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Abstract
Genes account for increasing proportions of variation in cognitive ability across development, but
the mechanisms underlying these increases remain unclear. We conducted a meta-analysis of
longitudinal behavioral genetic studies spanning infancy to adolescence. We identified relevant
data from 16 articles with 11 unique samples containing a total of 11,500 twin and sibling pairs
who were all reared together and measured at least twice between the ages of 6 months and 18
years. Longitudinal behavioral genetic models were used to estimate the extent to which early
genetic influences on cognition were amplified over time and the extent to which innovative
genetic influences arose with time. Results indicated that in early childhood, innovative genetic
influences predominate but that innovation quickly diminishes, and amplified influences account
for increasing heritability following age 8 years.
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Children are born with all of their genes, and their experiences necessarily accrue as they
develop.1 It is therefore reasonable to expect that genetic variation will account for
increasingly less variation in psychological outcomes as children develop, and variation in
environmental experiences will account for increasingly more of the variation in
psychological outcomes (e.g., see Fryer & Levitt, 2006; Spelke, 2005; cf. McGue,
Bouchard, Iacono, & Lykken, 1993). One might expect this rationale to apply particularly
well to a highly complex psychological outcome, such as cognition, which is thought to
develop as a result of experience-dependent neural connections (Garlick, 2002) and is
known to depend on environmental quality and educational experience (Ceci, 1991; Nelson
et al., 2007). Somewhat counterintuitively, a number of studies have indicated precisely the
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opposite developmental pattern with respect to the genetic and environmental influences on
cognition. McCartney, Harris, and Bernieri (1990) provided some of the earliest, persuasive
evidence of this trend. In their analysis of 103 twin studies, the amount of variation
attributable to genetic differences correlated positively with the age of the twins (r = .36),
and the amount of variation attributable to the shared rearing environment correlated
negatively (r = −.37). More recently, Bergen, Gardner, and Kendler (2007) conducted a
meta-analysis of six studies and reported an increase in heritability from approximately 55%
at age 13 years to 70% at age 25 years. Haworth et al. (2010) synthesized individual-level
data from six studies containing information from 11,000 twin pairs and found that
heritability increased from 41% at age 9 years to 66% at age 17 years.

The mechanisms that give rise to these developmental increases in heritability remain poorly
understood. Two possibilities are what can be termed innovation and amplification (Plomin,
1986; Plomin & DeFries, 1985). Innovation refers to the possibility that increasing
heritability results from novel genetic influences that were not present at previous time
points. Innovation might arise because novel biological changes (e.g., hormonal changes
associated with puberty) or environmental changes (e.g., the transition from the home to
grade school) lead to the activation of genes. Compounded with previously active genetic
variation, this newly active genetic variation can lead to an increase in heritability.
Amplification refers to the possibility that early genetic influences on cognition become
increasingly important with age. For example, transactional processes in which children
select and evoke environments on the basis of small, genetically influenced differences in
ability may, in turn, magnify those differences (Dickens & Flynn, 2001). Of course, decay
processes may also operate, such that early genetic influences may not persist at full strength
over time.

It is necessary to combine behavioral genetic and developmental methodologies to
distinguish between innovation and amplification processes as the basis for increasing
heritability. The classic twin model decomposes variation in cognitive test scores into
proportions accounted for by genes (A); the shared environment (C), which operates at the
family level and serves to make children living in the same household more similar; and the
nonshared environment (E), which operates at the individual level and serves to differentiate
children living in the same household. This analysis hinges on whether more genetically
similar siblings are also more similar in their level of cognitive ability (Neale & Cardon,
1992). Longitudinal designs allow variation in an outcome to be partitioned into that which
is shared with an earlier time point and that which is unique to a later time point.
Longitudinal behavioral genetic models allow the variance in intelligence at each time point
as well as the stable variance between time points to be decomposed into that due to A, C,
and E. The increase in heritability of cognition can be understood in terms of the net effects
of increases attributable to amplification (or decreases due to decay) of previously active
genetic influences and those attributable to innovative, not previously active, genetic
influences.

Goal of the Present Study
Our goal in the present study was to examine how genetic and environmental influences on
cognition change over time by conducting a meta-analysis of data from longitudinal twin
and adoption studies of cognitive ability in children aged 6 months to 18 years. First, we
sought to replicate the trend of increasing heritability using only longitudinal data, which
avoids validity threats associated with cross-sectional approaches (e.g., cohort effects;
Baltes, 1968; Flynn, 1987). For example, if a study tested children at age 5 years and again
at age 10 years, we examined the change accounted for by genetic and environmental factors
over the 5-year interval, controlling for the age of assessment. Second, to explain these
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developmental changes, we examined age trends in amplification and innovation,
controlling for the time interval between measurements.

Method
We searched abstracts in the American Psychological Association's PsycINFO database
(http://www.apa.org/pubs/databases/psycinfo/index.aspx) using combinations of terms from
three categories: genetics (twin, genetic, adoption, adopted, adoptee), longitudinal
(longitudinal, aging, stability), and cognition (intelligence, cognition, cognitive, ability). We
included studies with the following characteristics: The samples of siblings had varying
degrees of genetic relatedness, there was enough information to derive complete across-time
and within-time sibling correlations, the same ability was measured on two or more
occasions using objective cognition/intelligence tests, and participants were age 18 years or
younger at baseline and at least one follow-up occasion. Full information concerning our
search process, the articles included, study composition, data extraction, and variables
analyzed can be found in the Supplemental Material available online. We identified effect
sizes from 16 articles and 11 unique samples containing longitudinal information from 4,047
monozygotic twin, 7,169 dizygotic twin, 141 adoptive sibling, and 143 nonadoptive sibling
pairs. All studies used a reared-together design. For each longitudinally measured cognitive
outcome from each study, we compiled within- and across-time sibling correlations,
separately by sibling type.

We used Mplus software (Muthén & Muthén, 2010) to specify longitudinal Cholesky
decompositions to the multigroup correlation matrices. Figure 1 presents a reduced version
of the Cholesky decomposition for one member of a sibling pair. Cognitive ability is
partitioned into A, C, and E sources of variance. The latent variables labeled A1, C2, and E1
represent these influences on cognition at Time 1, and squaring the parameters a1, c1, and e1
gives the proportion of variance in cognition at Time 1 accounted for by the A1, C1, and E1
components, respectively. The parameters labeled ab, cb, and eb represent the carryover of
genetic and environmental effects from Time 1 to Time 2. Amplification of genetic effects
was calculated by taking the difference between the squared a1 and ab parameters, with
positive values indicating amplification and negative values indicating decay. Finally, the
latent variables Au, Cu, and Eu represent the unique variance at the second time point, and
the squared au, cu, and eu parameters represent the proportion of variance attributable to
innovation. Proportions of variance in cognition at Time 2 attributable to A, C, and E were
computed as the sum of the squares of ab and au, cb and cu, and eb and eu, respectively.
Across each pair of longitudinal observations, we recorded changes in proportions of
variance attributable to A, C, and E and the amounts of amplification and innovation of A, C,
and E.2 In total, our longitudinal analyses made use of 125 unique pairs of repeated
measures, yielding 125 × 9 effect sizes. Each effect size was associated with information
regarding participants' age when assessed, the length of time between measurement
occasions, and the standard error of the estimate.

To estimate the influence of development on the variance components, we applied a series
of meta-analytic, random-effects models. Not only do random-effects models index the
imprecision of the meta-analytic estimates (i.e., the standard error of the meta-analytic
parameter), but they also index the variability of the true effect size across studies. This is

2To be more explicit about how each effect size was derived, we report the mathematical calculations. For genetic factors, change in
the proportion of variance was calculated as (ab2 + au2) − a12, amplification was calculated as ab2 − a12, and innovation was
calculated as au2. For shared environmental factors, change in the proportion of variance was calculated as (cb2 + cu2) − c12,
amplification was calculated as cb2 − c12, and innovation was calculated as cu2. For nonshared environmental factors, change in the
proportion of variance was calculated as (eb2 + eu2) − e12, amplification was calculated as eb2 – e12, and innovation was calculated
as eu2.
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advantageous because it allows the results of the model to generalize beyond the studies that
were included in the analysis to a theoretical population of heterogeneous studies (Hedges &
Vevea, 1998). We adopted the general approach described by Cheung (2008) to estimate
meta-analytic, random-effects models in Mplus. A weighting procedure was applied to
provide unbiased standard errors. This entailed weighting all variables in our analysis by the
inverse of the sampling variance of the dependent variable and the inverse of the number of
effect sizes included per study. Additionally, the cluster option of Mplus was applied to
correct for nonindependence of data points taken from the same study. Together, these
corrections ensured that our standard errors accurately reflected the precision of the original
estimates and were not biased as a result of including multiple effect sizes per study.

To ensure that results were not driven by studies with large sample sizes, we constructed
Alternative Model 1 to examine whether results persisted when excluding results based on
the very large Twins Early Development Study (TEDS). Further, in Alternative Model 2, we
investigated whether results persisted when not weighting by precision of the estimates. We
chose to exclude the TEDS data for comparison because it is by far the largest twin study of
cognitive development in this age range (Davis, Haworth, & Plomin, 2009). Therefore, this
data set would have had substantially more leverage on the results than other studies, and we
were interested in whether the identified trends held when effect sizes from this study were
excluded. Additionally, this study used a unique modeling approach that may have
influenced the extracted data. Rather than evaluating a model that included multiple
indicators of cognition at a given time point, Davis et al. (2009) constructed a model that
included cognition at multiple time points to form each latent variable. This may have
influenced the comparability of this study with others included in the meta-analysis.

Using these procedures, we ran a series of meta-analytic, random-effects regression models
that predicted the nine outcomes of interest from the age of the participants at the initial time
point, the time interval between measurements, and the estimate of the magnitude of
heritability or environmentality (i.e., the proportion of variance due to environmental
effects) at the initial time point. Age and time interval between measurements were centered
at their across-sample averages (4.22 and 4.31 years, respectively). The initial estimates of
genetic and environmental factors were centered at values expected based on the across-
sample average age (a2 = .36, c2 = .43, e2 = .22). We had two main empirical questions.
First, does the trend of increasing heritability hold when longitudinal data are used to
examine differences in time lag rather than age? Second, across the developmental period of
infancy to adolescence, do innovative or amplified genetic effects explain increases in
heritability? In our analyses of change in the magnitudes of a2, c2, and e2, our main
emphasis was on interpreting the time-interval parameter to verify that heritability increases
over time, even with participant age controlled. In our analyses of amplification and
innovation, our main emphasis was on interpreting the age parameter with time interval
between measurements controlled.

Results
Descriptive statistics

Table 1 presents characteristics of samples in the studies included in the meta-analysis. The
studies covered the entire span from 6 months to 18 years of age, with substantial variability
in longitudinal time intervals between measurements. There was a fairly even split between
male and female individuals, but the studies predominantly sampled White participants.
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Changes in genetic and environmental factors
Previous reports of developmental increases in heritability were largely confirmed by our
longitudinal meta-analysis of within-study change presented in Table 2. Longer time
intervals between measurements were associated with larger increases in heritability (b =
0.028, p < .01) and larger decreases in shared environmentality (b = −0.038, p < .001).
Larger increases in heritability were also associated with older ages (b = 0.023, p < .01). The
results for the developmental trends in the nonshared environment were slightly more
complex. Longer longitudinal time intervals between measurements were associated with
larger increases in the variance attributable to the nonshared environment (b = 0.019, p < .
001), and older age was associated with smaller increases in the variance attributable to the
nonshared environment (b = −0.011, p < .05). The trends for the effects of time interval
between measurements are plotted in Figure 2 over a range of 15 years, the longest observed
time interval in our meta-analysis. Because participant age was controlled, the increases in
heritability and decreases in shared environmentality evident in Figure 2 are entirely
reflective of longitudinal changes, as opposed to cross-sectional age differences.

The results were similar in the alternative models, which indicate more pronounced
increases in heritability and more pronounced decreases in shared environmentality over
longer time intervals. Trends for the effects of time interval between measurements
indicated by each of these alternative models are plotted in Figures S1 and S2 in the
Supplemental Material.

Amplification and innovation
Table 3 presents the results of the random-effects regression models for the amplification of
A, C, and E. Focusing on the primary model, we found that the intercept of each variance
component was significantly negative. This indicates that earlier genetic or environmental
effects have a tendency to decay, at least at this very early stage of development. Only one
parameter was statistically significant by traditional standards, and it indicated that earlier
shared environmental influences become less important with greater time lag. However,
there were some potentially important trends that did not meet traditional levels of statistical
significance. The age coefficients were marginally significant for genes (b = 0.089, p = .06)
and the shared environment (b = 0.018, p = .07). Further, the age coefficient for genes was
highly significant in both alternative models, and the age coefficient for the shared
environment was significant when the TEDS data were removed.

As seen in Table 4, innovative influences displayed many strong associations with age and
time lag. Focusing on the primary model, we found that the intercept of each variance
component was significantly positive, and the coefficient for age was significantly negative.
This indicates that novel genetic and environmental influences are more common early in
life but diminish in importance with age. Longer time intervals between measurements were
associated with a larger degree of innovative genetic and nonshared environmental
influences but a smaller amount of innovative shared environmental influences. The results
were generally attenuated in the alternative models, but there was only a small degree of
absolute change in the coefficients.

To answer the question of what processes account for the changes in heritability and
environmentality across the age range of 6 months to 18 years, we plotted the amplification
and innovation trends against baseline age for each variance component, assuming a 1-year
interval between measurement occasions (see Fig. 3). In the very early years of life,
innovative genetic influences appear to account for the increase in heritability. By
approximately age 8, genetic amplification effects become predominant and innovative
genetic effects reach zero. However, the primary model did not estimate the genetic
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amplification parameter very precisely, as is evident by the wide shading, rendering
interpretation somewhat difficult. The alternative models imply a more gradual slope but
with much greater precision. For the shared environment, innovative influences slowly
decrease and decay effects slowly fade with age. Finally, the nonshared environment largely
displayed decay effects that were replaced by innovative influences. Results from the
alternative models are plotted in Figures S3 and S4 in the Supplemental Material.

Discussion
Despite the intuitive appeal of the prediction that accruing socializing forces result in
decreased genetic influences on cognition with age, or that genetic influences are immutable
and entirely apparent at birth, the field of developmental behavior genetics has uncovered
evidence that the genetic influences on intelligence increase with age (Plomin & Spinath,
2004). This integrative meta-analysis has attempted to provide an in-depth investigation of
the mechanisms underlying this phenomenon. We focused on two types of processes that
might underlie these changes, namely amplification, whereby early genetic influences on
cognition carry over across time, and innovation, whereby novel genetic influences on
cognition emerge with time. We found that each process varies systematically over the age
range from infancy to adolescence. Put succinctly, genetic innovation predominates in
infancy and early childhood, whereas genetic amplification predominates in middle
childhood and adolescence. We discuss the implications of each of these trends below.

Innovation
In early childhood, increasing genetic influences on cognitive ability can be attributed to
innovative genetic influences. In other words, genes not previously affecting cognition at
one point in time begin to affect cognition at later points in time. What may be the causes of
this early innovation? One possible mechanism of innovation is that biological maturation
across infancy and early childhood may activate genes. Although puberty is an often cited
example of a developmental transition that may be accompanied by the preprogrammed
activation of genetic influences (Eaves, Long, & Heath, 1986), we found that innovative
genetic influences predominate well before the earliest beginning ages of adrenarche
(McClintock & Herdt, 1996). A second possible mechanism for innovation may be
children's continual introduction into new environments that activate genes for cognition.
This can occur through experience-dependent activation of genes at the level of the genome,
but it can also occur through a process by which early genetically influenced traits irrelevant
to cognition in home or day-care contexts become progressively more important for
cognitive development in kindergarten and grade school contexts (Tucker-Drob & Harden,
2012b).

Innovative shared environmental effects are also present but slowly fade in importance. One
possible explanation for this trend is the introduction into the educational system. Innovative
shared environmental effects might occur as some families send their children to day care
and preschool, whereas other families provide early care at home. However, as all children
ultimately enter the educational system, standardized educational practices can serve to
equalize differences between families (Downey, von Hippel, & Broh, 2004; Tucker-Drob,
2012).

Amplification
In early childhood, decay, not amplification, of earlier genetic and environmental influences
appears to be the rule rather than the exception. These trends change with age, such that by
middle childhood, genetic influences stop decaying and become amplified. Transactional
models provide an appealing framework for understanding amplification. Under
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transactional models, genetic influences become amplified through a process in which early
levels of ability become reinforced through the selection and evocation of experiences
consistent with those ability levels (Dickens & Flynn, 2001; Plomin, DeFries, & Loehlin,
1977). Scarr and McCartney (1983) suggested that one's genotype drives development,
because “it is the discriminator of what environments are actually experienced” (p. 425). For
example, small genetically influenced differences in cognitive ability can lead to differences
in aspects of the environment provided by parents, teachers, and peers that in turn influence
subsequent cognitive development (Tucker-Drob & Harden, 2012a, 2012b).

Strengths and limitations
A major strength of the current study is that we applied a standard behavioral genetic model
to data derived from different empirical reports to yield a common set of parameters that
could be aggregated. This was particularly advantageous in allowing us to combine data
from studies of different age periods to make inferences about the entire range of
development from infancy to adolescence. In total, our meta-analysis was derived from
objective assessments of more than 23,000 individuals. However, this sample was obtained
from a relatively small number of independent longitudinal samples. Our estimates were
therefore likely to be vulnerable to idiosyncratic aspects of individual studies. For example,
when the TEDS data were removed, the parameter estimate for the amplification of genetic
effects was far more precise. This may be due to the unique modeling approach taken by the
original authors or to potential differences in developmental processes across populations
(e.g., Hanscombe et al., 2012). However, parameter values (as separate from significance
levels) across primary and alternative models were remarkably consistent.

A second limitation is that we were unable to determine the extent to which the nonshared
environment represented true environmental influences rather than error of measurement.
Although the nonshared environment can be corrected of measurement error with
information regarding test reliability, this was not well reported in the studies included in
our meta-analysis. Therefore, we must assume that the level of measurement error is not
systematically confounded with age to draw conclusions about age trends in the nonshared
environment.

A third limitation is that we were able only to compute standardized estimates of genetic and
environmental contributions. Longitudinal covariance matrices (as opposed to correlation
matrices) of the same measures taken over time are necessary to estimate unstandardized
genetic and environmental variance components and evaluate changes in total phenotypic
variance with age. A minority of studies (25%) reported enough information to produce
usable covariance rather than correlational matrices. This amounted to an even smaller
portion of extracted sets of effect sizes (13.6%), rendering exploration of changes in
amounts (rather than proportions) of variance attributable to genetic and environmental
amplification and innovation severely limited.

A fourth limitation is that the cognitive tests were often upgraded to be developmentally
appropriate across waves. This was the case for half of the studies and the majority of
extracted sets of effect sizes (64.8%; see Table S1 in the Supplemental Material for details).
If changing tests resulted in changing the abilities that were measured, our innovation
estimates could be inflated. We avoided this threat by including only studies that measured
the same ability over time (even if assessed with different measures). Empirically, we
evaluated this influence in our primary models by including a dummy-coded variable
indicating whether or not the cognitive test had changed between time points. This
parameter was not significant for any model of amplification, but it was significant for
models of genetic and nonshared environmental innovation. However, for both of these
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models, the age parameter, which was the focal parameter in this analysis, remained
statistically significant and was altered only by a value of .001.

Finally, we focused on linear models of developmental change. However, linear models are
simplifications of more complex trends that are likely to occur across development. As part
of the current project, we had also fit quadratic age functions to the genetic amplification
and innovation effect sizes, but the quadratic terms were not significant. More studies are
likely required for precise nonlinear age trends in innovation and amplification to be
accurately estimated with meta-analysis.

Conclusion
By applying longitudinal behavioral genetic models to meta-analytic data on twins and
siblings, we sought to identify the mechanisms underlying the well-established finding that
genetic influences on cognitive abilities increase over the course of development (Bergen et
al., 2007; Haworth et al., 2010). Our results indicate that longitudinal changes in heritability
can be understood in terms of both innovative variance explained by genes not previously
active and carryover (amplification and decay) of previously active genetic influences, with
the relative contributions of each of these mechanisms differing across development. During
the early years of life, it appears that genes are “activated,” whereas previous genetic
influences decay. These relative contributions change gradually, such that by approximately
8 years of age, genetic innovation desists and existing genetic influences begin to amplify.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Longitudinal behavioral genetic Cholesky decomposition for one member of a sibling pair.
The latent variables A, C, and E represent the influence of genetic variation, shared
environmental variation, and nonshared environmental variation, respectively. A1, C1, and
E1 represent these influences on cognition at the first measurement occasion (Time 1), and
squaring the parameters a1, c1, and e1 gives the proportion of variance in cognitive ability at
Time 1 accounted for by the A1, C1, and E1 components, respectively. The parameters
labeled ab, cb, and eb represent the carryover of genetic and environmental effects from
Time 1 to the second measurement occasion (Time 2). The latent variables Au, Cu, and Eu
represent the unique variance at Time 2, and the squared au, cu, and eu parameters represent
the proportion of variance attributable to novel influences.
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Fig. 2.
Predicted amount of change in the proportion of variance accounted for by genes, the shared
environment, and the nonshared environment across time intervals between assessments.
Shading represents ±1 SE.
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Fig. 3.
Predicted influence of amplification and innovation effects on variance in cognitive ability
at the second time point of measurement across participants' age. Results are shown
separately for the influence of (a) genes, (b) the shared environment, and (c) the nonshared
environment. Amplification refers to the carryover of early influences across time.
Innovation refers to the emergence of novel influences over time. In each graph, shading
represents ±1 SE.
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Table 1
Characteristics of Participants Across Studies Included in the Meta-Analysis

Variable M SD Range

Age at baseline (years) 4.22 2.86 0.50–12.00

Time interval between measurements (years) 4.31 3.38 0.33–15.00

Age at follow-up (years) 8.52 4.33 1.00–18.10

Female (%) 50.10 3.27 47–58

Non-White (%) 8.45 1.68 0–39

Note: Characteristics are weighted per sample rather than by individual participants.
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