obtained by modifying the procedure given in van der
Laan and Gruber (2012). Start with j = t. For convenience of notation, set

 (the *-notation will indicate an updated fit produced according to
the TMLE methodology). Fit the conditional expectation

 as the initial fit. Let

 be the predicted outcome for all subjects (zero for those not at-risk). In this case
study, we used logistic regression to fit the model using all at-risk subjects with any
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exposure history. Then, the predicted outcome under fixed pattern  was made for each
subject.

To update the fit for those at-risk, let  be a perturbation of  by ∊t(j):

(2)

To fit the update by obtaining an estimate for ∊t(j), perform a regression, amongst those at-

risk, of  with offset  and unique covariate

. Set  to be the estimate of the coefficient
of this covariate. Then update the original fit by plugging  into Equation (2) and obtain
a fit for all at-risk subjects (the fit for those who previously failed remains zero). The

updated conditional expectation for all subjects is . This update is only be performed
once for each time point j.

Repeat the above procedure for j = t − 1, …, 1. The final fit  is predicted for all n

subjects. The parameter estimate  is the mean of  over all subjects. The result

of this procedure is that the perturbed densities  and the estimate  jointly solve
the efficient influence curve (1). This can be seen by noting that each logistic regression
update solves the empirical mean of

 set equal to zero.

This procedure can be repeated for each time point t = 1, …, K to obtain an estimate of the

survival curve  for all values of t. One can then estimate different survival curves for

each fixed exposure pattern of interest. Let each possible combination of 

be uniquely identified as . Let a given exposure pattern  up until time t be denoted . Let

M represent the number of unique truncated exposure patterns , t = 0, …, K − 1. We can

calculate M survival estimates, one for each truncated exposure pattern, .

2.3 MSM for the hazard function
In addition to estimating each survival curve separately for each exposure pattern, we are
interested in modeling ESLD-free survival at the population level as a function of time and
the exposure pattern. Following common practice, we chose to specify a logistic model for

the discrete hazard function, . This corresponds to a marginal
structural mean model and can be written as
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for all unique patterns . X is the design matrix of column vectors representing the

covariates in the model which only includes combinations of time, t, and  (or time since
clearance). Let Xl,t represent the R-dimensional row of the design matrix corresponding with

exposure  and time t, represented as a column vector. For example, if the MSM was a

linear model with an intercept and a linear term for time, then for each unique pattern  for
the time point t*, Xl,t* = (1, t*)T. The design matrix can also contain subgroups if S was
calculated separately for the components of a categorical variable, V, and although we do
not include conditioning in our notation, the following development easily extends to such a
case. Finally, let β denote the vector of coefficients corresponding with the columns of the
design matrix. Therefore, since there are M estimates for the survival function, the
dimension of the matrix X is R by M, corresponding with a β-vector of length R.

The parameter β can be defined as

or the value that maximizes the log-likelihood of a logistic model with marginal mean

specification . Only subjects with  contribute to the likelihood at a given
time point. By passing the expectation through the linear expression, this simplifies to

where . This corresponds to the maximum log-likelihood for a logistic regression

with outcome  and weights .

The efficient influence curve (derived in the Supplementary Materials) is

The inside summation is taken over all m for which the truncated exposure pattern  is a

subset of the pattern  (or, equivalently, ). The efficient influence function
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components can be numerically evaluated for each of the n subjects, producing an influence
matrix of dimension n × R, representing the joint influence components for β.

To obtain the point estimates of the MSM parameters, first calculate the hazard functions for

each exposure pattern and time using . Then,
using these M values as outcome measurements, fit the logistic regression of interest, with

weights equal to . This will produce the point estimate of β. To obtain variance
estimates, fit the efficient influence curve for β for each subject by estimating each of the
components. Then, for each of the R columns of the resulting matrix the empirical variance
is the estimated variance for the corresponding MSM coefficient estimate of β.

3. The impact of HCV clearance on ESLD
At the time of data extraction, the CCC study had collected data on 1,055 individuals. At the
time of cohort entry, 778 had not cleared HCV and had not yet been diagnosed with ESLD.
Thirty-eight participants had hepatitis B and were excluded from the analysis as chronic
hepatitis B is itself a very strong risk factor for progressive liver disease, leaving 740
subjects in the analysis. The median follow-up in this subgroup was two years after baseline,
sometimes including missed visits.

Potential baseline confounders considered were age, HIV duration, HCV duration, gender,
and education. Potential time-dependent confounders (collected at baseline and at
subsequent visits) were CD4 cell count, whether the participant was receiving antiretroviral
therapy, HCV treatment status, and whether the participant had reported drinking alcohol in
the past six months.

Characteristics of the sample used in the analysis are given in Table 1. The population was
primarily composed of patients who had been infected with HCV and HIV for a long
duration. While most were receiving antiretroviral therapy to control their HIV infection,
few received treatment for HCV. Approximately 25% of the sample was female.

We performed the analysis using six visits after the baseline visit (equivalent to a follow-up
of three years), as the data were excessively sparse for longer follow-ups. Subjects often
missed their biannual visits, and in addition, the time-varying covariates, exposure and
development of ESLD were all subject to irregular (i.e. non-monotone) missingness. We
defined exposure as first clearance of HCV and outcome as diagnosis of ESLD. A subject
was assumed to be censored if they missed three visits in a row, or died from a cause
unrelated to ESLD. If a subject died from liver complications, they were considered to have
experienced the event. Table 2 reports the number of subjects at risk and the failure
incidence at each time point, by exposure status (when known, and when unknown). The
time-dependent exposure status is defined as having cleared HCV at some previous time.
From this table, it is clear that there is limited information about subjects who have cleared
HCV.

Due to the relatively large amount of missing data in the data set (in particular, due to many
missed visits), we chose to employ multiple imputations (Rubin and Schenker, 1986) as part
of our analytical strategy to account for non-censoring missingness. The validity of multiple
imputations in this context relies on the sequential randomization assumption, or that the
missing data depends on the full data process only through the observed past and the validity
of the imputation model. We built the imputation model using all of the variables included
in the analysis. The imputation models chosen allowed each variable to be imputed
conditional on all previously or simultaneously collected variables so that future information
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was never used following, for example Shortreed and Moodie (2012). Multivariate
Imputation by Chained Equations (MICE) was performed using the R package mice (van
Buuren and Groothuis-Oudshoorn, 2011). After a burn-in of 20 draws, 50 imputations were
drawn with 20 lagged iterations each. Logistic regression was used to impute all binary
variables, and Bayesian linear regression was used for all continuous variables (including
CD4 cell count, which was log-transformed throughout). The analytical method was
performed on each imputed data set, and the estimates and standard errors obtained were
combined according to Rubin and Schenker (1986) to produce the final inference.

The probabilities of survival at each time point for a given exposure pattern were calculated
using the Kaplan-Meier estimator, the (stabilized) Adjusted Kaplan-Meier Estimator
(AKME; Xie and Liu 2005) which is an inverse probability of treatment weighted estimator,
and the TMLE described above. Due to the sparsity of failures among the exposed subjects,
we used all at-risk subjects in the outcome models for the TMLE procedure and included the
complete exposure history in the model. All censoring and exposure probabilities were
estimated with logistic regression using covariates at the baseline and previous time point,
and an indicator of whether or not the visit was missing in each model. Limiting these
models to omit time-varying covariates prior to the current time point (while including
baseline) was partially justified through exploratory analysis which was greatly limited by
data sparsity.

Figure 1(a) shows the survival curves under “never-exposed” estimated by each of the three
methods. The curves can be interpreted as estimates of the marginal probability of remaining
ESLD-free at each time point for a subject who is exposed according to pattern

, i.e. never clearing HCV. For later time points, the Kaplan-Meier
estimator appears to overestimate the probability of remaining ESLD-free. Figure 1(b)
displays pointwise 95% confidence intervals for the TMLE and AKME. For this exposure
pattern, the AKME has smaller standard errors than the TMLE, but similar point estimates.

An MSM for the hazard of developing ESLD was defined using a logistic mean model:

 where a(t − 1) is the lagged binary exposure status at time

t − 1, and  is the marginal hazard at time t. The parameters of the logistic model were
estimated using the three different methods shown in Table 3, each incorporating the
multiple imputations. The unadjusted pooled logistic regression was fit, with an empirical
sandwich estimator to estimate the standard error of each coefficient (using R library
sandwich; Zeileis 2006). The MSM was fit using IPTW (adjusting for both non-randomized
exposure and censoring) with stabilized weights, and with the TMLE described in Section
2.3.

The results for γ1 indicate that the coefficient for exposure status was estimated as −0.12 but
not significantly different than zero at the 0.05 level when using the naïve method (which
does not adjust for confounding or informative dropout). TMLE and IPTW estimated greater
effect magnitudes of −0.44 and −0.35, respectively, consistent with a protective effect of
clearance on ESLD. TMLE had a 44% smaller standard error than IPTW, but neither
estimator found a significant effect of HCV clearance. All of the models yielded a positive
(but not significant) parameter estimate for γ2, suggesting a higher risk of ESLD over time.
Here again, the IPTW standard error was substantially larger than the TMLE standard error.
The large standard errors in this analysis were a result of the sparsity of the events across
exposure patterns. The small difference between the adjusted and unadjusted methods may
be due to the multiple imputations already adjusting for some of the informative missingness
in the analysis. We anticipate more power as the study continues to accrue events.
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4. Discussion
The science and treatment of HIV/HCV co-infection is an active area of research. In this
paper we used sequential longitudinal TMLE to estimate survival curves under a fixed
history of HCV clearance and modeled the hazard of obtaining ESLD in order to evaluate
the marginal effect of clearing HCV on the risk of ESLD. We found a clinically but not
statistically significant protective effect of the clearance of HCV on ESLD, adjusting for
time in the model. A protective effect of HCV clearance on ESLD is consistent with studies
that have shown curative HCV therapy greatly reduces progression to ELSD, hepatic
decompensation, transplantation, hospitalisation and death (Berenguer et al., 2009).

Clearance of HCV occurs both spontaneously and due to HCV treatment, and the
subsequent risk of liver damage might differ depending on the reason for clearance. The
causal relationship of viral clearance on ESLD may indeed be more complicated than was
represented in our simple MSM. With additional power, further analyses could also consider
the different ethnic groups participating in the study, including the Aboriginal subpopulation
(representing 15% of our sample) who may clear HCV more readily than the general
population (Minuk et al., 2003; Scott et al., 2006) and could have a different risk of ESLD.

The TMLE for the hazard model estimates the same parameter as the well-known IPTW
method for the estimation of the parameters of an MSM with pooled logistic regression. This
is demonstrated theoretically and through simulation in the Supplementary Materials. When
the hazard at all time points is small, these MSM coefficients are approximately equal to the
coefficients of a marginal structural Cox model (Hernán et al., 2000; D'Agostino et al.,
1990; Xiao et al., 2010). TMLE is an asymptotically efficient method, and it produced
substantially smaller standard errors than IPTW for the coefficients of the logistic model.
However, in finite samples, TMLE is not always more efficient than IPTW.

A major challenge particular to the TMLE was the need to fit outcome models for failure at
every time point. The rarity of events in the CCC data made this difficult, even with multiple
imputations. We adjusted our initial estimation plan by smoothing over exposure pattern and
thereby using all at-risk subjects in the estimation of each outcome model.

The validity of a causal interpretation of this analysis relies on the assumption that all
confounders were measured and incorporated in the analysis. Omission of strong
confounders can potentially lead to bias. While we believe that we have captured the
strongest predictors of ESLD (and therefore most confounding variables), some confounders
may have been overlooked. In particular, intravenous drug usage was omitted due to event
sparsity. To make a causal claim, it must also be assumed that directly intervening to set the
exposure status of a patient would result in an outcome identical to that if the exposure had
occurred naturally. However, current knowledge does not allow for direct manipulation of
HCV presence, but the existence of such an underlying data generating system could be
assumed. If one is not willing to accept these causal assumptions, the interpretation of the
parameter of interest is limited to a statistical effect that controls for all measured
confounders.

Multiple imputations were used for the missing values. This methodology was fundamental
in allowing us to use as much of the information in the data set as possible. The missingness
included both incomplete covariates and intermittent missing visits. We preferred to use
multiple imputations over last-observation-carried-forward which requires stronger (and
untenable) assumptions about the nature of the missing data (Beunckens et al., 2005). We
found complete case analysis to be impossible as very few subjects had complete data.
Multiple imputations have been proposed for and used in causal inference studies (Rubin,
2004; Taylor and Zhou, 2009; Shortreed and Moodie, 2012; Shortreed and Forbes, 2009).
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This is the first application of the sequential TMLE method in a survival context. We also
derived the efficient influence curve of an MSM for the hazard with discrete covariates and
describe one approach to fitting the model using TMLE. This is the first derivation of a
TMLE for an unsaturated MSM that can evaluate the effect of setting a fixed exposure at
multiple time points. Assessments of the performance of the TMLE for estimating marginal
longitudinal or survival parameters described in this paper and comparisons to other causal
methods have also been obtained through simulation study in van der Laan and Gruber
(2012) and Schnitzer et al. (2013). In the simulation study in the Supplementary Materials,
we confirmed the unbiasedness of this TMLE under misspecification of the outcome model
when estimating the survival curve (a partial demonstration of its double-robustness). We
also numerically confirmed the unbiasedness and efficiency of the extension of the method
for estimating the parameters of a marginal structural model, again under misspecification of
the outcome models. Our contribution adds to the growing literature demonstrating the
promise and practicality of TMLE in longitudinal and time-to-event scenarios.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Survival curves under no exposure (a) calculated with adjusted Kaplan-Meier (AKME),
unadjusted Kaplan-Meier (KME), and Targeted Maximum Likelihood Estimation (TMLE),
and (b) calculated with TMLE and including confidence intervals for TMLE and AKME.
Confidence intervals were calculated using a normality assumption on the logit-transformed
parameter and then transformed back to the (0,1) scale. The variance for each imputation
was calculated using the sandwich estimator for TMLE, and the bootstrap for AKME.
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Table 1

Characteristics at baseline of the 740 subjects analyzed from the Canadian Co-infection Cohort Study.

Characteristic Summary N. Missing

Numeric variables Median IQR

Age (years) 44 (39,50) 2

HIV duration (years) 11 (6,16) 20

HCV duration (years) 18 (11,25) 4

CD4 cell count 380 (242,540) 16

Binary variables N. %

Female 227 25 1

Education: ≥ high school 760 83 0

Taking antiretroviral drugs 735 80 1

Currently treated for HCV 28 3 0

Alcohol in past 6 months 455 50 3

ARV is antiretroviral therapy; IQR is the inter-quartile range.
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Table 2

Number at-risk and failure incidence by time point and exposure status (when known)

Status Visit 1 2 3 4 5 6

Unexposed N. at-risk 380 294 214 159 102 78

N. failed 22 16 12 4 4 4

Exposed N. at-risk 29 62 80 85 84 76

N. failed 0 3 1 1 1 2

Unknown N. at-risk 320 325 216 195 197 162

N. failed 14 9 10 4 5 3
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Table 3

CCC results: Logistic model for hazard of developing end-stage liver disease as a function of HCV clearance.
Naïvt refers to unweighted logistic regression. Variance estimates were obtained using a robust sandwich
estimator for tht Naïve and IPTW methods and the efficient influence curve for the TMLE. Each method was
performed on 50 imputed datasets and the inference combined.

Method Est SE 95% CI

γ2 Intercept

Naïve −3.05 0.29 (−3.62,−2.49)

IPTW −3.30 1.03 (−5.32,−1.27)

TMLE −3.37 0.68 (−4.70,−2.04)

γ1 Coefficient of exposure status

Naïve −0.12 0.37 (−0.85,0.62)

IPTW −0.44 0.82 (−2.05,1.17)

TMLE −0.35 0.46 (−1.26,0.55)

γ2 Coefficient of time

Naïve 0.10 0.07 (−0.05,0.24)

IPTW 0.22 0.22 (−0.21,0.66)

TMLE 0.22 0.15 (−0.08,0.52)
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