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Summary
Trial investigators often have a primary interest in the estimation of the survival curve in a
population for which there exists acceptable historical information from which to borrow strength.
However, borrowing strength from a historical trial that is non-exchangeable with the current trial
can result in biased conclusions. In this paper we propose a fully Bayesian semiparametric method
for the purpose of attenuating bias and increasing efficiency when jointly modeling time-to-event
data from two possibly non-exchangeable sources of information. We illustrate the mechanics of
our methods by applying them to a pair of post-market surveillance datasets regarding adverse
events in persons on dialysis that had either a bare metal or drug-eluting stent implanted during a
cardiac revascularization surgery. We finish with a discussion of the advantages and limitations of
this approach to evidence synthesis, as well as directions for future work in this area. The paper’s
Supplementary Materials offer simulations to show our procedure’s bias, mean squared error, and
coverage probability properties in a variety of settings.
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1. Introduction
Post-market device surveillance trials often have a primary interest in the estimation of the
survival curve for various subgroups in a population for which there exists acceptable
historical information as defined by Pocock (1976, p.177). Acceptable historical information
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may arise from previous phases in a trial setting, or in a database with information about an
experimental treatment in a seemingly exchangeable population. Borrowing strength from
acceptable historical data promises to facilitate greater efficiency in the investigation
process, especially with small sample sizes. However, assuming exchangeability between
data from historical and current sources ignores potential unexpected differences, risking
biased estimation of concurrent effects. When historical information is used for the purpose
of improving efficiency in a current population, inference should derive from flexible
statistical models that account for inherent uncertainty while increasingly favoring the
current information as evidence for between-source heterogeneity arises. In contrast, models
for inference on population averaged effects, such as a meta-analytic review of non-
exchangeable current and historical sources, need not favor one source over another since
between-source effects are of interest.

One setting that is frequently accompanied by historical information is that of post-market
surveillance. In fact, a recent FDA guidance document encourages borrowing strength from
previous phases or large external databases in the post-market surveillance setting (Center
for Devices & Radiological Health, 2010). Post-market surveillance studies generally
commence after pivotal trials (used to gain regulatory approval), and are often concerned
with improving the precision of an estimate of safety beyond what was seen in the pivotal
trial data, and comparing this with that of an established treatment option. The safety
measure might be the percentage of patients experiencing a serious adverse event associated
with the product within the first year of use. On the one hand, we would like to get as
precise an estimate as possible of the occurrence of serious adverse events over time by
using the maximum amount of available data. On the other hand, the broad population of
patients and physicians using the new product after it has been approved might differ
markedly from the narrow population of physicians and patients that took part in the earlier
pivotal trial. Additionally, the population receiving the standard of care is likely changing
over time as the novel intervention popularizes and disease management practices evolve.
What is needed is an objective means of evidence synthesis for combining the data from
both sources, to produce a fair and accurate safety estimate that is appropriate for both
current and future populations.

Currently, there exist very few highly flexible methods for combining non-exchangeable
current and historical survival data. Plante (2009) develops a weighted Kaplan-Meier
estimator to borrow strength across non-exchangeable populations, though it is not clear
how an investigator should specify the control parameters that non-trivially impact the
resulting estimate. Another approach is the highly flexible power prior framework discussed
in Ibrahim et al. (2001, p.24). The power prior approach assumes that the two sources of
data are exchangeable, and constructs a prior by down-weighting the historical likelihood
contribution using a weight estimated by empirical or fully parametric Bayes. This approach
satisfies certain optimality properties, however it often requires burdensome computational
requirements in the development of the Markov chain Monte Carlo (MCMC) sampling
algorithms due to the weighted historical likelihood term, rendering it impractical for wider
consumption (Ibrahim et al., 2003). Hobbs et al. (2012) extend Pocock (1976) to develop a
“commensurate prior” framework for generalized linear mixed models that accommodates
non-exchangeable sources, but in the context of the often insufficiently flexible parametric
Weibull survival model. Hobbs et al. (2013) extends this framework to the flexible
piecewise exponential model, but they employ an independent gamma prior process on the
hazard pieces that, as discussed by Ibrahim et al. (2001, Section 3.1), restricts the number of
hazard pieces that can be estimated reliably. Here we increase the flexibility of a piecewise
exponential commensurate prior approach by implementing a correlated prior process
(Ibrahim et al., 2001, Section 3.1), but doing so substantially complicates the formulation. In
contrast to power priors, our method jointly models current and historical data assuming the
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two sources are non-exchangeable. Furthermore, our method is fully Bayesian and can be
readily implemented in standard software, such as JAGS (Plummer, 2003) or OpenBUGS
(Lunn et al., 2009). As such, our novel method should provide investigators with a choice
that is more general yet also more practical than similar methods already developed.

The pair of datasets we use to illustrate our method contain information about Medicare
patients on dialysis that had either a bare metal stent (BMS) or a drug-eluting stent (DES)
implanted during their incident in-hospital percutaneous coronary revascularization between
2008 and 2009 (Shroff et al., 2013). The endpoint considered is a composite of time to a
second in-hospital cardiac revascularization or death, with follow up lasting through
December 31st, 2010. We are interested in comparing the survival distributions in the small
sub-population of persons on peritoneal dialysis (PD) with BMS versus DES placement
during 2009, while borrowing strength from persons on PD with BMS placement during
2008. The two cohorts were constructed retrospectively from the USRDS (United States
Renal Data System, 2011). Persons undergoing these procedures and their endpoints were
determined from inpatient, outpatient, or Part B Medicare claims. Eligible persons must
have initiated dialysis at least 90 days prior to revascularization to ensure the necessary
Medicare claims would be captured in the USRDS. Follow-up times are censored for
persons that received a kidney transplant or were lost to follow up. The baseline covariates
collected at the time of revascularization are race, age, time since onset of end-stage renal
disease (ESRD), and primary cause of ESRD.

Before we apply our methods to the heart stent data, we develop semiparametric statistical
methods for automatically incorporating both historical and current information for survival
analysis while allowing possibly different model parameters in each source. Specifically,
Section 2 develops a semiparametric Bayesian Cox-type survival model using a piecewise
exponential baseline hazard with a correlated prior process, time dependent covariate
adjustment, and commensurate priors to jointly model current and historical data. In Section
3 we illustrate the mechanics of our methods by applying them to the heart stent data, both
with and without covariate adjustment. Finally, Section 4 discusses potential extensions for
joint models of current and historical survival data.

2. Piecewise Exponential Commensurate Prior Model
We approach the problem of having current and historical data by developing statistical
methods that jointly model the two sources of data. Specifically, we develop a fully model-
based Bayesian method that relies on flexible piecewise exponential likelihoods with
correlated prior processes, time dependent covariate adjustment, and commensurate priors to
facilitate borrowing of strength from the historical data. A commensurate prior distribution
centers the parameters in the current population likelihood on their historical counterparts,
and “facilitates estimation of the extent to which analogous parameters from distinct data
sources have similar (‘commensurate’) posteriors” (Hobbs et al., 2013). Commensurate
priors borrow strength from historical data in the absence of strong evidence for between
source heterogeneity.

Following the notation used in Hobbs et al. (2011), we let L(θ, θ0|D, D0) denote the joint
likelihood for the current and historical data. We assume the current and historical data are
independent conditional on their associated parameters, that is L(θ, θ0|D, D0) = L(θ|D)L(θ0|
D0). The first term in the product denotes the current likelihood, whereas the second term
denotes the historical likelihood, with θ and θ0 denoting the parameters that characterize the
current likelihood and historical likelihoods, respectively.
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Typically, the components of θ have parallel components in θ0, although θ may contain
components without a parallel in θ0. For example, when a subset of the current population is
exposed to some novel treatment, θ will contain an element that characterizes the novel
treatment effect and has no counterpart in θ0. As such, we decompose these parameters into
the following components θ = (α, β, γ), where α characterizes the baseline hazard, β
characterizes the effect of baseline covariates observed in both data sources, and γ
characterizes the effect of exposures only observed in the current data. We also let θ0 = (α0,
β0), where α0 and β0 are defined analogously to α and β, respectively.

2.1 Likelihood
To maintain flexibility in a time to event setting, we avoid fully parametric specifications of
L(θ|D) and L(θ0|D0). We instead use a generalized Cox-type model that assumes a
semiparametric piecewise exponential formulation of the baseline hazard, with possibly time
dependent covariate adjustment. The generalized distinction refers to the possible time
dependencies in the regression coefficients, with proportional hazards being a special case
when the regression coefficients are held constant over time. In practice, the piecewise
exponential baseline hazard formulation with a vague prior process is a flexible and broadly
applicable choice that provides regression coefficient estimates similar to the Cox model
(Kalbeisch, 1978; Ibrahim et al., 2001, Section 3.4). Thus, it provides a useful choice when
an investigator does not feel confident in any particular parametric form of the hazard, even
if the underlying hazard is believed to be smooth.

To specify a piecewise exponential baseline hazard we first partition the time axis into K
intervals, (0, κ1], (κ1, κ2], …, (κK−1, κK], 0 = κ0 < κ1 < … < κK, with κK equal to the
maximum observation time in the current dataset. We next assume the baseline hazard in
each interval is constant, so that the baseline hazard function is given by h*(t;α) = exp(αk)
for t ∈ Ik = (κk−1, κk]. We adjust the baseline hazard for covariates X and Z in the following
manner, h(t;α, β, γ, X, Z) = h*(t;α) exp(X′βk + Z′γk) = exp(αk + X′βk + Z′γk) for t ∈ Ik (cf.
Ibrahim et al., 2001, Section 3.4). To simplify prior specification later, we distinguish
between X, the baseline covariates with historical counterparts that correspond to parameters
β, and Z, the baseline exposures only observed in the current data that correspond to
parameters γ. Note that the coefficients may be time dependent, since they are allowed to
change across the time axis partition. Taking βk ≡ β or γk ≡ γ results in a proportional
hazards model. For the remainder of this document, we take βk ≡ β, and assume Z is
univariate while allowing for time dependencies (i.e., γk).

For this setting, D = (y, δ, x, z) consists of possibly right censored observations and baseline
covariates. Here y = (y1,…,yn) is the set of follow up times, δ = (δ1,…,δn) is the

corresponding set of event indicators,  are the baseline covariates observed
in both data sources, and z = (z1,…,zn) are indicators for a novel treatment only observed in
the current data. Following Klein and Moeschberger (2003, Section 3.5), the likelihood for a
set of possibly right censored observations can be formulated as:

Letting α = (α1,…,αK) and plugging in the piecewise exponential with generalized Cox-type
covariate adjustment formulation of h(t; θ, x, z) = h*(t;α) exp(x′β + zγk) for t ∈ Ik, we can
rewrite the likelihood function for the current population as
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(1)

where  and I(yi ∈ Ik) is an indicator function. We retain the same time
axis partition to model the historical data, D0 = (y0, δ0, x0) where y0 = (y0,1,…,y0,n0), δ0 =

(δ0,1,…,δ0,n0), and . By retaining the same time axis partition, we just
replace (D, α, β) in (1) with its historical counterpart (D0, α0, β0) and omit ziγk from μik to
obtain L(θ0|D0).

Conducting a simulation study of our procedure’s properties requires an automated strategy
for a time axis partition that is computationally feasible but still provides consistently good
model fit. To avoid computationally intensive methods like adaptive knot selection (Sharef
et al., 2010) or AIC optimization (Hobbs et al., 2013) for constructing a time axis partition,
we partition the time axis into a relatively large number of intervals with approximately
equal numbers of events in each. To resist overfitting, a correlated prior process is used to
smooth the baseline hazard functions (Besag et al., 1995; Fahrmeir and Lang, 2001). This
method has been shown to work well when the underlying baseline hazard is continuous,
and exhibit robustness against small shifts in the κk’s (Ibrahim et al., 2001, p.48). Formally,

we employ the following time axis partition strategy: let  where r is

the total number of events in the current population, and let  percentile of the
current event times, k = 1,…,K, with κ0 = 0. This strategy is motivated by the spline
literature (cf. Ruppert et al., 2003, p.126) and a similar strategy is used by Sharef et al.
(2010). In practice, a model should be fit with a few different choices of K to assess
sensitivity and to ensure K is large enough. Inference under excessively small K risks failure
to account for potentially important temporal features.

2.2 Priors
The other key aspect of this fully Bayesian approach is the choice of prior distributions. The
likelihood contains parameters α and α0 that characterize the current and historical
populations’ baseline hazards, respectively. It also contains parameters β and β0 that adjust
the baseline hazards for baseline covariates. Finally, it contains parameters γ that adjust the
current population’s baseline hazard for exposures only observed in the current population.
In what follows, we use the same distributional notations throughout, where (μ, τ) denotes
a normal distribution with mean μ and precision τ, and (a, b) denotes an uniform
distribution with positive support on the interval (a, b).

The Bayesian framework affords the ability to construct a prior that hierarchically connects
the two sources of data through their parallel parameters. To do so, we extend the
commensurate prior approach described in Hobbs et al. (2011, Section 2), which constructs
π(θ|D0, τ) by integrating the product of three components over the historical parameters: the
historical likelihood L(θ0|D0), a non-informative prior on the historical population parameter
π0(θ0), and a commensurate prior π(θ|θ0, τ) which centers the current population parameter
at its historical counterpart and facilitates inter-source smoothing through the additional
parameters τ. Formally,

(2)
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Here we consider L(θ0|D0) in (2) to be a part of the likelihood, not a component in the prior.
This minor discrepancy means that our proposed method is interpreted as a joint model for
the two sources of information, whereas commensurate priors Hobbs et al. (2011) and power
priors Ibrahim et al. (2001) are interpreted as methods for constructing an informative prior
from historical data. Regardless, the motivation does not change for the commensurate prior
in (2), π(θ|θ0, τ), which still facilitates the borrowing of strength from historical data.

In what follows, we motivate our prior choices for π0(θ0) and π(θ|θ0, τ). Since π0(θ0)
represents the prior that would be used in an analysis of the historical data on its own, it will
often be vague. Therefore, we assume the parameters that characterize the historical baseline
hazard are a priori independent of the regression coefficients, i.e., π0(θ0) = π0(α0)π0(β0).

We further assume  with β0,p ~ (0, 10−4), p = 1,…,P where P is the
number of columns in x. We adopt a correlated prior process for π0(α0) = π0(α0|η0)π0(η0)
that introduces an intra-source smoothing parameter η0 and is described in Fahrmeir and
Lang (2001) and Ibrahim et al. (2001, Section 4.1.3). Specifically, we use a first order
random walk prior process on the log-hazards, defined as

(3)

As noted in Fahrmeir and Lang (2001), the diffuse prior on α0,1 initializes the random walk,
and the remaining hazards are then shrunk toward the hazard in the previous interval by the
intra-source smoothing parameter η0, which effectively temporally smooths the baseline
hazard function  and resists overfitting, a danger when K is relatively large. We opt

for a vague uniform prior on the standard deviation scale, taking , having
investigated other non-informative options and finding posterior estimation to be fairly
insensitive to π0(η0). This choice allows the data to primarily inform the amount of intra-
source smoothing across intervals. A large number of other correlated prior processes have
been explored for piecewise exponential models; many alternatives can be found in Ibrahim
et al. (2001, Sections 3.5–7). There are also a number of options for specifying η0: Ibrahim
et al. (2001, Section 4.1.6) discuss strategies for choosing a particular value, whereas
Fahrmeir and Lang (2001) and Besag et al. (1995) add another level to the hierarchy,
specifying a hyperprior π(η0) as we do here.

Our choice for π(θ|θ0, τ) needs to facilitate borrowing of strength from the historical data.
Again we assume the parameters that characterize the current baseline hazard are a priori
independent of the regression coefficients, i.e., π(θ|θ0, τ) = π(α|α0, τα, η)π(β, γ|β0, τβ). We

further assume . When allowing for time
dependencies in γ we use a random walk prior process as in (3), otherwise we assume γ ~ 
(0, 10−4). The former choice adds an additional smoothing parameter, ξ, which we model as
uniform on the standard deviation scale, ξ−2 ~ (0.01, 100). In order to borrow strength
from the historical data, we employ location commensurate priors for βp|β0,p, τβp, p = 1,
…,P. Formally, we assume βp|β0,p, τβp ~ (β0,p, τβp), and place a “spike and slab”
distribution on τβp, p = 1,…,P developed by Mitchell and Beauchamp (1988) and applied by
Hobbs et al. (2012). The “spike and slab” distribution is defined as,

(4)
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where 0 ≤ l ≤ u < ℛ and 0 ≤ p0 ≤ 1. This distribution is uniform between l and u with
probability p0 and concentrated at ℛ otherwise. Hobbs et al. (2012) show that the spike and
slab family of distributions offers a flexible framework for estimating the commensurability
parameters (i.e., τβp’s) through information that is supplied by the data about these precision
components. The interval, ( l, u), or “slab”, is placed over a range of values
characterizing strong to moderate levels of heterogeneity. The “spike”, ℛ, is fixed at a point
corresponding to practical homogeneity. The hyperparameter, p0, denotes the prior
probability of that τ is in the slab.

For π(α|α0, τα, η), we devise a flexible prior distribution that is amenable to evidence of
heterogeneity with the historical information, favoring the concurrent information in the
presence of incongruence while still temporally smoothing the hazards in adjacent intervals.
We extend the commensurate prior employed in Hobbs et al. (2013) to

(5)

for k = 2,…,K, where ℛα is the “spike” from the prior placed on τα discussed below. Note
that we use only one τα, which reduces model complexity and ensures that inter-source
homogeneity is defined with respect to congruency over the entire baseline hazard curve,
rather than case-by-case for each interval. Here η controls the intra-source smoothing of the
current hazard function across adjacent intervals. Taking the fully Bayesian approach, we let
η−2 ~ U(0.01, 100), again having investigated other non-informative options and finding
posterior estimation to be fairly insensitive to π(η).

We place a “spike and slab” distribution defined in (4) on the inter-source smoothing
parameter τα. With u << ℛα, when τα = ℛα we see that (5) directly facilitates inter-source
hazard smoothing; otherwise, (5) still facilitates intra-source smoothing on the current
hazard, as in (3). With no covariates, taking τα = ℛα = ∞ results in full borrowing from the
historical data with estimation driven by the piecewise exponential model, where π(α|η) is
given by (3) and π(η) is unaffected. Alternatively, taking τα = l = 0 results in ignoring the
historical data completely. The former method assumes exchangeability a priori, ignoring
the possibility of non-exchangeable sources, while the latter assumes complete
heterogeneity, effectively discarding the historical data.

3. Dialysis Patient Heart Stent Application
We now apply our methods to data constructed retrospectively from the United States Renal
Data System (2011) on heart stent placements in PD patients undergoing their first in-
hospital percutaneous coronary revascularization. The USRDS was used to identify 119 PD
patients with BMS placement and 159 with DES placement between 2008–2009. Recall, the
outcome of interest is a composite endpoint of time to a second revascularization or death,
with follow up through December 31st, 2010 (Shroff et al., 2013). Naturally, we consider
the 2008 cohort to be the historical data, and the 2009 cohort to be the current data. Based
on the demographic characteristics in Table 1, the 2008 BMS cohort is older and slightly
more white than the other three cohorts, but all four cohorts are relatively similar.
Nevertheless, there may always exist unobservable sources of heterogeneity that are the
accumulation of small changes in the population and underlying disease management
practices over time. Thus, even if we adjust for all observable sources of heterogeneity, there
may still be unexplained heterogeneity between the two sources of data. Our method will
borrow more strength when there is little evidence of inter-source heterogeneity that cannot
be explained by the covariates.
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We begin by illustrating the essential mechanics of our method, that is less inter-source
borrowing as heterogeneity increases. For now, we ignore the covariates and fit our method
to two different pairs of datasets. We first take the 2009 and 2008 DES cohorts as the
current and historical datasets, respectively. By contrast, we next pair the 2009 DES cohort
with the 2008 BMS cohort, taking the latter as the historical dataset. After preliminary
investigations via simulation into the bias-variance tradeoffs that different specifications of
the spike and slab distribution can provide, we chose l = 10−4, u = 2, ℛα = 200, and p0 =
0.9. This specification of hyperparameters represents much skepticism regarding
exchangeability of the two sources of information, with a prior probability of just 0.1 for
strong borrowing. Based on preliminary investigations, we know the first pairing is more
homogeneous than the second pairing. Thus, we refer to our model fit to the first and second
pairings as the homogeneous and heterogeneous fits, respectively. We ran three MCMC
chains in JAGS (Plummer, 2003) for 2,000 iterations of burn-in, followed by 500,000
posterior samples thinned every fifty draws for estimation, and obtained the posterior
survival curves displayed in Figure 1. For the homogeneous pairing, the posterior mean
survival curve (solid black) interpolates the two K-M estimators fit to the 2009 DES data
alone and to the 2008 DES data alone. For the heterogeneous pairing, the fitted survival
curve (dashed black) follows slightly below the K-M estimator fit to the 2009 data alone and
appears modestly influenced by the 2008 BMS data. Another notable difference between
these two fits is the width of the 95% pointwise credible intervals. For t > 0.2 the
homogeneous fit has tighter intervals, indicating that more strength is being borrowed from
the historical data. In fact, the posterior for the inter-study smoothing parameter τ is in the
spike for greater than 95% of the posterior draws for the homogeneous case, but less than
65% for the heterogeneous case. For a link to JAGS code and a thorough simulation-based
investigation of the mechanics of our method, please see the Web Appendix A.

We now fit our covariate adjusted model to the heart stent data, accounting for all the
covariates listed in Table 1. We borrow strength from the 2008 BMS cohort through the
baseline hazard and the covariate adjustment parameters, but ignore the 2008 DES data for
the sake of illustration. The specification we choose for the spike and slab distributions
placed on the β’s is l = 10−4, u = 2, ℛβ = 200, and p0 = 0.9. We used three MCMC
chains each with 500,000 posterior samples thinned every fifty samples for posterior
estimation following 2,000 samples of burn-in. We first fit our proposed model taking γk ≡
γ, k = 1,…,K, and compare the posterior estimates for β and γ with those of a Cox
proportional hazards model fit the 2009 data alone (Current PH), the 2008 data alone
(Historical PH), and to the pooled 2008 and 2009 data (Pooled PH). Results from these four
approaches are reported in Table 2. Note that the posterior mean hazard ratios from the
proposed method are similar to those of the Cox proportional hazards models. In fact, these
estimates from the proposed method are generally intermediate to the Current PH and
Historical PH models. This indicates that the proposed method is borrowing strength from
the historical data. The posterior means of the commensurability parameters analogous to
the β parameters (i.e., τβp’s) are between 18 and 47, indicating partial borrowing. The τβp
with the largest posterior mean (i.e. greatest borrowing) corresponds to the dialysis duration
of 2 – 5 years covariate, which has very similar hazard ratio estimates in both the Current
and Historical PH models. Furthermore, the 95% posterior credible intervals for the
proposed method are generally tighter than those from the Current PH model, but not quite
as tight as those from the Pooled PH model. For example, the effect of DES has a credible
interval of (0.51, 1.33) for the proposed method versus (0.50, 1.36) from the Current PH
model and (0.48, 1.08) from the Pooled PH model. This tighter credible interval can
primarily be attributed to borrowing information on the baseline hazard function, with a
posterior mean for the inter-study smoothing parameter, τα, of 187.
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Lastly, we fit our proposed method allowing a time varying effect for DES relative to BMS
placement. The resulting posterior mean estimates for β remained very similar to the results
reported in Table 2. The γk, k = 1,…,8 estimates suggest a slightly decreasing effect of DES
versus BMS over time, with DES being most effective during the first week following
placement (posterior mean hazard ratio of 0.8), and showing little benefit over BMS after
about 9 months (posterior mean hazard ratio of 1.0). However, none of the posterior credible
intervals excluded a hazard ratio of 1. The diminishing benefit of DES over BMS has been
shown to exist in larger dialysis populations, and (though not shown here) can clearly been
seen when fitting the proposed model to a much larger dataset that also includes persons on
hemodialysis, as discussed in Shroff et al. (2013).

4. Future Work
The methods developed in this work allow more efficient use of available data while we
determine an evolving picture of the risk-benefit ratio for medical therapies. They also
improve flexibility over existing methods and set the stage for further advances with respect
to knot selection and baseline hazard modeling as in Sharef et al. (2010). Future research
also includes the possibility of generalizing the smoothing commensurate prior developed in
Section 2 to borrow strength in the estimation of covariate effects modeled flexibly with
splines discussed by Ruppert et al. (2003). We will continue to look for ways to improve
efficiency while making valid inference on safety outcomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Posterior survival curves for homogeneous (solid black) and heterogeneous (dashed black)
dataset pairings with their 95% pointwise credible intervals. For reference, the Kaplan-Meier
estimator fit to the 2009 DES data alone (solid grey) and to the corresponding homogeneous
2008 DES (dotted grey) and heterogeneous 2008 BMS (dot-dashed grey) data alone.
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Table 1

Demographics of BMS and DES cohorts in 2008 and 2009. (Percentages for subgroups with a sample size less
than 10 have been masked with an asterisk for privacy reasons)

BMS (2008) BMS (2009) DES (2008) DES (2009)

N 62 57 78 81

Number of events 37 28 30 39

Mean follow up (years) 0.403 0.496 0.639 0.575

Race (%)

  White 80.6 77.2 73.1 76.5

  Black * * 16.7 17.3

  Other * * * *

Age (%)

  20–64 25.8 52.6 41.0 40.7

  65–74 40.3 28.1 37.2 33.3

  ≥75 33.9 19.3 21.8 25.9

Primary cause of disease (%)

  Other 19.4 19.3 19.2 18.5

  Diabetes mellitus 43.5 50.9 50.0 45.7

  Hypertension 37.1 29.8 30.8 35.8

Dialysis duration in years (%)

  <2 37.1 40.3 39.7 49.3

  2–5 58.1 43.9 50.0 38.3

  6–10 * * * *

  ≥11 * * 0.0 *
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Table 2

Results from the proposed method with no time varying covariates and three Cox proportional hazards models
fit to the current data alone (Curr PH), historical data alone (Hist PH), and the pooled data (Pool PH).
Covariates above the line are associated with β, while those below the line are associated with γ.

Proposed Curr PH Hist PH Pool PH

Hazard Ratio (95% CI)

Race

  White (ref) – – – –

  Black 0.58(0.27, 1.13) 0.52(0.24, 1.11) 1.39(0.49, 3.96) 0.77(0.43, 1.38)

  Other 0.83(0.27, 2.15) 1.02(0.36, 2.88) 0.46(0.06, 3.50) 0.85(0.34, 2.14)

Age

  20–64 (ref) – – – –

  65–74 1.21(0.67, 2.13) 1.08(0.59, 1.98) 1.87(0.66, 5.33) 1.32(0.80, 2.19)

  ≥75 2.22(1.21, 3.98) 1.97(1.05, 3.69) 3.62(1.37, 9.54) 2.55(1.56, 4.18)

Cause of disease

  Other (ref) – – – –

  Diabetes 1.32(0.73, 2.51) 1.32(0.65, 2.68) 1.17(0.43, 3.16) 1.23(0.71, 2.13)

  Hypertension 0.86(0.44, 1.70) 0.84(0.39, 1.84) 0.96(0.36, 2.55) 0.89(0.50, 1.57)

Dialysis duration

  <2 yrs – – – –

  2–5 yrs 1.29(0.78, 2.12) 1.31(0.77, 2.23) 1.18(0.56, 2.48) 1.28(0.84, 1.94)

  6–10 yrs 1.81(0.81, 3.79) 1.90(0.87, 4.15) 2.19(0.21, 22.7) 1.75(0.85, 3.59)

  ≥11 yrs 1.48(0.30, 5.09) 1.37(0.31, 6.09) 3.61(0.30, 42.9) 2.21(0.66, 7.41)

Stent Type

  BMS – – – –

  DES 0.82(0.51, 1.33) 0.83(0.50, 1.36) – 0.72(0.48, 1.08)
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