Skip to main content
. Author manuscript; available in PMC: 2015 May 1.
Published in final edited form as: Curr Genet. 2013 Sep 12;60(2):109–119. doi: 10.1007/s00294-013-0406-x

Table 1.

Efficiencies of pop-in, pop-out allele replacement in fission yeast.

Allele Modification Pop-in homologous recombination a Pop-out homologous recombination b
Homology L + R (bp) Efficiency (H/T) Homology L + R (bp) Efficiency (M/T)
rec12-R76A 2 bp substitutions 937 + 676 7/8 (88%) 225 + 1386 3/16(19%)
rec12-D79A 2 bp substitutions 937 + 676 7/8 (88%) 231 + 1377 2/16 (13%)
rec12-E83A 1 bp substitution 937 + 676 7/8 (88%) 247 + 1365 2/8 (25%)
rec12-R94A 3 bp substitutions 937 + 676 8/8 (100%) 279 + 1331 3/16 (19%)
rec12-D95A 3 bp substitutions 937 + 676 7/8 (88%) 337 + 1271 2/8 (25%)
rec12-Y97F 2 bp substitutions 937 + 676 3/3(100%) 345 + 1265 3/8 (38%)
rec12-E179A 2 bp substitutions 209 + 1404 3/3 (100%) 904 + 707 7/16 (44%)
rec12-K201A 2 bp substitutions 209 + 1404 3/3 (100%) 770 + 841 9/12 (75%)
rec12-R209A 4 bp substitutions 209 + 1404 3/3 (100%) 745 + 864 6/8 (75%)
rec12-K210A 3 bp substitutions 209 + 1404 3/3 (100%) 743 + 865 6/8 (75%)
rec12-K214A 4 bp substitutions 209 + 1404 3/3 (100%) 730 + 879 6/8 (75%)
rec12-D229A 3 bp substitutions 209 + 1404 2/2 (100%) 685 + 924 6/16(38%)
rec12-D231A 1 bp substitution 209 + 1404 2/2 (100%) 680 + 932 3/8 (38%)
rec12-K242A 2 bp substitutions 209 + 1404 2/2 (100%) 647 + 964 5/8 (63%)
rec12-K282A 4 bp substitutions 937 + 676 2/2 (100%) 526 + 1083 10/15 (67%)
rec12-R283A 4 bp substitutions 937 + 676 2/2 (100%) 523 + 1086 5/12 (42%)
rec12-D284A 3 bp substitutions 937 + 676 2/2 (100%) 521 + 1087 2/9 (22%)
rec12-R304A 4 bp substitutions 937 + 676 2/2 (100%) 460 + 1149 3/8 (38%)
rec12-E305A 1 bp substitution 937 + 676 2/2 (100%) 458 + 1154 4/26 (15%)
ade6-K87stop 1 bp substitutions 2012 + 854 8/10 c (80%) 1134 + 1731 46/107 (43%)
ade6-Gal4BS 7 bp substitutions 2012 + 854 5/10 c(50%) 1134 + 1705 25/67 (37%)
ade6- Gal4Control 7 bp substitutions 2012 + 854 8/10 c(80%) 1134 + 1702 41/104 (39%)
ade6-rib+-M26 57 bp insertion 1756 + 1110 5/6 (83%) 899 + 1854 3/10 (30%)
ade6-ribm-M26 57 bp insertion 1756 + 1110 4/6 (67%) 899 + 1854 7/19 (37%)
ade6-rib+- M375 57 bp insertion 1756 + 1110 3/6 (50%) 899 + 1857 12/25 (48%)
ade6-ribm- M375 57 bp insertion 1756 + 1110 2/3 (67%) 899 + 1857 8/14 (57%)
ade6-M26-rib+ 55 bp insertion 2012 + 854 3/6 c (50%) 1011 + 1720 27/94 (29%)
ade6-M26-ribm 55 bp insertion 2012 + 854 5/6 c (83%) 1011 + 1720 33/100 (33%)
ade6-M375- rib+ 55 bp insertion 2012 + 854 4/6 c (67%) 1008 + 1720 24/80 (30%)
ade6-M375- ribm 55 bp insertion 2012 + 854 5/6 c (83%) 1008 + 1720 24/82 (29%)
ade6-M26- DP2 84 bp deletion 1928 + 854 3/6 c (50%) 441 + 1854 23/65 (35%)
ade6-M26- DP7 64 bp deletion 1928 + 854 5/8 c (83%) 750 + 1854 58/122 (48%)
prl10-rib+ 57 bp insertion 1557 + 383 6/7 (86%) 1299 + 641 14/30 (47%)
prl10-ribm 57 bp insertion 1557 + 383 6/8 (75%) 1299 + 641 14/30 (47%)
prl34-rib+ 57 bp insertion 1251 + 334 5/7 (71%) 677 + 908 23/30 (77%)
prl34-ribm 57 bp insertion 1251 + 334 6/7 (86%) 677 + 908 16/30 (53%)
fbp1- ΔM26 2 bp substitutions 235 + 775 29/30 (97%) 478 + 528 8/16 (50%)
ctt1- ΔM26 3 bp substitutions 411 + 409 16/16 (100%) 266 + 550 0/38 d (0%)
ctt1- ΔM26 3 bp substitutions 411 + 409 5/20 (25%) 266 + 550 3/16 (18%)
leu1-D1::prA- lexA 1080 bp replacement 939 + 1090 5/14 (36%) 741 + 1288 3/12 (25%)
a

Homology lengths are for regions to the left (L) and right (R) of the DSB used to promote recombination during transformation (Fig. 2a). The efficiency is the fraction of stable Ura+ transformants arising from pop-in homologous recombination (H) with the desired genomic target, as opposed to non-homologous integration elsewhere in the genome (T, total genotyped). For targeting constructs with insertions, the inserted DNA is not included in the lengths of homology.

b

Homology lengths flanking the desired modification are ordered relative to the schematic diagram in Fig. 2c–2d, where excision by recombination to the “left” (L) leaves the modification in the genome and excision to the “right” (R) leaves the wild-type allele in the genome. The efficiency is the fraction of pop-out recombinants that leave the modified allele (M) in the genome, as opposed to leaving the wild-type allele in the genome (T, total genotyped). Homology lengths do not include the region modified (e.g., where 3 base pairs were substituted within a 5 base pair stretch), so total lengths do not match precisely those reported for pop-in events.

c

In these cases we skipped genotyping of Ura+ transformants, picked 6–10 independent Ura+ colonies, sent them through pop-out protocols, and genotyped multiple FOAr derivatives of each clone.

d

In this unusual case, the Ura+ transformant had a tandem duplication of the target locus flanking the ura4+ cassette (desired structure), but after pop-out protocols never left a modified allele in the genome. We subsequently determined that both copies of the tandem integrant were wild-type. A different Ura+ transformant, with one wild-type and one modified allele in the tandem integrant, yielded the expected products (next line of table).