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Summary
Dynamic treatment regimes operationalize the clinical decision process as a sequence of functions,
one for each clinical decision, where each function maps up-to-date patient information to a single
recommended treatment. Current methods for estimating optimal dynamic treatment regimes, for
example Q-learning, require the specification of a single outcome by which the ‘goodness’ of
competing dynamic treatment regimes is measured. However, this is an over-simplification of the
goal of clinical decision making, which aims to balance several potentially competing outcomes,
e.g., symptom relief and side-effect burden. When there are competing outcomes and patients do
not know or cannot communicate their preferences, formation of a single composite outcome that
correctly balances the competing outcomes is not possible. This problem also occurs when patient
preferences evolve over time. We propose a method for constructing dynamic treatment regimes
that accommodates competing outcomes by recommending sets of treatments at each decision
point. Formally, we construct a sequence of set-valued functions that take as input up-to-date
patient information and give as output a recommended subset of the possible treatments. For a
given patient history, the recommended set of treatments contains all treatments that produce non-
inferior outcome vectors. Constructing these set-valued functions requires solving a non-trivial
enumeration problem. We offer an exact enumeration algorithm by recasting the problem as a
linear mixed integer program. The proposed methods are illustrated using data from the CATIE
schizophrenia study.
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1. Introduction
Dynamic treatment regimes (DTRs) operationalize the clinical decision-making process
wherein a clinician selects a treatment based on current patient characteristics and then
continues to adjust treatment over time in response to the evolving health status of the
patient. A DTR is a sequence of decision rules, one for each decision point. Each rule takes
as input current patient information and gives as output a recommended treatment. There is
growing interest in estimating “optimal” DTRs from randomized or observational data. A
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DTR is said to be optimal if, when applied in the population of interest, it maximizes the
average clinical outcome. Optimal DTRs have been estimated for chronic conditions
including ADHD (Laber et al., 2011; Nahum-Shani et al., 2010, 2012), depression (Schulte
et al., 2012; Song et al., 2012), HIV infection (Moodie et al., 2007), schizophrenia
(Shortreed et al., 2011), and cigarette addiction (Strecher et al., 2006). Approaches for
estimating optimal DTRs from data include Q-learning (Watkins and Dayan, 1992; Nahum-
Shani et al., 2010), A-learning (Murphy, 2003; Blatt et al., 2004; Robins, 2004), regret
regression (Henderson et al., 2010), and direct value maximization (Orellana et al., 2010;
Zhang et al., 2012; Zhao et al., 2012).

To estimate a DTR from data using any of the above methods, one must specify a single
outcome and neglect all others. For example, one might seek the most effective DTR
without regard for side-effects. Alternatively, one could form a linear combination of two
outcomes, e.g., side effects and effectiveness, yielding a single composite outcome. Forming
this outcome requires the elicitation of a trade-off between two outcomes; for example, one
would need to know that a gain of 1 unit of effectiveness is worth a cost of 3 units of side-
effects. However, for some illnesses, e.g., severe schizophrenia, preferences across
outcomes can vary widely across patients (Kinter, 2009). Thus, even if one could elicit this
trade-off at an aggregate level, assuming that a particular trade-off holds for all decision-
makers is not reasonable since each will have his or her own individual preferences which
cannot be known a priori. Furthermore, patients may not know their preferences, they may
be unable to communicate them, or they may have preferences which evolve over time
(Strauss et al., 2011).

Lizotte et al. (2012) present one approach to dealing with this problem using a method that
estimates an optimal DTR for all possible linear trade-offs simultaneously. Their method can
also be used to explore what range of trade-offs is consistent with each available treatment.
Nonetheless, their method assumes that any outcome preference can be expressed by a
composite outcome that is a linear combination of the outcomes under consideration. They
still (perhaps implicitly) require the decision-maker to assess and reason about the space of
linear composite outcomes. In addition, their approach suggests actions based on the
assumption that preferences remain fixed over time.

We propose set-valued Dynamic Treatment Regimes (SVDTRs) as an alternative to DTRs
that accommodates competing outcomes and preference heterogeneity both across patients
and time, but avoids eliciting trade-offs between outcomes. Like a DTR, an SVDTR is a
sequence of decision rules. However, the decision rules that compose an SVDTR take as
input current patient information and give as output a set of recommended treatments. This
set is a singleton when there exists a treatment that is best across all outcomes but contains
multiple treatments otherwise. Treatments that are inferior according to all outcomes are
eliminated. By presenting multiple reasonable treatments, our proposed method still allows
for the incorporation of clinical judgment, individual patient preferences (to the extent that
they are known), cost, and local availability, when deciding among the non-inferior
treatments. Our approach does not require any individual preference information from the
decision maker; however, in its most general form, our approach makes use of an elicited
‘clinically significant’ difference on each outcome scale to help decide if one treatment is
clearly inferior to another (see Friedman et al., 2010, for example).

This work is motivated by the Clinical Antipsychotic Trials of Intervention Effectiveness
(CATIE) study (Stroup et al., 2003), in which schizophrenic patients were randomized up to
two times to different treatments. CATIE has three features that make it amenable to our
proposed approach: i) It contains data we can use to individualize treatment. ii) It follows
patients over multiple treatment phases. iii) It contains data on important competing
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outcomes. The CATIE data include both measures of symptoms and side-effects, and it is
well-established that treatments that provide some of the best symptom relief have the worst
side-effects (Breier et al., 2005; Allison et al., 1999). Thus, to illustrate our approach we
present an SVDTR-based analysis of CATIE in Section 4.

Our primary contribution is the introduction of SVDTRs, which offer a new approach to
operationalizing sequential clinical decision making that is informed by predicted competing
outcomes and by clinical judgment. We also provide a novel mathematical programming
formulation which gives a computationally efficient method to estimate SVDTRs from data.
In Section 2, we review the Q-learning algorithm for estimating optimal DTRs from data. In
Section 3 we propose an SVDTR for the two decision point problem, and in Section 3.1 we
describe our mathematical programming approach for estimating an SVDTR from data.
Section 4 presents our analysis of CATIE. For clarity, the main body of the paper considers
only binary treatment decisions; we give an extension to an arbitrary number of treatments
in Web Appendix A.

2. Single outcome decision rules
In this section we review the Q-learning algorithm for estimating an optimal DTR when
there is a single outcome of interest. For simplicity, we consider the case in which there are
two decision points and two treatment options at each decision point. In this setting the data
available to estimate an optimal DTR consists of n trajectories (H1, A1, H2, A2, Y), one for
each patient, drawn i.i.d. from some unknown distribution. We use capital letters like H1
and A1 to denote random variables and lower case letters like h1 and a1 to denote realized
values of these random variables. The components of each trajectory are as follows: Ht ∈
ℝpt denotes patient information collected prior to the assignment of the tth treatment, and
thus is information the decision maker can use to inform the tth treatment decision (note that

H2 may contain some or all of the vector ); At ∈ {−1, 1} denotes the tth treatment
assignment; Y ∈ ℝ denotes the outcome of interest which is assumed to be coded so that
higher values are more desirable than lower values. The outcome Y is commonly a measure
of treatment effectiveness, but could also be a composite measure attempting to balance
different objectives. Given the definition of Y, the goal is to construct a pair of decision rules
π = (π1, π2) where πt(ht) denotes a decision rule for assigning treatment at time t to a patient
with history ht in such a way that the expected response Y, given such treatment
assignments, is maximized. Formally, if Eπ denotes the joint expectation over Ht, At, and Y
under the restriction that At = πt(Ht), then the optimal decision rule πopt satisfies Eπ

opt
 Y =

supπ Eπ Y. Note this definition of optimality ignores the impact of the DTR πopt on any
outcome not incorporated into Y.

One method for estimating an optimal DTR is the Q-learning algorithm (Watkins and
Dayan, 1992). Q-learning is an approximate dynamic programming procedure that relies on
regression models to approximate the conditional expectations

, and

. The function Qt is termed the
stage-t Q-function. The function Q2(h2, a2) measures the quality of assigning treatment a2 at
the second decision point to a patient with history h2. The function Q1(h1, a1) measures the
quality of assigning treatment a1 at the first decision point to a patient with history h1,
assuming optimal treatment decisions will be made at the second decision point. Hence, it

follows that , t = 1, 2. This is the dynamic
programming solution to finding the optimal sequence of decision rules (Bellman, 1957).

Laber et al. Page 3

Biometrics. Author manuscript; available in PMC 2014 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In practice, the Q-functions are not known and must be estimated from data. We consider

linear working models of the form , where ht,1 and ht,2 are
(possibly the same) vector summaries of ht. Note that ht,j, j = 1, 2 might contain polynomial
terms or other basis expansions as appropriate. The Q-learning algorithm proceeds in three
steps:

1. Estimate the parameters of the working model for the stage-2 Q-function using
least squares. Let β̂2 and ψ̂2 denote these estimates, and let Q̂2(h2, a2) denote the
fitted model.

2. a. Define the predicted future outcome Ỹ following the estimated optimal

decision rule at stage two as .

b. Estimate the parameters indexing the working model for the stage-1 Q-
function using least squares. That is, regress Ỹ on H1 and A1 using the
working model to obtain β̂1 and ψ̂1. Let Q̂1(h1, a1) denote the fitted model.

3. The Q-learning estimate of πopt is π̂ = (π̂1, π̂2) where π̂t (ht) = arg maxat∈{−1,1} Q̂

(ht, at).

The Q-learning algorithm is simple to implement and easy to interpret given its connections
to regression. Therefore, we use Q-learning as the basis for developing SVDTRs.
Alternatives to Q-learning are listed in Section 1.

3. Set-valued dynamic treatment regimes
In a DTR, the optimal decision rule at time t = 1 depends critically on the decision rule that
will be used at time t = 2, which in turn depends on the Q-functions at time t = 2. This is
why Q-learning and related methods use backwards recursive estimation beginning at the
final stage. Thus, if we cannot estimate the Q-function at t = 2 for any reason, existing
recursive approaches like Q-learning cannot be applied. It follows that if the optimal rule for
t = 2 depends on preference, but preference information is unavailable, Q-learning cannot be
directly applied and we must devise a new strategy.

In some populations, e.g., severe schizophrenics, high quality preference elicitation may not
be possible (Kinter, 2009; Strauss et al., 2011), which can lead to misspecification of the
composite outcome needed to estimate Q-functions (see Web Appendix B for an illustration
of how composite outcome misspecification can impact the quality of a decision rule).
Furthermore, preference may evolve unpredictably over time so even if patient preferences
were known exactly at the time of each treatment decision, future treatment preferences are
unknown, and this precludes backwards recursive estimation.

Table 1 illustrates the foregoing problems in simplified setting with two hypothetical
subjects drawn from different populations, no subject covariates, and two competing
outcomes generically termed ‘side-effects’ and ‘efficacy.’ For Subject A, an initial
preference for efficacy suggests treatment 1 at the first stage. Suppose, however, that during
the course of the first treatment Subject A develops a strong aversion to side-effects.
Because the initial treatment was chosen assuming a static preference for efficacy, Subject A
is left with poor and very poor choices in terms of their current preference at the second
stage. Given the information provided in the table the decision maker may recommend
treatment -1 initially to allow for better second stage treatment choices; however, it is
important to note that once estimates of outcomes and viable treatment strategies are
provided to the decision maker (see below) treatment choice is no longer a statistical
problem. An alternative strategy would be to apply the Q-learning algorithm with respect to
each outcome. In the case of Subject A, the Q-learning algorithm for side-effects would
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recommend treatment -1, whereas the Q-learning algorithm for efficacy would recommend
treatment 1. The disagreement between the output of these algorithms could serve as signal
to the decision maker that other external factors (e.g., clinical judgment, past treatment
preferences, etc.) should be incorporated as ‘tie-breakers.’ However, Subject B in Table 1
demonstrates that this strategy will not work in general. The Q-learning algorithm for side-
effects and efficacy both recommend treatment 1 at the first stage for Subject B. However,
treatment 1 at the first stage leads to extreme and potentially undesirable trade-offs at the
second stage.

In this section we propose set-valued DTRs for two decision points and two competing
outcomes. An extension to an arbitrary number of treatments is given in Web Appendix A.
The data available to estimate a pair of decision rules, one for each patient, comprises n
trajectories (H1, A1, H2, A2, Y, Z) drawn i.i.d. from a fixed but unknown distribution. The
first four elements in each trajectory are the same as the Q-learning setup and Z, Y ∈ ℝ
denote competing outcomes observed sometime after the assignment of the second treatment
A2. We assume that both Y and Z are coded so that higher values are preferred.

Our method can make use of clinically significant differences ΔY ≥ 0 and ΔZ ≥ 0 for
outcomes Y and Z respectively, to differentiate between treatment outcomes. We call a
difference in outcome clinically significant if a clinician would be willing to change her
treatment strategy given that this change was expected to yield a difference of at least ΔY
(ΔZ) in the outcome Y (Z), all else being equal. These differences may be elicited from a
panel of experts, estimated from historical data, or taken from existing clinical guidelines.
Importantly, in eliciting ΔY there is no need to reference the competing outcome Z, and vice
versa when eliciting ΔZ. They may be patient-independent and constant over time. We
believe the incorporation of clinically significant differences adds to the utility and
interpretability of our approach in many domains; nevertheless, they are not necessary for
the validity of our algorithms and could be taken to both equal zero. Furthermore, our
algorithms do not preclude clinical significances being functions of individual patient
characteristics, being different at each time point, or allowing dependence between ΔY and
ΔZ, however, we do not incorporate these generalizations into our notation. To avoid having
to repeatedly qualify our discussion, we will assume that both ΔY > 0 and ΔZ > 0.

The goal is to construct a pair of decision rules π = (π1, π2) where πt : ℝpt → {{−1, 1},
{−1}, {1}} maps up-to-date patient information to a subset of the possible decisions. Ideally,
for a patient presenting with h2 at the second stage the set-valued decision rule would
recommend a single treatment if that treatment is expected to yield a clinically significant
improvement (relative to the alternative treatment) in at least one of the outcomes and, in
addition, that treatment is not expected to lead to a significant detriment in the other
outcome. If the preceding condition does not hold for one of the treatments then the decision
rule should return the set {−1, 1} and leave the ‘tie-breaking’ to the decision maker. Define
the (non-normalized) second stage treatment effects as

, and likewise
. Then, the ideal second stage

decision rule, say , is given by

(1)

where sgn denotes the signum function. Figure 1 illustrates how  depends on r2Y
(h2) and r2Z (h2), ΔY, and ΔZ. If we consider the (r2Y (h2), r2Z (h2)) ∈ ℝ2, its location
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relative to the points (ΔY, ΔZ), (−ΔY, ΔZ), (ΔY, −ΔZ) and (−ΔY, −ΔZ) determines whether we
prefer treatment 1, prefer treatment −1, or are undecided according to the foregoing criteria.

We now define  given that a clinician always selects treatments from the set-valued

decision rule  at the second stage. This problem is complicated by the fact that, unlike
in the standard setting, there exists a set of histories h2 at the second stage—those for which

—where we do not know which treatment would be chosen. To address
this, we begin by assuming that some non-set-valued decision rule τ2 will be used at the

second stage, we will then consider an appropriate set of possible τ2 in order to define .

Suppose a non-set-valued decision rule τ2 : ℝp2 → {−1, 1} is used to assign treatments at
the second stage. That is, a patient presenting with history h2 would be assigned treatment
τ2(h2). Define . Furthermore, define

 so that Q1Y (h1, a1, τ2) is the expected
outcome for a patient with first stage history H1 = h1 treated at the first stage with A1 = a1
and the decision rule τ2 at the second stage. Replacing Y with Z yields Q2Z(h2, τ2) and
Q1Z(h1, a1, τ2). Thus, if it is known that a clinician will follow τ2 at the second decision
point, then the ideal decision rule at the first decision point is given by

(2)

where , and similarly

. Note that  assigns a single
treatment if that treatment is expected to yield a clinically significant improvement on one or
both the outcomes while not causing clinically significant loss in either outcome assuming
the clinician will follow τ2 at the second decision point.

We now describe how to construct the ideal decision rule at the first decision point when the
rule at the second decision point is set-valued. We say a non-set-valued rule τ2 is compatible
with a set-valued decision rule τ2 if and only if

(3)

Let  be the set of all rules that are compatible with . We define  to be the
set-valued decision rule

(4)

Our motivation for this definition is a desire to maintain as much choice as possible at stage
1, while making as few assumptions about future behaviour as possible. The definition in (4)
assumes only that in the future some τ2 in accordance with π2 will be followed. Therefore at
stage 1 we would only eliminate treatments for which there exists no compatible future
decision rule that makes that treatment a desirable choice.
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However, if we do not impose some smoothness constraints on τ2, the set  can be

very large, and computing the union (4) can become intractable. Furthermore,  may

contain unreasonable future policies. Suppose that  for all h2 in some
non-null set H2. Then the policy that assigns 1 to rational-valued histories in H2 and −1 to

irrational-valued histories in H2 belongs to  even though it is clearly not a
reasonable policy to follow. We will see that the modelling choices made to estimate Q2Y

and Q2Z suggest a sensible subset of  over which to take the union (4) instead. We
provide a mathematical programming formulation that allows us to use existing optimization
algorithms to efficiently compute the union over this much smaller subset (see below).

We now turn to the estimation of  and  from data. As in the Q-learning setup, let
ht,j j = 1, 2 denote vector summaries of the history at time t. To estimate the ideal second
stage decision rule we postulate linear models for second stage Q-functions, say, of the form

, , which we estimate
using least squares. In a slight abuse of notation, we write ht,j,i to denote the jth vector
summary (j = 1, 2) of history ht (t = 1, 2) for subject i (i = 1, …, n), and ht,·,i to denote the
history at time t for subject i. The estimated ideal second stage set-valued decision rule π̂2Δ
is the plug-in estimate of (1). In order to estimate the ideal decision rule at the first decision
point we must characterize how a clinician might assign treatments at the second decision
point. We begin by assuming that clinicians’ behavior, denoted by τ2, is compatible with π̂2Δ
as defined in (3), and we further assume that τ2 can be expressed as a thresholded linear
function of h2. We call such decision rules feasible for π̂2Δ, and we define the set of feasible
decision rules at stage 2 by

. Here, p2,2 =
dim(h2,2). This is exactly the set of all stage 2 decision rules that would be output by Q-
learning for some outcome on the given space of histories.

Thus, F(π̂2Δ) denotes the set of second stage non-set-valued decision rules that a clinician
might follow if they were presented with π̂2Δ. This set is indexed by the vector ρ ∈ ℝp2,2. It

can be verified that F(π̂2Δ) is non-empty since  belongs to
F(π̂2Δ). For an arbitrary τ2 ∈ F(π̂2Δ), define the working models

(5)

where β1Y (τ2), ψ1Y (τ2), β1Z (τ2), and ψ1Z (τ2) are coefficient vectors specific to τ2. For a
fixed τ2 one can estimate these coefficients by regressing

 and  on
H1 and A1 using the working models in (5). Let Q̂1Y (h1, a1, τ2) and Q̂1Z (h1, a1, τ2) denote

these fitted models, and let , and

. Define

(6)

and
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(7)

Thus, π̂1Δ is a set-valued decision rule that assigns a single treatment if only that treatment
leads to an (estimated) expected clinically significant improvement on one or both outcomes
and does not lead to a clinically significant loss in either outcome across all the treatment
rules in F(π̂2Δ) that a clinician might consider at the second stage. Alternatives to this
definition of π̂1Δ are discussed in Section 5.

Remark 1
In addition to providing a set of recommended treatments it is useful to provide decision
makers with information regarding outcomes which are likely to be realized under feasible
regimes. At the second stage, estimates (Q̂2Y (h2, 1), Q̂2Z(h2, 1)) and (Q̂2Y (h2, −1), Q̂2Z (h2,
−1) should accompany π̂2Δ(h2). At the first stage, π̂1Δ(h1) should be accompanied by a plot
of Q̂1Y (h1, a1, τ2) against Q̂1Z(h1, a1, τ2) across values of τ2 ∈ F(π̂2Δ) with separate plotting
symbols and colors for a1 = ±1. Such a plot shows, for each potential first stage treatment,
expected outcomes following feasible second stage treatment rules given current patient
information as captured by h1. An example of such a plot is given in Figure 3.

3.1 Computation
Computing π̂1Δ(h1) requires solving a seemingly difficult enumeration problem.
Nevertheless, exact computation of π̂1Δ(h1) is possible and (7) can be solved quickly when
p2,2 is small.

First, note that if τ2 and  are decision rules at the second stage that agree on the observed

data, that is, if  for i = 1, …, n, then  and

. It follows that . Thus, if we consider
a finite subset F̃(π̂2Δ) of F(π̂2Δ) that contains one decision rule for each possible “labeling”
of the stage 2 histories contained in the observed data, then we have

(8)

We use the term “labeling” by analogy with classification: each stage 2 history h2,·,i is given
a binary “label” ℓi ∈ {−1, 1} by some τ2. Rather than taking a union over the potentially
uncountable F(π̂2Δ) indexed by ρ ∈ ℝp2,2, we will instead enumerate the finite set of all
feasible labelings of the observed data, place a corresponding τ2 for each one into the set F̃

(π̂2Δ), and take the union over F ̃(π̂2Δ).

We say that a labeling ℓ1, …, ℓn is compatible with a set-valued decision rule π̂2Δ if ℓi ∈
π̂2Δ(h2,·,i), i = 1, …, n, and feasible if it furthermore can be induced by a feasible decision
rule τ2 ∈ F(π̂2Δ). (Recall that in our terminology, feasible decision rules are compatible.)
Equivalently, the labeling is feasible if it is both compatible with π̂2Δ and if the two sets
{h2,2,i∣ℓi = 1} and {h2,2,i∣ℓi = −1} are linearly separable in ℝp2,2. Our algorithm for
computing F̃(π̂2Δ) works by specifying a linear mixed integer program with indicator
constraints whose solutions correspond to the linearly separable labelings of the observed
data that are compatible with π̂2Δ.

First, we note that determining whether or not a given π̂2Δ-compatible labeling ℓ1, …, ℓn is
feasible is equivalent to checking the following set of constraints:
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(9)

The constant 1 in the above inequalities is arbitrary since one can rescale both sides by any
positive constant. Given a particular labeling, the existence of a ψ2 that satisfies (9) can be
proved or disproved in polynomial time using a linear program solver (see, e.g., Megiddo
(1987) and references therein). The existence of such a ψ2 implies a feasible τ2 given by

 that produces the labeling ℓ1, …, ℓn when applied to the stage 2 data.

To find all possible feasible labelings, we treat the ℓi as variables in an optimization, we
formulate a linear mixed integer program with constraints given by

and we find all unique feasible solutions. We present the feasibility problem as a
minimization because it is the natural form for modern optimization software packages like
CPLEX (www.ibm.com/software/integration/optimization/cplex-optimizer/), which are
capable of handling the integer constraints on ℓi. Note that if we simply want to recover the
feasible ℓi then the choice of f does not matter, and we may choose f = 0 for simplicity and
efficiency in practice. CPLEX is capable of enumerating all feasible labelings efficiently
(the examples considered in this paper take less than one minute to run on a laptop with 8GB
DDR3 RAM and a 2.67GHz dual core processor). If we wanted to also recover the
maximum margin separators for the feasible labelings, for example, we could use the
quadratic objective f = ∥ψ2∥

2.

Let F̃ (π̂2Δ) denote the collection of feasible decision rules defined by  for each
feasible ψ2. Then for any h1 ∈ ℝp1 we define π̂1Δ (h1) using (8). Note that F̃(π̂2Δ) does not
depend on the h1 and hence is computed only once for a given dataset.

4. CATIE
We now consider the application of our method to data from the Clinical Antipsychotic
Trials of Intervention Effectiveness (CATIE) Schizophrenia study. The CATIE study was
designed to compare sequences of antipsychotic drug treatments for the care of
schizophrenia patients. The full study design is quite complex (Stroup et al., 2003); we will
make several simplifications in order to more clearly illustrate the potential of our method.
CATIE was an 18-month sequential randomized trial that was divided into two main phases
of treatment. Upon entry into the study, most patients began “Phase 1,” in which they were
randomized uniformly to one of five possible treatments: olanzapine, risperidone,
quetiapine, ziprasidone, or perphenazine. As they progressed through the study, patients
were given the opportunity at each monthly visit to discontinue their Phase 1 treatment and
begin “Phase 2” on a new treatment. The set of possible Phase 2 treatments depended on the
reason for discontinuing Phase 1 treatment. If the Phase 1 treatment was deemed to produce
unacceptable side-effects, they entered the tolerability group and their Phase 2 treatment
was chosen randomly as follows: ziprasidone with probability 1/2, or uniformly randomly
from the set {olanzapine, risperidone, quetiapine} with probability 1/2. If the Phase 1
treatment was deemed ineffective at reducing symptoms, they entered the efficacy group and
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their Phase 2 treatment was chosen randomly as follows: clozapine with probability 1/2, or
uniformly randomly from the set {olanzapine, risperidone, quetiapine} with probability 1/2.

Although CATIE was designed to compare several treatments within each stage, there are
natural groupings at each stage that allow us to collapse the data in a meaningful way and
consider only binary treatments. We can therefore directly apply our method as described. In
the Phase 2 Tolerability group, it is natural to compare olanzapine against the other three
drugs since it is known a priori to be efficacious (Breier et al., 2005), but is also known to
cause significant weight gain as a side-effect. In the Phase 2 Efficacy group, it is natural to
compare clozapine against the rest of the potential treatments, both because the
randomization probabilities called for having 50% of patients in that group on clozapine,
and because clozapine is substantively different from the other three drugs: it is known to be
highly effective at controlling symptoms, but it is also known to have significant side-effects
and its safe administration requires very close patient monitoring. In Phase 1, it is natural to
compare perphenazine, the only typical antipsychotic, against the other four drugs which are
atypical antipsychotics. (Typical-versus-atypical was an important comparison in CATIE.)

For our first outcome, which we denote P, we use the Positive and Negative Syndrome Scale
(PANSS) which is a numerical representation of the level of psychotic symptoms
experienced by a patient (Kay et al., 1987). A higher value of PANSS indicates more severe
symptoms. PANSS is a well-established measure that we have used in previous work
(Shortreed et al., 2011). Since having larger PANSS is worse, we use 100 minus the
percentile of a patient’s PANSS at the end of their time in the study. We use the distribution
of PANSS at the beginning of the study as the reference distribution for the percentile.

For our second outcome, which we denote B, we use Body Mass Index (BMI), a measure of
obesity. Weight gain is a clinically important side-effect of many antipsychotic drugs
(Allison et al., 1999). Because in this population having a larger BMI is worse, we use 100
minus the percentile of a patient’s BMI at the end of their time in the study. Again, we use
the distribution of BMI at the beginning of the study as the reference distribution.

We transformed both outcomes into percentiles to match Lizotte et al. (2012); we also
include an analysis using the raw BMI and PANSS scores in Web Appendix C. Regression
diagnostics for both analyses as well as baseline distributions are given in Web Appendix D.

In all of our models, we include two baseline covariates. The first, TD, is an indicator of
“tardive dyskinesia,” a motor side-effect that can be caused by previous treatment. The
second, EXACER, an indicator that the patient has been recently hospitalized, thus
indicating an exacerbation of his or her condition. These do not interact with treatment in
our models.

For our covariates h2 that interact with treatment, we choose the patients most recently
recorded PANSS score percentile in our model for PANSS, and the most recently recorded
BMI percentile in our model for BMI. These percentiles were shifted by −50 so that a
patient at the median has h2 = 0. This was done so that in each model, the coefficient for the
main effect of treatment can be directly interpreted as the treatment effect for a patient with
median PANSS (resp. BMI). Treatments were coded −1, 1. For both outcomes we chose 5
percentile points as our indifference range, that so ΔP = ΔB = 5.

4.0.1 Phase 2 Tolerability
Web Appendix D gives the models estimated from the Phase 2 tolerability data. In
summary, olanzapine appears to be beneficial if one considers the PANSS (P) outcome, but
detrimental if one considers the BMI (B) outcome. This is evident in the center panel of
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Figure 2, where we see that the predictions of (r2P, r2B) for all of the patient histories in our
dataset fall in the lower-right region of the plot, where both treatments are recommended
because they conflict with each other according to the two outcomes.

4.0.2 Phase 2 Efficacy
Web Appendix D gives the models estimated from the Phase 2 efficacy data. Clozapine
appears to be beneficial if one considers the PANSS (P) outcome. Furthermore, there is
weak evidence that clozapine is detrimental if one considers the BMI (B) outcome. This is
evident in the rightmost panel of Figure 2, where the predictions of (r2P, r2B) for all of the
patient histories are to the right of r̂2P = ΔP, indicating that clozapine is predicted to be the
better choice for all patients when considering only the PANSS outcome. Furthermore, for
most subjects, clozapine is not significantly worse than the other (aggregate) treatment
according to BMI; thus, for most of the histories only clozapine (i.e., {1}) would be
recommended. However, we found that for patients with a BMI covariate greater than about
24 (i.e., those among the top best 25 percent according to BMI), clozapine is predicted to
perform clinically significantly worse according to the BMI outcome, and both treatments
(i.e., {−1, 1}) would be recommended for these patients.

4.0.3 Phase 1
Recall that given any history h1 at Phase 1, our predicted values (r̂1P, r̂1B) for that history
depend not only on the history itself but on the future decision rule that will be followed
subsequently. For illustrative purposes, Web Appendix D gives a particular model estimated
from the Phase 1 data assuming a particular feasible decision rule for Phase 2 chosen from
the 61, 659 feasible Phase 2 decision rules enumerated by our algorithm. (The estimated
coefficients would be different had we used a different Phase 2 decision rule.) For this
particular future decision rule, perphenazine performs somewhat worse according to PANSS
than the atypical antipsychotics, and somewhat better according to BMI.

Whereas for the Phase 2 analyses we showed plots of different (r̂2P, r̂2B) for different
histories, for Phase 1, we will show different (r̂1P, r̂1B) for a fixed history at Phase 1 as we
vary the Phase 2 decision rule. Recall that our treatment recommendation for Phase 1 is the
union over all feasible future decision rules of the treatments recommended for each future
decision rule. The leftmost panel in Figure 2 shows the possible values of (r̂1P, r̂1B); for
some future decision rules only treatment −1 is recommended, but for others the set {−1, 1}
is recommended. Taking the union, we recommend the set {−1, 1} for this history at Phase
1. Figure 3 shows, for a fixed first stage history h1, a plot of Q̂1B(h1, a1, τ2) against Q̂1P (h1,
a1, τ2) across all τ2 ∈ F̃(π̂2Δ) for a single subject in the CATIE data. Note, that while there
are 61,659 polices in F̃(π̂2Δ) many of these yield similar predicted values for Q̂1B(h1, a1, τ2)
and Q̂1P(h1, a1, τ2). This display suggests that a patient presenting with H1 = h1, choosing
perphenazine (PERP) is associated with better expected outcomes on BMI but worse on
PANSS under feasible second stage rules.

5. Discussion
We proposed set-valued dynamic treatment regimes as a method for adapting treatment
recommendations to the evolving health status of a patient in the presence of competing
outcomes. Our proposed methodology deals with the reality that there is typically no
universally best treatment for chronic illnesses like depression or schizophrenia by
identifying when a trade-off between efficacy and side-effects must be made. Although
computation of the set-valued dynamic treatment regimes requires solving a difficult
enumeration problem, we offered an efficient algorithm that uses existing linear mixed
integer programming software.
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Our proposed methodology avoids the construction of composite outcomes, a process which
may be undesirable: constructing a composite outcome requires combining outcomes that
are on different scales, the ‘optimal trade-off’ between two (or more) outcomes is likely to
be patient-specific, evolving over time, and the assumption that a linear trade-off is
sufficient to describe all possible patient preferences may be unrealistic.

There are a number of directions in which this work can be extended. Web Appendix A
provides an extension to the case with two decision points but an arbitrary number of
treatment choices available at each stage. Interestingly, our enumeration problem is closely
related to transductive learning, a classification problem setting where only a subset of the
available training data is labeled, and the task is to predict labels at the unlabeled points in
the training data. By finding a minimum-norm solution for ψ2 subject to our constraints, we
could produce the transductive labeling that induces the maximum margin linear separator.
Our algorithm would then correspond to a linear separable transductive support vector
machine (SVM) (Cortes and Vapnik, 1995). This observation leads to a possible criterion for
evaluating feasible decision rules: we hypothesize that the greater the induced margin, the
more “attractive” the decision rule, because large-margin decision rules avoid giving very
similar patients different treatments. If the number of feasible future decision rules becomes
impractically large, we may wish to keep only the most “separable” ones when computing
the union at the first stage. We are currently pursuing this line of research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Diagram showing how the output of  depends on ΔY and ΔZ, and on the location of
the point (r2Y(h2), r2Z(h2)).
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Figure 2.
Left: Diagram showing how the output of π̂1Δ(h1) depends on ΔP (clinically significant
difference in PANSS) and ΔB (clinically significant difference in BMI), and on the joint
treatment effect, at Phase 1. The cloud of points shows the possible joint treatment effects
that can be realized by a single patient with history (panss = −25.5, bmi = −15.6) if the
patient follows some feasible decision rule at Phase 2. That is, each point is associated with
a different choice of Phase 2 decision rule. Note that for some future decision rules, the
point lies in the {−1, 1} region, and for others it lies in the {−1} region; taking the union we
have π̂1Δ(h1) = {−1, 1} for this patient. Center: Diagram showing how the output of π̂2Δ(h2)
depends on ΔP and ΔB, and on the location of the point (r̂2P(h2), r̂2B(h2)) for all patients in
the Phase 2 Tolerability group. Each plotted point shows the estimated joint treatment effect
for a different patient in the dataset. Since Phase 2 is the last phase, there are no future
decision rules to consider and each history is associated with a unique joint treatment effect.
Right: Analogous plot for the Phase 2 Efficacy group.
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Figure 3.
Q̂1B(h1, a1, τ2) against Q̂1P(h1, a1, τ2) across τ2 ∈ F̃ (π̂2Δ) for a single patient with history
(panss = −25.5, bmi = −15.6) in the CATIE data. Note, that while there are 61,659 polices in
F̃(π̂2Δ) many of these yield similar predicted values for Q̂1B(h1, a1, τ2) and Q̂1P(h1, a1, τ2);
we have plotted a random subset to make individual points more clearly visible. This display
suggests that a patient presenting with H1 = h1, choosing perphenazine (PERP) is associated
with better expected outcomes on BMI but worse on PANSS under feasible second stage
rules.
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