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Summary
Motivated by examples from genetic association studies, this paper considers the model selection
problem in a general complex linear model system and in a Bayesian framework. We discuss
formulating model selection problems and incorporating context-dependent a priori information
through different levels of prior specifications. We also derive analytic Bayes factors and their
approximations to facilitate model selection and discuss their theoretical and computational
properties. We demonstrate our Bayesian approach based on an implemented Markov Chain
Monte Carlo (MCMC) algorithm in simulations and a real data application of mapping tissue-
specific eQTLs. Our novel results on Bayes factors provide a general framework to perform
efficient model comparisons in complex linear model systems.
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1. Introduction
Genetic association studies aim to detect statistical associations between genetic variants
(most commonly, single nucleotide polymorphisms, or SNPs) and phenotypic traits. Genetic
associations are complicated in nature: multiple SNPs may simultaneously affect a single
phenotype, the genetic effects of a SNP with respect to a phenotype may exhibit a large
degree of heterogeneity in different environmental conditions (known as gene-environment
interactions), and a single SNP may affect multiple phenotypes through gene networks.
Statistical analysis of genetic associations under these complex settings has become
increasingly important because it can yield a comprehensive understanding of the roles
played by genetic variants in a biological system. To illustrate, we briefly introduce two
motivating examples.

Motivating Example 1: Multiple-Tissue eQTL Mapping
eQTLs (expression quantitative trait loci) are genetic variants associated with gene
expression phenotypes and play important roles in transcriptional regulation processes. Most
recently, eQTL data have been collected from multiple tissue/cell types (e.g., the NIH GTEx
project). One important goal is to identify eQTLs across tissues and investigate how their
effects vary in different cellular environments. Biologically, it is expected that a proportion
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of eQTLs are active (i.e., effect size ≠ 0) only in certain tissues but silent (i.e., effect size =
0) in others, a classic case of gene-environment interaction; for tissues in which an eQTL is
active, the regulatory environments of the target gene are likely similar, and the effects of
the eQTL are expected to show low heterogeneity. In addition, because a single gene is
typically subject to many regulatory elements, it is highly likely that there exist multiple
eQTLs for any given gene. Finally, in the most popular experimental design of this type,
multiple tissue samples are collected from the same set of individuals, and intraindividual
correlations of gene expressions need to be accounted for. Under this setting, it is
challenging to simultaneously identify multiple and potentially tissue-specific eQTLs.

Motivating Example 2: Fine-Mapping in a Genetic Association Meta-Analysis
Genetic association studies with limited sample sizes are underpowered to detect modest
association signals. Nevertheless, genuine genetic associations typically show consistent
effect sizes in many independent studies. Meta-analysis therefore becomes critically
important to aggregate sample sizes and increase power for detecting associations.
Currently, most existing meta-analytic approaches in genome-wide association (GWA)
studies analyze one SNP at a time. In a meta-analytic setting, the simultaneous mapping of
multiple genetic associations, especially in a predefined genomic region, remains a statistical
challenge.

Although identifying non-zero genetic associations can be naturally formulated as a model-
selection problem, most available approaches (Fridley (2009); Wilson et al. (2010); Wu et
al. (2009); Mitchell and Beauchamp (1988); Guan and Stephens (2011)), applicable only to
single multiple linear regression models, are inadequate for addressing the situations
described in our motivating examples. This is mainly because, in both cases, observed data
form subgroups (viz., different tissue types in eQTL mapping and individual GWA studies
in the meta-analysis). We not only require a complex model system to account for these
subgroup structures (in likelihood computation), but we also require variable selections to be
performed either with respect to (as in the case of tissue-specific eQTLs) or integrating
among (as in meta-analysis) the intrinsic subgroup structures. Furthermore, as we have
shown in both examples, there typically exists a priori information on the correlations of
non-zero effects. Effectively utilizing this prior information would greatly improve the
performance of model selection and make the results easy to interpret.

In this paper, we describe a general system of linear models that is capable of addressing
both of the motivating examples. We consider the problem of formulating model (variable)
selection through prior specification under this linear system and propose Bayesian solutions
to conduct model comparison and model selection via Bayes factors. We illustrate our
Bayesian approach through simulation studies and a real example of tissue-specific eQTL
mapping. We want to emphasize that our results on Bayes factors, discussed in section 4, are
completely general and can be readily applied to a wide range of model comparison,
hypothesis testing and model selection problems.

2. A System of Simultaneous Multivariate Linear Regressions (SSMR)
We describe a very general linear model system for which many commonly used linear
models become special cases. It naturally applies in the complex scenarios in genetic
association studies we have discussed. Unless otherwise specified, all of the results
presented in this paper apply to this most general form of the linear model system.
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2.1 Model Description and Notation
We consider a system of simultaneous multivariate linear regressions (SSMR) consisting of
a set of s separate multivariate linear regression equations, i.e.,

(1)

where “MN” denotes the matrix-variate normal distribution, and each composing linear
equation describes one of the s non-overlapping subgroups of observed data. For subgroup i
with ni subjects, Yi is an ni × r matrix with each row representing r quantitative
measurements from one subject. We denote Xi = (Xc,iXg,i) as the ni × (qi + p) design matrix,
in which Xg,i (ni × p) represents the data matrix of p explanatory variables of interest (e.g.,
genotypes of interrogated genetic variants), and Xc,i (ni × qi) represents the data of qi
additional variables (including the intercept) to be controlled for; matrices Bg,i (p × r) and
Bc,i (qi × r) contain the regression coefficients for the explanatory and the controlled
variables, respectively. Finally, Ei is an ni × r matrix of residual errors in which each row
vector is assumed to be independent and identically distributed as N(0, Σi) (i.e., Ei ~ MN(0,
I, Σi)). Although the same set of r response variables and p explanatory variables are
assumed to be measured in all s subgroups, we allow each composing linear model to
control for a different set of covariates. Furthermore, the residual errors are assumed to be
independent across subgroups. In addition, we denote  := {Y1, …, Ys},  := {X1, …, Xs}
and ℰ := {Σ1, … Σs}. (Throughout the paper, we refer to ℰ as “error variances”.)

The SSMR model is a generalization of a class of linear systems; some commonly used
special cases include the following:

1. Multiple Linear Regression: s = 1 and r = 1.

2. Multivariate Linear Regression (MVLR): s = 1. This is a suitable model for
describing multiple-tissue eQTLs for which different tissue samples are obtained
from the same set of individuals (Motivating Example 1).

3. Systems of Simultaneous Linear Regressions (SSLR): r = 1. This model can be
applied to fine mappings of genetic variants in a meta-analytic setting (Motivating
Example 2).

The general SSMR model is also uniquely important for many genetics/genomics
applications. One such example is the meta-analysis of genetic variants with respect to
multiple phenotypes.

We introduce the vectorized regression coefficients  and

, which are mathematically convenient to work with. We use the
notation βg,i) to denote an indicator function of the i-th component of βg, such that βg,i) = 1
if βg,i ≠ 0 and 0 otherwise. Furthermore, we define the following indicator vector:

(2)

In this paper, ξ(βg) is our quantity of interest for model selection.
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To perform Bayesian inference based on the SSMR model, we assign prior distributions for
βg, βc, and Σ. For βg, we assume a multivariate normal prior,

(3)

The variance-covariance matrix Wg plays a central role in our framework, and we defer a
detailed discussion of it to section 3. For the regression coefficients of controlled variables,
we assume

(4)

where matrix Ψc is assumed to be diagonal. When performing an inference, we consider the

limiting condition  (i.e., each composing coefficient in βc is effectively assigned an
independent at prior). Furthermore, we assume βg and βc are a priori independent. Finally,
we assign an independent inverse Wishart prior, with parameters mi (a positive scalar) and
Hi (a positive-definite r × r matrix), for each composing Σi ∈ ℰ, i.e.,

(5)

where νi = mi − qi − r − 1, and we require νi > 0. If r is small relative to the sample size, Σi
can be sufficiently learned from the data. In such cases (as in the simulations and the data
application of this paper), we consider the limiting condition Hi → 0 and νi → 0. As r is
large, setting Hi and νi requires context-dependent considerations, we discuss this briefly in
the discussion.

3. Prior Specification for Structured Model Selection in SSMR
At its most basic level, a model/variable selection problem in the SSMR model can be
formulated as an inference on ξ(βg) (defined in Equation (2)). Throughout this paper, we
refer to a candidate model as a particular configuration of ξ(βg). In our Bayesian framework,
a prior distribution on the space of candidate models, Pr(ξ(βg)), is used to prioritize (or in the
extreme case, enforce) a certain class of preferred models. For instance, the intrinsic
(sub)group structure and the sparse property of preferred candidate models can be quantified
by Pr(ξ(βg)). Given a candidate model, we use the multivariate normal prior (3) to fully
specify the prior distribution on βg, for which a positive semidefinite covariance matrix Wg
is sufficient. In this presentation, we use matrix Wg to serve two primary purposes:

1. articulate the structure of the given candidate model ξ(βg).

2. convey context-dependent a priori correlation information on non-zero elements of
βg to aid model selection.

The first point provides convenience in mathematical representations, and the second point
highlights the fact that matrix Wg incorporates a source of prior information that
complements what is conveyed in Pr(ξ(βg)).

The idea of using matrix Wg to represent a candidate model is similar to the use of the
“spike-and-slab” prior in Bayesian variable selection: for a regression coefficient β ∈ βg, it is
convenient to represent Pr(β = 0) = 1 by a degenerate normal (prior) distribution β ~ N(0, 0)
(i.e., a spike), and accordingly, a non-zero marginal prior variance on β (i.e., a slab)
indicates the corresponding variable is included. Thus, information about ξ(βg) can be
directly obtained from the main diagonal of a given (singular) matrix Wg.

The off-diagonal of matrix Wg defines context-dependent prior correlations between
(nonzero) regression coefficients. Incorporating this information in the inference enables
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“borrowing strength” across correlated components in βg, thereby improving the efficiency
of model selection. Given a specific context and a candidate model, the qualitative
dependence relationships between any two coefficients in βg are typically determined. Much
recent research has been devoted to further quantifying such correlation structures (Scott-
Boyer et al. (2012); Guan and Stephens (2011); Wen and Stephens (2011). We provide a
brief summary of some existing prior specification approaches in various genetic settings in
Appendix A of the Web Supplementary Materials.

3.1 Parameterization of Wg for Model Selection
To better facilitate model selection, we propose to parameterize Wg = (Γg, Λg), where Γg is a
binary matrix consisting of entry-wise non-zero indicators and is identical in size and layout
to Wg; Λg = {wij} is an indexed set of numerical values quantifying each non-zero entry in
the Γg matrix. For a given candidate model, the main diagonal of Γg corresponds to ξ(βg).
The off-diagonal of Γg represents the qualitative prior dependence relationships between
coefficients in βg and can always be deterministically specified given its diagonal and a
specific application context. Mathematically speaking, there always exists a context-
dependent injection from ξ(βg) to Γg.

Given the prior probability Pr(ξ(βg)) for a candidate model, we now have a principled way
to specify a prior distribution on matrix Wg, i.e.,

(6)

3.2 Scale-Invariant Prior Formulation
In practice, it is often desirable that inference results be invariant to linear transformations of
response variables (the g-prior for multiple linear regressions and the conjugate prior
commonly used in the MVLR model both have this property, see also Servin and Stephens
(2007); Wen and Stephens (2011)). To achieve this in the SSMR model, we scale each
element in βg by its corresponding marginal residual standard error (in the MVLR, the
residual standard error for a given regression coefficient is represented as the square root of
the corresponding diagonal element in its residual variance-covariance matrix). More

formally, we define a vector of scale-free standardized effects by , where S is a
diagonal matrix permuted from  to match the order of elements in βg.
(Throughout this paper, we use “⊗” and “⊕” to denote Kronecker product and direct sum of
matrices, respectively). Under this setting, a multivariate normal prior distribution bg ~ N(0,
Ug) induces a normal prior distribution on βg with mean 0 and

(7)

With (7), we are able to handle the desired scale-invariant prior formulation as a special case
of the original scale formulation.

4. Results on Bayes Factors
We derive Bayes factors to facilitate model comparisons and selections in the SSMR model.
At the most fundamental level, Bayes factors enable us to compare the supporting evidence
from observed data for a set of competing models (which are not necessarily nested). In the
case that posterior model probabilities are of direct interest, Bayes factors can typically be
utilized as computational devices in the place of marginal likelihood, which is sometimes
more difficult to compute. In what follows, we discuss the Bayes factors derived from the
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SSMR model, assuming the multivariate normal prior (3) is fully specified. Let H0 denote
the trivial null model, where βg ≡ 0. Then, for an alternative target model characterized by
its prior variance Wg, we formally define a null-based Bayes factor (Liang et al. (2008)) as
follows:

Definition 1: Under the SSMR model, for a positive definite Wg, the Bayes factor is defined
as

(8)

For technical reasons, the above definition requires Wg to be full rank; we will extend this
definition to allow for a singular Wg matrix later in section 4.1.3.

4.1 Analytic Results of Bayes Factors
We start by introducing some necessary additional notation. We use β̂g to denote the
maximum likelihood estimate (MLE) of βg and denote its variance by Vg := Var(β̂g). Under
the SSMR model, both β̂g and Vg have closed-form expressions: β̂g depends only on
observed data  and , while Vg depends on  and ℰ (their explicit functional forms can
be found in Appendix B of the Web Supplementary Materials).

4.1.1 Exact Bayes Factors with Known Error Variances—In the general case of the
SSMR model, when the error variances are considered known, rather than being assigned
priors, the exact Bayes factor can be analytically expressed. We summarize this result in the
following lemma:

Lemma 1: In the SSMR model, if ℰ is known, the Bayes factor in definition 1 can be
analytically computed by

(9)

The derivation of Lemma 1 is mostly straightforward; the details are provided in Appendix
B.1 of the Web Supplementary Materials.

Note 1: The Bayes factor naturally addresses potential collinearity in predictors. In
particular, the evaluation of the Bayes factor does not require the involved design matrices
to be full rank (the details are explained in Appendix C of the Web Supplementary
Materials). As a result, when highly correlated explanatory variables are included in the
model, the Bayes factor can still be stably computed without special computational
treatments.

Note 1 is extremely relevant for genetic applications, where genotypes of many spatially
close genetic variants are often highly correlated.

4.1.2 Approximate Bayes Factors with Unknown Error Variances—In more
realistic settings, error variances are typically unknown and additional integrations with
respect to ℰ are necessary for Bayes factor evaluations. Except for a very few special cases,
the exact Bayes factor generally is analytically intractable. Alternatively, we apply Laplace’s
method to pursue analytic approximations of the Bayes factor. Laplace’s method has been
widely applied in computing Bayes factors in other similar settings (Kass and Raftery
(1995); Raftery (1996); DiCiccio et al. (1997); Saville and Herring (2009); Wen and
Stephens (2011)). In the case of the SSMR model, applying Laplace’s method yields an
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analytic approximation that maintains the exact functional form of (9) – only with the
unknown Σ replaced by an intuitive point estimate. More specifically, ABF substitutes each
Σi ∈ ℰ in (9) with the following Bayesian shrinkage estimate

(10)

where Σ̂i and Σ̃i denote the MLEs of error variances estimated from the residuals under the
target and the null models, respectively, parameters νi and Hi are defined in the inverse-
Wishart prior of Σi, and parameter αi ∈ [0, 1] serves as a tuning parameter and has an impact
on the finite-sample accuracy of the resulting Bayes factor approximations. We further
denote α = (α1, …, αs) and ℰ̌ := {Σ̌1, …, Σ̌s}.

Other relevant quantities in (9) that are functionally related to ℰ include Vg and potentially
Wg (e.g., in the scale-invariant prior formulation). We denote V̌g and W̌g as the
corresponding plug-in estimates of Vg and Wg by ℰ̌.

The result of the approximate Bayes factor is summarized in the following proposition:

Proposition 1: Under the SSMR model, when ℰ is unknown, applying Laplace’s method
leads to the following analytic approximation of the Bayes factor

(11)

It follows that

Proof. See derivation in Appendix B.2 of the Web Supplementary Materials.

As long as α resides in an s-simplex, the above proposition holds. There are two notable
extreme cases concerning the choice of α values:

1. α1 = ⋯ = αs = 1. The resulting ℰ̌ only relates to the MLEs estimated from the

target model, i.e., . Under the usual asymptotic settings,
where ni ≫ p and ni ≫ r and when the mean model is correctly specified,

. By the continuous mapping theorem, it follows that the resulting ABF
almost surely converges to the true value.

2. α1 = ⋯ = αs = 0. Σ̌i only relies on the MLE of Σi estimated from the trivial null

model, i.e., . Indeed, β̂g can also be analytically expressed
as a simple analytic function of the MLEs of the regression coefficients obtained
from the null model. As a result, computing this particular ABF only requires
fitting the trivial null model – a scenario analogous to computing score statistics in
hypothesis testing (the details are further explained in Appendix F.1 of the Web
Supplementary Materials).

Notwithstanding their having the same asymptotic order of error bounds, different α values
affect the accuracy of the approximations in finite-sample situations. To examine the
performance of ABFs with various α values, we carry out numerical experiments with small
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sample sizes. In summary, we find that the resulting ABF with all αi = 1 tends to be anti-
conservative compared with true values (most likely because Σ̂i is prone to overfitting in
these cases), whereas setting all αi = 0 understandably yields conservative approximations.
Interestingly, setting αi = 0.5 for all subgroups gives consistently accurate numerical results
in our simulation setting. Finally, we confirm that as sample sizes grow, all approximations
become increasingly accurate, regardless of α values. The details of the numerical
comparisons and the results are given in Appendix E of the Web Supplementary Materials.

4.1.3 Singular Prior Distributions—To extend the definition of Bayes factors for a
singular Wg, we first define

(12)

where Wg is only required to be positive semidefinite. We then are able to extend definition
1 to include a singular Wg matrix:

Definition 2: Under the SSMR model, for a positive semidefinite Wg, the Bayes factor is
defined as

(13)

This definition is based on the following important intuition: Bayes factors are expected to
vary very smoothly over a continuum of models. This is not only desirable but also critically
important for selecting models consistently when using Bayes factors. We obtain the
following result regarding the existence of the limits:

Proposition 2: For the SSMR model, the limiting Bayes factors in definition 2 are always
well defined, provided that Wg is positive semidefinite.

Proof. See Appendix D of the Web Supplementary Materials.

Proposition 2 directly extends the results of Lemma 1 and Proposition 1 to allow for a
singular Wg matrix. Moreover, when approximating Bayes factors using Laplace’s method,
the functional form of the result remains the same; however, we now compute the MLE of
the unknown Σi for the target model, subject to the linear restrictions imposed by the
singular Wg matrix. The details are explained in Appendix D of the Web Supplementary
Materials.

4.2 Connections to Frequentist Test Statistics and the BIC
Previous studies by Wakefield (2009); Johnson (2005, 2008); Wen and Stephens (2011)
have shown in certain linear model systems (all being regarded as special cases of the SSMR
model) that Bayes factors are linked to commonly used frequentist test statistics. We also
identify approximate Bayes factors for the SSMR model as being connected to the
multivariate Wald statistic and Rao’s score statistic, depending on the choice of α value. The
main consequence of this connection is that under specific prior specifications of Wg, Bayes
factors and the corresponding test statistics yield the same ranking for a set of models.

Bayes factors are also naturally linked to the Bayesian Information Criterion (BIC, Schwarz
(1978)). Under the SSMR model, we show (in Appendix F of the Web Supplementary
Materials) that the BIC can be derived as a very rough (i.e., with error bound O(1) in log
scale) approximation to both the exact and the approximate Bayes factors for most Wg
matrices. Because the BIC is known to be asymptotically consistent as a model selection
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criterion, based on this connection, we conclude that our Bayes factors also enjoy this
property.

A detailed explanation of both connections is given in Appendix F of the Web
Supplementary Materials.

4.3 Bayes Factors of Candidate Models
Based on the results of BF(Wg) and Equation (6), we can compute the Bayes factor of a
given candidate model, ξ(βg), by

(14)

which essentially integrates out the effect sizes of non-zero regression coefficients. In many
genetic applications, it is feasible and effective to model p(Λg | ξ(βg)) by a finite discrete
distribution (Servin and Stephens (2007); Stephens and Balding (2009); Wen and Stephens
(2011)). In these cases, the integration in (14) is replaced by a summation, and the
computation is efficient.

5. Bayesian Model Selection Procedure and the MCMC Algorithm
Based on the results discussed in the previous sections, we are now ready to describe the full
Bayesian model selection procedure based on the SSMR model. Assuming the goal of
inference is ξ(βg), the following prior information is required to be specified in a context-
specific manner:

1. prior distribution in the space of candidate models, Pr(ξ(βg)).

2. injection from ξ(βg) to Γg, i.e., specification of prior qualitative dependence/
independence structures.

3. probability distribution p(Λg | ξ(βg)), i.e., quantification of prior correlation and
marginal variance specified in Γg.

Then, based on Equation (14) and relevant discussions on Bayes factor computations, it is
straightforward to perform full Bayesian model selection under the general SSMR model. If
the number of the candidate models, 2rps in total, is computationally manageable, we can
enumerate all possible models and evaluate their posterior probabilities directly. However,
in most practical settings, the candidate model space is enormous, we then need the MCMC
algorithm to efficiently traverse the model space.

For the sake of simplicity but without loss of generality, we give a detailed description of a
particular version of this algorithm for the commonly used MVLR model in Appendix H of
the Web Supplementary Materials. Aided by a novel proposal distribution proposed by Guan
and Stephens (2011), we observe that the implemented Markov chain achieves fast mixing
and generates accurate results even in very high-dimensional settings. The performance of
the algorithm is demonstrated through simulations and real data applications in sections 6
and 7.

6. Simulation Studies
We perform simulation studies to examine and demonstrate the performance of the proposed
Bayesian methods in a variety of settings. In these simulations, we focus on the scenario of
mapping eQTLs across a handful of tissue types using a common set of individuals, which is
best described by an MVLR model with large p (number of candidate genetic variants),
small n (sample size), and small r (number of tissue types) values. Moreover, we allow each
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covariate (SNP) to have different (zero or non-zero) effects in r subgroups (tissues);
however, within a covariate, we simulate a scenario in which non-zero effects across
subgroups are highly correlated.

6.1 Simulation Settings
We create two simulation settings that differ in the generation of covariates. In the first
setting, we simulate p = 250 independent covariates for n = 100 unrelated individuals. The
causal SNPs (i.e., the covariates that are associated with the phenotype in at least one of the
r subgroups) are independently assigned by a Bernoulli(0.03) distribution. In the second
setting, we focus on correlated covariate data. More specifically, we take real SNP genotype
data from 100 Caucasian samples of the 1000 Genomes project. We select 105 genomic
regions across chromosome 22 that average 30 kb in size. The two consecutive regions are
approximately 300 kb apart, and within each region, we select 15 SNPs whose minor allele
frequencies are greater than 5%. Between and within these genomic regions, the genotypes
present various degrees of spatial correlations (also known as linkage disequilibrium, or
LD). In this setting, the regions harboring causal SNPs are assigned by a Bernoulli(0.03)
distribution, and we randomly assign a single causal SNP within the selected region.

Given the covariate data, we simulate quantitative (gene expression) phenotype data in r = 3
subgroups (tissue types) for each individual using the following scheme. For each SNP, we
represent its binary association states by an r-vector (e.g., γ = (100) indicates a causal and
tissue-specific eQTL for which association only presents in the first tissue type), and
collectively, {γi : i = 1, …, p} represents the true ξ(βg). We randomly assign each causal
SNP a non-zero configuration according to a discrete distribution. More specifically, among
seven possible non-zero configurations, γ = (111) is assigned a probability of 0.50, and the
others are assumed equally likely (i.e., with probability 1/12 each), conditioning on γ ≠
(000). This distribution is motivated by the observation from the real multiple-tissue eQTL
data, where most identified eQTLs are found to have consistent effects in all tissues. For
each simulated γ ≠ (000), we first generate a mean effect from β̄ ~ N(0, 1); then, non-zero

genetic effects are subsequently drawn from . With this procedure, the
nonzero βs for a causal SNP across tissues are highly correlated, albeit with some non-
negligible heterogeneity. Finally, the residual errors for each individual are independently
simulated from a multivariate normal distribution, e ~ N(0, Σ), with

 prefixed. We generate 200 and 500 data sets for simulated
independent and real correlated genotypes, respectively.

6.2 Bayesian Model Selection
We perform inference on the binary indicator vector ξ(βg). We assume that genetic effects
are a priori independent across SNPs but correlated among tissues within a single covariate
if they are non-zero. This prior relationship is precisely formulated by an injection:

, and the factorization of prior probability, .

In all cases, we assume the default prior probability Pr (γ = (000)) = 0.99 for each covariate,
which encourages an overall sparse ξ(βg). By default, all possible non-zero configurations

for γ are assigned with equal prior probability, .
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To specify the distribution Λg | ξ(βg), we follow Wen and Stephens (2011); Flutre et al.
(2013) and model the joint prior distribution of a pair of non-zero effects within a covariate

by a multivariate normal , where parameter ϕ
describes the prior heterogeneity of the effects, and parameter ω characterizes the magnitude
of the average prior effect, and the prior correlation between the pair can be computed by
ω2/(ω2 + ϕ2) (details explained in Appendix A.3 of the Web Supplementary Materials).
Furthermore, instead of fixing a single (ϕ, ω) value for all covariates, we assume that (ϕi, ωi)
for covariate i is independently and uniformly drawn from the following set

where the various levels of ω values cover a range of potentially small, modest, and large
average effects and the relatively small ϕ value quantifies our prior belief of low
heterogeneity across non-zero effects. It is worth emphasizing that even with a single grid
value, the prior would allow for a range of actual effect sizes, and multiple grid points
(which form a mixture normal distribution) are helpful for describing a longer-tailed
distribution of effect size. It should also be noted that all the priors we use in the inference
are different from the true generative distributions used in the simulations.

For likelihood calculation of a given ξ(βg), we compute a Bayes factor (14) in which
BF(Wg) is approximated by ABF(Wg, α = 0.5). We use the MCMC algorithm described in
section 5 to conduct posterior inference.

For simulated independent genotype data, we use the posterior inclusion probability of each
SNP configuration to assess its relative importance. In the case of correlated covariate data,
it might not be plausible to identify the true association based on observed data (e.g., in a
scenario in which multiple covariates are perfectly correlated). Therefore, we focus on
assessing the importance of preselected genomic regions and compute the posterior
probability that a given region harbors a genetic variant with particular configurations.
These quantities are computed by combining SNP-level posterior inclusion probabilities and
posterior model probabilities using the inclusion-exclusion principle.

6.3 Methods for Comparison
We compare our Bayesian model selection method (BMS) with two other methods: single
variable analysis, which examines one covariate at a time while accounting for the subgroup
structure (Wen and Stephens (2011); Flutre et al. (2013)), and the regularized regression
approach LASSO (Tibshirani (1996)).

The single variable procedure can be viewed as a special case of the general MVLR model
with p = 1. For each SNP, we compute the single-SNP posterior probability of each
configuration based on the corresponding ABF values and use it to assess the importance of
each SNP configuration. For the real genotype data, we analyze one region at a time and
further compute a regional posterior probability based on single-SNP Bayes factors,
assuming at most one causal SNP in a region, a method described in (Servin and Stephens
(2007); Flutre et al. (2013)).

We center the phenotype data and apply the LASSO procedure to estimate βg by
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(15)

where I is the r × r identity matrix and λ is the tuning shrinkage parameter. If λ is
sufficiently large, LASSO produces sparse estimates of βg; whereas, if λ is set to 0, the
solution becomes the usual least squares estimate/MLE for the MVLR model. Given a
particular λ value, for the simulated independent genotype data, we identify the true and
false positives of non-zero βg estimates; whereas, for the real genotype data, following Guan
and Stephens (2011), we further denote that a region is positively identified if any SNP
within that region is selected by LASSO. We then record the full solution paths from
LASSO for a range of λ values using the lars package (version 1.1) implemented in R.

6.4 Simulation Results
In both simulation settings, we represent the results in Figure 1 by plotting curves of the
trade-off between true and false positives from all three experimental methods. Each point
on the curve is obtained by accumulating true and false positives across independent
simulated data sets using a common threshold (either of the posterior inclusion probability
or the shrinkage tuning parameter) within a method. In both simulation settings, the
Bayesian model selection method (BMS) always yields as many or more true positives than
the other comparable methods for any given false-positive value.

Many previous publications have reported that multivariate methods are superior to single-
variable analysis in selecting candidate variables in multiple linear regression models. We
observe that a similar pattern also holds for multivariate linear regressions in our simulation
settings. Guan and Stephens (2011) provide some very intuitive explanations for the
superiority of multivariate methods vs. single-variable methods, even when covariates are all
independent. Their arguments also naturally apply in our context. Although this result is
largely expected, it serves as a reassuring sanity check that our implementation of the
MCMC algorithm is fast mixing in this nontrivial setting (one could expect that a poor-
mixing Markov chain would yield results inferior to those obtained from a single-variable
analysis).

We conduct additional simulations to investigate the performance difference between BMS
and LASSO. First, we observe that the accuracy of LASSO is affected by correlated error
structures characterized by Σ, which is not accounted for in (15). Similar observations also
have been made by Rothman et al. (2010). Second and more importantly, BMS utilizes
additional correlation information on effect sizes within a single covariate through priors,
whereas LASSO does not. We provide the details of these additional simulations and their
results in Appendix I of the Web Supplementary Materials.

Finally, we notice that BMS performs in a stable manner even when covariate data are
(highly) correlated, while LASSO greatly underperforms in such a setting.

7. Real Data Application
We apply the Bayesian model selection method to map eQTLs across multiple tissues on a
real data set originally published by Dimas et al. (2009). In this experiment, the investigators
genotyped 75 unrelated western European individuals. Expression levels from this set of
individuals were measured genome-wide in primary fibroblasts, Epstein-Barr virus-
immortalized B cells (LCLs), and T cells. The expression data went through quality control
and normalization steps by the original authors, and we further select a subset of 5,011 genes
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that are highly expressed in all 3 cell types and perform additional quantile-normalizations
for each gene in each cell type. For demonstration purposes, we map eQTLs for each gene
separately and narrow the search for eQTLs in the cis-region (i.e., the coding region and its
close neighborhood) of each gene (note, this is also the strategy adopted in the original
publication).

The setting of this data set is similar to that of our simulations. We use the MVLR model
described in section 6.2 to jointly infer the association states of all cis-SNPs in three cell
types for each selected gene. More specifically, we assume the following independent priors

for each SNP: Pr(γ = (000)) = 0.99, , and the rest of the six possible

tissue-specific configurations are assigned probability mass  each. This prior
setup reflects our prior beliefs that the vast majority of cis-SNPs are not eQTLs and that
among eQTLs, most are likely to behave in a tissue-consistent manner. Finally, we use the
same prior distribution of p(Λg | ξ(βg)) described in section 6.2.

Remark 1. It is important to note that genome-wide expression-genotype data are typically
informative about the distributions of configurations of γ and effect-size grids in L. In other
words, those distributional parameters can be effectively estimated by pooling information
across all genes using a hierarchical model approach (Veyrieras et al. (2008); Flutre et al.
(2013)). In fact, the hyperparameters we select here are closely related to the estimations
from fitting such a hierarchical model; however, these details are not our focus in this paper.

We apply the MCMC algorithm described in section 6.2 to the set of 5,011 selected genes.
We identify 510 “eQTL genes” whose inferred best posterior model contains at least one
candidate cis-SNP. In total, 539 eQTLs are identified from this set of the best posterior
models, and 382 are inferred as tissue-consistent. Using the posterior maximum probability
models, we are also able to confidently identify 28 genes with multiple cis-eQTLs
accounting for linkage disequilibrium (LD), suggesting the involvement of multiple
regulatory elements in transcriptional regulation processes.

One of the unique advantages of our Bayesian method is its ability to perform fine mapping
on interesting genomic regions harboring true causal eQTLs. We demonstrate this feature
through the analysis of gene C21orf57 (HGNC symbol YBEY, Ensemble ID
ENSG00000182362). From a total of 236 cis-SNPs, our Bayesian analysis identifies three
genomic regions centered around SNPs rs12329865 and rs2839265 and a SNP pair in
perfect LD (rs2839156, rs2075906). The best posterior models consist of one SNP from
each region, and the three regions have marginal posterior inclusion probabilities of 0.66,
0.38, and 0.89, respectively. More interestingly, our results suggest that the three distinct
eQTL regions have completely different tissue activity configurations. We summarize these
results in Table 1. We further examine the effect sizes of the identified signals in each cell
type separately, and the results (shown in appendix J of the Web Supplementary Materials)
are strongly consistent with the conclusions of our tissue specificity inference.

As a comparison, we also applied the remMap method (Peng et al. (2010), R
implementation version 0.10) to the genotype-expression data of the gene C21orf57. The
remMap method implements a penalized multivariate regression algorithm which assumes
the same MVLR model. There are two tuning parameters required by the remMap method:
one controls the sparsity of ξ(β) and the other controls the sparsity of the residual error
variance matrix. These two parameters are selected using a BIC procedure implemented in
the R package. In the end, remMap does not select any eQTLs. Given the strength of the
signals identified by the Bayesian procedure and the results from the single SNP analysis,
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this is a little surprising. Nevertheless, we noted in a similar context of mapping eQTL for
mutiple genes, Scott-Boyer et al. (2012) also observed this overly conservative behavior of
the remMap method. We suspect that the non-trivial LD patterns presented in the SNP data
might be one of the contributing factors here. As Peng et al. (2010) noted, complex
correlation structures in predictors lead to the remMap procedure selecting very small
models. In addition, like the LASSO procedure, the remMap method does not utilize the
correlation information on eQTL effect sizes across tissues.

To refine the identified genomic regions and rule out potential spurious associations
identified with low-density SNPs, we perform genotype imputation to obtain additional
genotypes of untyped SNPs using the 1000 Genome European panel and software package
IMPUTE v2 (Howie et al. (2009)). In the end, we accumulate genotypes from 4797 SNPs,
roughly a 20-fold increase, for the same cis-region. We rerun the MCMC algorithm on the
imputed data set and plot the marginal posterior inclusion probabilities of top-ranked SNPs
according to their genomic positions and inferred configurations in Figure 2. The plot
clearly indicates three adjacent however distinct genomic regions with a much improved
resolution. We note that although the individual SNP inclusion probabilities decrease
significantly from the previous analysis, the inclusion probabilities of the three regions all
increase in some degree: the probability of the LCL only eQTL region increases from 0.66
to 0.68, the probability of the consistent eQTL region increases from 0.89 to 0.95 and the the
probability of the Fibroblast only eQTL region increases from 0.38 to 0.61. Figure 2 also
shows SNP genotypes are highly correlated within each region, and it is impossible to
distinguish the true causal variants based on association analysis. Therefore, it seems only
logical to report interesting regions rather than individual variants in such settings.

8. Discussion
The general statistical problem we have considered in this paper is related to the problem of
structured variable selection. Our Bayesian approach provides a general framework to
specify both group structures (through Pr(ξ(βg))) and prior correlations on non-zero effects
(through p(Λg | ξ(βg))) in a hierarchical fashion. Compared with regularization-based model
selection methods such as group LASSO (Yuan and Lin (2006)) and fused LASSO
(Tibshirani et al. (2005)), our method is more flexible and conceptually easier to apply. For
example, in the multiple-tissue eQTL mapping example, the association patterns within a
SNP across multiple tissues are rather complex; neither group LASSO (which encourages
the whole group to be selected) nor sparse group LASSO (which encourages only a few
members in the group to be selected) is suitable in this context.

One of our main contributions in this paper is the results involving Bayes factors. Although
we have focused mostly on model selection, our novel results can be directly applied to
hypothesis-testing settings (e.g., in gene-based genetic association testing). It should be
noted that although we have described our results exclusively assuming quantitative
Gaussian response variables, our results can be naturally extended to the generalized linear
models. We give a brief argument for this extension in appendix G of the Web
Supplementary Materials.

Our simulations and data application both focus on the problem of mapping eQTLs across
multiple tissues. We note that although many sophisticated statistical methods have been
developed for mapping multiple (cis and trans) eQTLs (Scott-Boyer et al. (2012); Xu et al.
(2009)), almost none of them considers the mapping problem in a multiple-tissue context.
As shown by Flutre et al. (2013) and Ding et al. (2010), naively applying single tissue
mapping method one tissue at a time not only lacks of power in detecting tissue-consistent
eQTLs but also can be dangerous in inferring tissue-specific eQTLs. Our statistical
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framework naturally fills this gap. The SSLR model can be naturally applied to the fine-
mapping problem in genetic association meta-analysis. Furthermore, a prior requiring
genuine association signals to display low within-group heterogeneity seems most
appropriate in this context.

In our examples, we deal with relatively small r value by using a non-informative inverse-
Wishart prior. It should be noted that our Bayes factor results can be applied in the situation
where r is also high dimensional. In principle, a strong and informative prior on Σ is
sufficient (see Equation (10)). However in practice, constructing a reasonable and strongly
informative prior for a covariance matrix in high-dimensional is challenging and the context
of the applications should always be carefully considered. A useful statistical technique in
specifying the inverse-Wishart prior in high dimensional settings is to utilize its connection
to Gaussian graphical models (Dawid and Lauritzen (1993); Carvalho and Scott (2009))
which can be extremely helpful to systematically describe the complex relationships among
a large number of variables.

Finally, although we have demonstrated our approach exclusively in the genetic/genomic
context, the statistical approaches presented in this paper are general enough to apply to
model selection problems in other contexts, such as graphical model inference and Bayesian
causal inference, to name a few examples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plots of the trade-offs between true positives and false positives for all three compared
methods in two simulation settings. Panel A is based on simulated independent covariate
data, and Panel B shows the results for correlated covariate data taken from real genotypes.
In both cases, the proposed Bayesian model selection method (BMS) achieves superior
performance. LASSO seems to severely underperform when covariates are correlated.
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Figure 2.
eQTL fine-mapping for gene C21orf57 with a dense SNP set. The top panel plots SNPs with
marginal posterior inclusion probabilities ≥ 0.01. The different symbols indicate the
different activity configurations of potential eQTLs. The ticks on the X-axis label the
positions of interrogated SNPs (genotyped and imputed) in this region. Three distinct
genomic regions that harbor three different eQTLs with different tissue configurations can
be clearly identified from the plot. The inferred high posterior probability models typically
contain one SNP from each of the three regions. The bottom panel displays the correlations,
measured by r2, between the SNPs plotted in the top panel (produced by R package
LDheatmap). It should be clear that genotype correlations within each identified genomic
region are quite high, and between the regions, the SNPs are much less correlated.
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Table 1

Potential eQTLs identified by the Bayesian model selection procedure using only genotyped SNPs. Genotypes
of SNPs rs2075906 and rs2839156 are highly correlated. The two models [rs12329865, rs2075906,
rs2839265] and [rs12329865, rs2839156, rs2839265] have the highest posterior model probabilities (0.200
and 0.204, respectively).

SNP Position Configuration Posterior inclusion prob.

rs12329865 chr 21:47583506 LCL only 0.662

rs2075906 chr 21:47625544 consistent 0.447

rs2839156 chr 21:47641196 consistent 0.444

rs2839265 chr 21:47867318 Fibroblast only 0.378
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