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Abstract

We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role
in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the
practical application of computational methods is the precision, or positive predictive value. Precision measures the level of
confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile
laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein
function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative
functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of
physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art
sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site
annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated
into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta.
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Introduction

In the past decade, the amount of three-dimensional structural

information for biological macromolecules has increased greatly,

partly through technological advances as well as through the

structural genomics initiatives that have prioritized the systematic

determination of protein and nucleic acid structures [1] using X-

ray crystallography, Nuclear Magnetic Resonance, electron

microscopy, and other methods. As a result of this great

acceleration of new information about 3D structure of proteins,

there is a shift in the amount of background biological information

available for many of the newly solved structures. In particular,

there are many solved structures with no reported biological

function, and so computational methods are critical to identify

active sites and understand their molecular function. Methods

based on sequence analysis are very powerful in this regard, as

they can recognize domains and 1D motifs associated with

function. Sometimes, however, only an analysis of the 3D structure

allows the recognition of spatial interactions that are not apparent

in the sequence analysis. Several methods have been developed to

seek functional sites using 3D information including FFFs [2],

TESS [3], GASPS [4], MarkUs [5] and FEATURE [6,7].

An important protein function annotation strategy includes

computational functional site prediction followed by experimental

confirmation of the most promising results. In this context, the

precision, or positive predictive value of the predictor is of

paramount importance. This parameter quantifies the proportion

of positive predictions which are indeed functional. Low precision

models waste resources spent on laborious pursuit of functional

activity that is not present. We postulate that an annotator which

delivers at least 99% precision should have considerable utility in

many realistic applications, such as identification of therapeutic

targets. At this level of precision, ninety nine out of a hundred

predicted functional sites would have been confirmed in the lab,

and the challenge becomes maximizing recall (proportion of true

functional sites found by the algorithm) among candidate

computational models. Thus, the best method in the scenario we

are considering maximizes recall at 99% precision. To our

knowledge, none of the previously proposed sequence-based or

structure-based methods had been developed for or rigorously

evaluated against these specific goals, and thus this presented a key

motivation for the present work.

The basis for our approach was FEATURE, a function

annotation method that uses 3D protein structure information.

FEATURE regards functional sites as protein microenvironments

represented by vectors of physicochemical properties (features).

For developing machine learning predictors, these vectors are

aggregated to build Naı̈ve Bayes classification models for

recognizing the location of binding and active sites by using

examples of these sites of interest as a positive training set (e.g.

calcium binding sites [8,9], or thioredoxin active sites [10]) and

using suitable non-sites as the negative training set. In this paper
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we utilized the FEATURE vectors and Support Vector Machine

learning algorithm to construct a functional annotator which

meets the stated precision and recall goals. The classifier choice

was based on comprehensive evidence of SVM performance

[11,12], availability of industrial-strength software library [13] and

the authors’ own experience [14,15]. We also compared the new

FEATURE with Pfam [16], a sequence-based annotator com-

monly used for functional annotation.

Methods

Materials
We built a 3D annotator FEATURE, which assigns functional

sites defined in PROSITE [17] to novel protein structures. We

used Protein Data Bank (PDB) [18] as the source of protein

structures and PROSITE as the source of protein functional site

definitions for supervised training of FEATURE machine learning

models. PROSITE patterns are manually curated and are created

according to previous observations from literature or from a

sequence alignment of the protein sequences possessing the

observed function. The patterns are derived from the alignment

by taking the shortest common subsequence that matches known

proteins with high specificity. Each pattern may result in multiple

FEATURE predictive models, one for each functional atom in a

conserved residue. Crucially, PROSITE entries identify true positive

and false positive examples. It is this information which enabled us to

conduct accurate learning and evaluation of the FEATURE

functional predictive models.

Each FEATURE model requires positive and negative exam-

ples for training. We considered a structure to be a positive example

if PROSITE indicated that it contained the functional site being

modeled. Structures were considered negative examples if they were

not positive. The positive and negative examples were chosen as

follows:

N Positive examples

1. Identify true positive PROSITE examples and extract their

structure data from the PDB. To avoid redundancy, cluster

homologs sharing 100% sequence similarity and select a

single representative structure with the highest X-ray

crystallography resolution from each cluster for further

processing.

2. For each of the PDB structures, map the PROSITE pattern

to the amino acid sequence of the protein and find the

residue number and residue name of the conserved residues

in the PDB protein sequence.

3. Extract coordinates of functional atoms for all residues

identified in Step 2b. The different conserved residues

represent positive examples for the given predictive model;

the extracted coordinates of the functional atoms are used

to calculate feature vectors for training the FEATURE

classifiers.

N Negative examples

1. From a snapshot of all PDB structures available at the time

of PROSITE 20.80 release, remove structures that are

associated with the given functional class, as identified by

PROSITE (i.e. we removed positive or potentially positive

examples). We did not take negative examples from

proteins containing positive sites, in order to avoid possible

contamination of the negative set with sites that are close to

positive sites and therefore contain residual signal.

2. For each functional atom in a PROSITE pattern, find

50,000 atom coordinates by randomly choosing atoms

within remaining PDB structures with the same residue

name and atom name, sampling without replacement.

All positive and negative coordinates were converted to

FEATURE vectors to generate the positive and negative samples

for training the models. Specifically, we used Featurize, a function

available in the public release of the FEATURE package (https://

simtk.org/home/feature). Featurize extracts physicochemical prop-

erties from the three-dimensional structure of the spatial neigh-

borhood surrounding the position associated with the function of

interest. It represents functional sites as protein microenviron-

ments that contain six spherical shells of 1.25 Ångstroms in

thickness, oriented around a central point of interest. Featurize

accumulates statistics about the abundance of atoms, residues,

secondary structures, charge, polarity, hydrophobicity and other

biophysical and biochemical properties (totaling 80 properties in

each shell) in order to describe a microenvironment in a vector of

6 shells680 properties = 480 features. The characteristic proper-

ties are represented as numeric vectors and are listed in Table 1.

We chose 20 biologically distinct protein models based on

adequate number of positive examples, biological relevance as

judged by the authors and available resources for analyses. The

choice was made prior to any downstream processing and never

changed. The training samples for each protein model were

converted to vectors of physicochemical properties using Featurize.

The details of the protein models are given in Table 2.

We note that PROSITE also provides false negative designation

for certain PDB proteins, which could in principle be used as

positive examples. In practice, this is challenging because these

proteins are known to have the function, yet do not conform to the

PROSITE pattern and thus the exact atomic coordinates of the

functional site are not available through PROSITE/PDB. This in

turn prevents FEATURE modeling since it requires exact location

of the functional site, and consequently we did not use false

negatives in any analyses.

Classifiers
The FEATURE concept consists of multivariate representation

of functional sites using the physicochemical microenvironment

properties as feature vectors, followed by a classifier which assigns

function (or lack thereof) to the resulting vector of properties. The

original FEATURE system [6,7] used the Naı̈ve Bayes classifier,

whereas the focus of this work is the Support Vector Machine

classifier. To distinguish the two, we refer to them as FEATURE-

SVM and FEATURE-NB.

Support vector machine. The Support Vector Machine

classifier refers to several variations of a two-class linear classifier

described as having the maximum margin property. Intuitively, the

property means that the linear classification hyperplane is as

distant as possible from training data points in both classes.

In standard formulation, SVM is a linear two-class classifier

over a feature vector x

g(x)~ sgn (wT xzw0) ð1Þ

where the coefficients fw,w0g are chosen to yield the maximum

margin by solving the following constrained optimization problem:
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min
w,w0,j

jjwjj2zC
Xn

i~1

ji ð2Þ

yi(w
T xizw0)§1{ji, ji§0, i~1, . . . ,n

Here, n is total number of positive and negative examples in the

training set, xi are the feature vectors, and yi[fz1,{1g are their

class labels. C is a user-defined positive constant and ji measures

the degree of misclassification of example i. Large values of C

improve training data accuracy paid for by decreased generaliza-

tion ability of the classifier.

This problem is equivalent to the standard linear regression

problem [19,20]

min
w,w0

f (w,w0)~
Xn

i~1

L(w,w0; xi,yi)zljjwjj2 ð3Þ

where L(w,w0)~ max (1{yi(w
T xizw0),0) is the hinge loss term,

the second term is the regularization term, and l§0 a user-given

constant. The loss term measures accuracy of the classifier on the

training data; the regularization term controls the generalization

ability of the classifier. The constant l controls the trade-off

between the two goals. The hinge loss distinguishes Support

Vector Machine from other linear regression algorithms.

In this paper we used formulation (2).

Table 1. List of physicochemical properties used to characterize a functional site.

Property Type Property Name

AtomName C, N, O, S, ANY, OTHER

ChemicalGroup Hydroxyl, Amide, Amine, Carbonyl, RingSystem, Peptide

AtomProperties VDWVolume, Charge, Hydrophobicity, Mobility, Solvent Accessibility

ResidueName ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, THR, LYS, MET, PHE, PRO, SER, TRP, TYR, VAL, HOH, OTHER

ResidueProperties Hydrophobic, Charged, Polar, NonPolar, Basic, Acidic

SecondaryStructure 3Helix, 4Helix, 5Helix, Bridge, Strand, Turn, Bend, Coil, Het, Unknown

doi:10.1371/journal.pone.0091240.t001

Table 2. Functional families used to evaluate performance of FEATURE.

PROSITE Index Amino-acid Atom

ADH_SHORT 5 TYR eta oxygen (OH)

ALPHA_CA_1 11 HIS epsilon nitrogen #2 (NE2)

ASP_PROTEASE 4 ASP delta oxygen #2 (OD2)

ATPASE_ALPHA_BETA 8 SER gamma oxygen (OG)

CARBOXYLESTERASE_B_1 3 CYS gamma sulfur (SG)

CYTOCHROME_P450 8 CYS gamma sulfur (SG)

EF_HAND 1 ASP delta oxygen #1 (OD1)

EGF_1 10 CYS gamma sulfur (SG)

IG_MHC 3 CYS gamma sulfur (SG)

INSULIN 2 CYS gamma sulfur (SG)

LACTALBUMIN_LYSOZYME 3 CYS gamma sulfur (SG)

LECTIN_LEGUME_BETA 6 ASP delta oxygen #1 (OD1)

PA2_HIS 2 HIS gamma sulfur (SG)

PROTEIN_KINASE_ST 5 ASP delta oxygen #2 (OD2)

PROTEIN_KINASE_TYR 5 ASP delta oxygen #2 (OD2)

RNASE_PANCREATIC 2 LYS zeta nitrogen (NZ)

SOD_CU_ZN_1 3 HIS epsilon nitrogen #2 (NE2)

TRYPSIN_HIS 5 HIS epsilon nitrogen #2 (NE2)

TRYPSIN_SER 6 SER gamma oxygen (OG)

ZINC_PROTEASE 5 GLU epsilon oxygen #1 (OE1)

Column PROSITE lists functional families used to evaluate performance of FEATURE. Column Index is index of the conserved position within the corresponding PROSITE
regular expression. Column Amino-acid is code of the amino-acid at that position. Column Atom is the residue atom at which the FEATURE microenvironment is
centered.
doi:10.1371/journal.pone.0091240.t002

High Precision Protein Annotation

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e91240



In particular for this application, it is critically important to

generate class-conditional posterior probabilities because they

drive the decision of whether to invest scarce resources into

experimental confirmation of putative functional sites. The Naı̈ve

Bayes algorithm used in FEATURE-NB natively produces the

posterior probabilities. However, in original formulation, the SVM

algorithm does not produce the probabilities, but scores on an

arbitrary, non-intuitive scale. To overcome this issue, we used the

probabilistic extension of the SVM algorithm [21] as implemented

in the LIBSVM [13] software library.

Naı̈ve-Bayes classifier. The original FEATURE program

(FEATURE-NB) used Naı̈ve-Bayes classifier models. The Naı̈ve-

Bayes learning algorithm estimates class-conditional probability

density functions for each class vj by assuming independence of

individual features:

p(xjy~vj)~P
d

i~1
p(xijy~vj), j~1, . . . ,c ð4Þ

where c is the number of classes and d the number of features

(c~2 and d~480 in this work). Class-conditional posterior

probability estimates are derived by combining the density

functions and class probabilities using Bayes theorem:

p(vj jx)~

p(vj)P
d

i~1
p(xijy~vj)

p(x)
ð5Þ

The decision function assigns a given feature vector x to the class

with the maximum estimated posterior probability:

g(x)~ arg max
j

p(vj jx)~ arg max
j

p(vj)P
d

i~1
p(xijy~vj) ð6Þ

We treated P~p(v1) as a tunable parameter. We approximat-

ed p(xijy~vj) using the training data and dividing the observed

values into a histogram of five bins [8].

Predictive Model Selection and Performance Estimation
Performance evaluation of FEATURE included selection of the

best classification model for each site. The different models were

built by varying the top-level parameter p (P for Naı̈ve Bayes, C
for SVM). We performed model selection by comparing cross-

validation estimates of performance for the different models, and

selecting as the best model the one producing the minimum

number of misclassifications. For each model corresponding to a

different value of the top-level parameter, we also recorded the

estimated class-conditional posterior probabilities for each sample.

Once the best model was chosen for each functional site, we

calculated precision and recall using the recorded class-conditional

probabilities. This required setting a decision threshold to achieve

the stated goal of 99% precision. In a finite-sample scenario, it is

not possible to achieve the exactly specified value of precision; we

used the closest achievable value. The actual achieved precision

values are reported in the Results section.

The model selection process used the positive and negative

feature vectors and performed a grid search of user-tunable

parameters (cost C for FEATURE-SVM, prior probability of the

positive class P for FEATURE-NB) yielding the best model. The

search amounted to selecting the model parameters which

produced the highest recall given a precision, estimated using

cross-validation as described below. The optimization of the

parameters C and P was conducted over a pre-defined set of

values. For each value, we performed the five-fold cross-validation

estimation of the performance of the classifier. Based on published

guidelines [22] and the authors’ experience, we used the following

set of SVM cost grid values on the log2 C scale:

f{5,{4,{3,{2,{1,0,1,2,3,4,5g. Classifiers built using Naı̈ve

Bayes utilized a previously published [8] grid of values P

f10{6,10{4,0:01,0:1,0:5,0:8g.
By necessity, the number of positive examples was significantly

smaller than the number of negative examples. To ameliorate the

impact of the highly unbalanced classes, we used stratification by

class label, whereby each cross-validation fold had approximately

the same proportion of positive and negative examples as the

overall training set.

The cross-validation algorithm for a given top-level parameter p
is defined in Algorithm 1 box. The number of folds F was set to

five.

This approach highlights the following question related to

estimation of model performance in the cross-validation setting.

Predictionsi is the set of probability estimates for examples in

subset Di. The union of all Cross Validation Seti sets contains the

entire training set, so the above procedure generates probability

estimates Predictions for all training set examples. In principle,

this is the required input data for estimating classifier performance.

However, the individual prediction sets Predictionsi were

generated by F different models, and are therefore not directly

comparable. To the best of our knowledge, there is no consensus

in the machine learning community on how to produce aggregate

measures in this scenario [23]. We took the approach of treating

all F cross-validation iterations as a single continuous experiment,

although other approaches may be sensible.

The Predictions probability estimates were used to calculate all

statistics reported in the Results section.

Comparison of FEATURE with Pfam
The key challenge in comparing different annotators is

matching their respective functional site assignments. In our case,

FEATURE produces functional sites predictions as defined by

PROSITE, because that is where the ‘‘truth’’ labels for

FEATURE models are derived from. Pfam has its own

nomenclature of functional sites, creating the challenge of

comparing predictions for the two methods. To resolve this and

estimate Pfam predictive performance on a scale comparable to

FEATURE, we developed a protocol utilizing InterPro [24], a

resource which unites diverse protein annotation databases,

including PROSITE and Pfam. The protocol consisted of the

following steps for each of the 20 protein models we analyzed:

Algorithm 1 The cross-validation approach for
generating sample predictions for a given
functional site and associated training dataset
D

Require: dataset D, subsets D1, D2 … DF, parameters p
for i = 1 … F do

Learning Seti = D\Di

Cross Validation Seti = Di

Modeli = Train(Learning Seti, p)
Predictionsi = Predict(Modeli, Cross Validation Seti)

end for
Predictions = |F

i~1 Predictionsi

High Precision Protein Annotation
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N Record PROSITE accession number for the functional site.

FEATURE predictive models are functional site predictors

based on PROSITE patterns, therefore by definition each has

a PROSITE accession number.

N Record all Pfam annotations that are co-located with

PROSITE annotations (identified by the PROSITE accession

number) in InterPro. To increase confidence in the mapping,

we only used InterPro mapping entries for which the

corresponding protein exists in SWISSPROT [25].

As an example, PROSITE ASP_PROTEASE (PS00141) maps

to two Pfam domains: Eukaryotic aspartyl protease (PF00026)

and Retroviral aspartyl protease (PF00077). The mapping of

all 20 protein models is listed in Table 3.

N Generate Pfam predictions (domains) using the amino-acid

sequence data for the positive and negative examples as input.

N Calculate Pfam precision and recall using the PROSITE-to-

Pfam mapping. The confusion matrix was generated using the

following logic:

– For positive examples, if any of the Pfam predictions

matched PROSITE as per Table 3 mapping, we

considered the prediction a True Positive; if none of the

Pfam predictions matched PROSITE, we considered the

prediction a False Negative.

As an example, consider an ASP_PROTEASE positive

example. If Pfam prediction for the example contained

Eukaryotic aspartyl protease (PF00026) or Retroviral

aspartyl protease (PF00077), it was considered a True

Positive.

– For negative examples, if any of the Pfam predictions

matched PROSITE, we considered the prediction a False

Positive; if none of the Pfam predictions matched

PROSITE, we considered the prediction a True Negative.

One of the functional sites (ZINC_PROTEASE) did not have a

matching InterPro entry and therefore was not used in Pfam

analyses because there was no pre-specified way to compare the

FEATURE and Pfam predictions for that site.

This protocol does not provide an opportunity to control the

precision/recall trade-off. Therefore the Pfam results were

reported at whatever precision level was reached with Pfam.

Computations
Training and evaluation of SVM machine learning on all

PROSITE v20.80 functional classes demanded large-scale parallel

computation. Feature extraction, parameter optimization and cross-

validation takes 4–8 hours on an Intel Xeon 3400-series processor

for a typical SVM predictive model, the most computationally

demanding of the three methods considered here. To meet this

challenge, all computations were performed using Amazon Elastic

Cloud Computing (EC2) services with MIT StarCluster software

[26]. Amazon EC2 provides virtual machines (VMs) for scalable

cost-efficient computation. MIT StarCluster organizes these VMs

into a dynamically scalable Beowulf cluster with parallel computing

tools such as MPI and Open Grid Scheduler.

Results

We extracted positive and negative examples using the protocol

described in the Materials section. The resulting numbers of

Table 3. PROSITE/Pfam mapping of the functional families.

PROSITE Pfam/InterPro

ADH_SHORT ADH_SHORT, NAD dependent epimerase/dehydratase

ALPHA_CA_1 Eukaryotic-type carbonic anhydrase

ASP_PROTEASE Retroviral aspartyl protease, Eukaryotic aspartyl protease

ATPASE_ALPHA_BETA ATP synthase alpha/beta family

CARBOXYLESTERASE_B_1 Carboxylesterase family, Alpha/beta hydrolase fold

CYTOCHROME_P450 Cytochrome P450

EF_HAND EF-hand, EF, Dockerin, Secreted

EGF_1 Laminin EGF-like, hEGF, EGF-like domain, Ca-binding EGF

IG_MHC IG C1 Set, IG V Set

INSULIN Insulin/IGF/Relaxin family, Nematode insulin-related peptide beta type

LACTALBUMIN_LYSOZYME C-type lysozyme/alpha-lactalbumin family

LECTIN_LEGUME_BETA Lectin_legb

PA2_HIS Phospholip_A2_1, Phospholipase A2, PLA2G12

PROTEIN_KINASE_ST Protein kinase domain, Protein tyrosine kinase

PROTEIN_KINASE_TYR Protein tyrosine kinase, Protein kinase domain, RIO1 family, Lipopolysaccharide kinase (Kdo/WaaP)
family

RNASE_PANCREATIC Pancreatic ribonuclease

SOD_CU_ZN_1 Copper/zinc superoxide dismutase

TRYPSIN_HIS TRYPSIN

TRYPSIN_SER TRYPSIN, Immunoglobulin A1 Protease

ZINC_PROTEASE NO MATCH FOUND

Column PROSITE lists functional families used to evaluate performance of FEATURE. Column Pfam/InterPro lists corresponding Pfam families used to compare
performance of FEATURE and Pfam. The correspondence was established through the InterPro database as described in the text.
doi:10.1371/journal.pone.0091240.t003
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examples, given in Table 4, provided for narrow 95% confidence

intervals of the estimated performance parameters and robust

conclusions regarding the methods’ performances.

Due to finite training set size, precision could not be set exactly

at 99%. We used the closest achievable value for FEATURE-

SVM and FEATURE-NB, as reported in Table 5. For Pfam, no

precision tuning was possible, but with the exception of

ADH_SHORT and KINASE_TYR it also provided precision

exceeding 99% (for ADH_SHORT and KINASE_TYR the Pfam

precision values were 98% and 96%, respectively).

Overall, FEATURE-SVM clearly surpassed Pfam and FEA-

TURE-NB in terms of recall at approximately 99% precision

(Fig. 1, Table 5 and Figures S1–S20 in File S1). For 18 out of the

20 functional sites, the difference between the FEATURE-SVM

recall rate and that of Pfam was between 6% and 78%. All

differences were statistically significant with 95% confidence. For

one site (EGF_1), Pfam recall rate was slightly higher than

FEATURE-SVM (75% vs. 72%), though the difference was not

statistically significant. The Pfam result for ZINC_PROTEASE

was not available because InterPro did not have a corresponding

Pfam match.

FEATURE-SVM was superior to FEATURE-NB for 16 sites

by between 1% and 60%. In ten out of the 16 comparisons

the difference was statistically significant with 95% confidence.

For LACTALBUMIN_LYSOZYME, ALPHA_CA_1, CYTO-

CHROME_P450 and CARBOXYLESTERASE_B_2, both

FEATURE-SVM and FEATURE-NB achieved 100% recall. In

summary, for the 19 sites for which all three methods yielded a

result, the mean recall rates were 95% (FEATURE-SVM), 83%

(FEATURE-NB) and 59% (Pfam).

Discussion

We sought to develop a system for identifying functional sites in

protein structures for an important use case scenario. Specifically,

our goal was to develop an annotator that achieves acceptable

levels of recall at 99% precision. We found that the combination of

FEATURE and Support Vector Machine classifier delivered high

recall (exceeding 70% in all of the cases studied, and averaging

95% over 20 functional sites) at the specified level of precision.

This met our goals and thus we are able to provide a useful new

tool (through the WebFEATURE service) for researchers in this

domain, especially given the magnitude of the absolute and

relative performance gain (95% recall vs. 83% for FEATURE-NB

and 59% for Pfam).

We observed that the Support Vector Machine classifier

delivered better classification accuracy than Naı̈ve Bayes (95%

recall vs. 83% for the FEATURE-NB averaged over all 20

functional sites). This is consistent with observations in many other

application domains (for example cancer diagnostics [27]) and

further confirms the power of this classification model.

The FEATURE-SVM annotator is purely predictive and does

not explain to what extent individual microenvironment attributes

contribute to the functionality of the predicted site. This behavior

is a consequence of our focus on maximizing accuracy (i.e.,

precision/recall). It is consistent with recent findings in causal

inference [28] that demonstrate that ranking of features for

classification may have no explanatory utility.

When evaluating annotators for our use case scenario

(i.e., prediction of function in a solved structure followed by

experimental confirmation), it is important to note that the

Table 4. Number of positive and negative examples for each
functional site.

PROSITE Functional Family
Positive
examples

Negative
examples

ADH_SHORT 373 50130

ALPHA_CA_1 422 50000

ASP_PROTEASE 1585 48445

ATPASE_ALPHA_BETA 369 50000

CARBOXYLESTERASE_B_1 345 50000

CYTOCHROME_P450 393 50000

EF_HAND 1811 48435

EGF_1 138 50058

IG_MHC 2017 49098

INSULIN 826 49078

LACTALBUMIN_LYSOZYME 649 50024

LECTIN_LEGUME_BETA 459 50007

PA2_HIS 382 50003

PROTEIN_KINASE_ST 1096 50000

PROTEIN_KINASE_TYR 275 50010

RNASE_PANCREATIC 384 50000

SOD_CU_ZN_1 392 47506

TRYPSIN_HIS 446 47490

TRYPSIN_SER 317 48034

ZINC_PROTEASE 649 50028

doi:10.1371/journal.pone.0091240.t004

Table 5. Precision and recall values achieved by different
classifiers.

Functional Family SVM P/R NB P/R Pfam P/R

ADH_SHORT 98.9 98.4 98.9 97.3 97.9 37.3

ALPHA_CA_1 99.1 100.0 99.1 100.0 100.0 93.8

ASP_PROTEASE 99.0 100.0 99.3 95.8 100.0 57.2

ATPASE_ALPHA_BETA 98.9 99.7 99.0 81.3 100.0 22.2

CARBOXYLESTERASE_B_1 99.1 100.0 99.1 100.0 100.0 67.0

CYTOCHROME_P450 99.0 100.0 99.0 99.7 100.0 57.8

EF_HAND 99.0 87.9 99.0 64.0 99.3 58.7

EGF_1 99.0 71.7 100.0 11.6 100.0 74.6

IG_MHC 99.0 90.5 99.0 73.0 100.0 65.4

INSULIN 99.0 94.3 98.8 60.4 100.0 42.9

LACTALBUMIN_LYSOZYME 99.1 99.8 99.1 99.8 100.0 86.0

LECTIN_LEGUME_BETA 98.9 99.6 98.9 99.1 100.0 36.2

PA2_HIS 99.0 100.0 99.7 95.0 100.0 61.0

PROTEIN_KINASE_ST 99.0 95.3 99.1 72.6 100.0 67.3

PROTEIN_KINASE_TYR 99.2 92.0 99.4 63.6 96.3 76.4

RNASE_PANCREATIC 99.1 87.8 99.1 82.0 100.0 76.0

SOD_CU_ZN_1 99.0 100.0 99.0 99.2 100.0 30.6

TRYPSIN_HIS 99.0 93.0 99.0 91.7 100.0 84.8

TRYPSIN_SER 99.3 87.7 99.2 81.7 99.2 76.7

ZINC_PROTEASE 99.1 99.1 99.5 94.8

The values are given in percents. SVM: FEATURE-SVM; NB: FEATURE-NB; P/R:
Precision/Recall. PROSITE-Pfam mapping was not available for ZINC_PROSITE,
and thus no Pfam results were obtained.
doi:10.1371/journal.pone.0091240.t005
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FEATURE-based tools point to exact atomic location of the

functional site, unlike Pfam, which reports a (sometimes long)

sequence segment corresponding to a functional domain.

We performed exhaustive analysis of 20 functional sites, which

is a small fraction of the potentially useful sites (the number offered

through the WebFEATURE service is over 600). Nevertheless, we

argue that our main conclusion of high utility of the FEATURE-

SVM annotator is likely to apply to the general population of sites

for the following reasons:

N The 20 sites were chosen a priori, before any analyses, and then

frozen, which makes for an unbiased sample.

N Given the magnitude of the estimated recall (95%), even if the

estimate is biased, the large-sample estimate is still likely to be

in the very useful range.

We developed a protocol for measuring Pfam performance in a

way that is comparable to FEATURE. There is no single best way

to do this since the mapping of functional sites from Pfam to

FEATURE involves a degree of expert judgment. We argue that

our protocol does not favor FEATURE for the following reason.

Pfam may predict multiple domains for a given input sequence. If

any of the predicted domains matches PROSITE per the

established mapping, we consider the prediction to be a True

Positive. Therefore we believe that the FEATURE performance

relative to Pfam observed in practice is likely to be as good as

reported here or better.

The choice of Pfam as the primary 1D function prediction

method for the comparison was somewhat arbitrary. It is based on

the fact that Pfam is a well-recognized tool, and that it represents a

class of sequence-based methods with similar performance. Thus

our comparative results should be representative of the expected

performance gap between FEATURE-SVM and 1D methods.

We performed extensive and rigorous evaluation of the methods

we used, with over 50,000 training examples for each functional

class and extensive grid-search of the user-tunable parameters

using cross-validation. To the best of our knowledge, no other

annotator has been evaluated in a comparable manner.

End user of a functional annotator system would benefit from a

rigorous performance comparison of competing state-of-the-art

structural methods. However, we are not aware of another

predictive algorithm which has been evaluated in the way

performed in this paper, therefore direct comparison with our

work is not possible. Furthermore, a key requirement for the

comparison of different predictor outputs is translation to a

common ‘‘language’’ of functional sites. As illustrated in our

FEATURE - Pfam comparison, this requires extensive automation

and human judgment, and is beyond scope of the present report.

We leave a comparison of FEATURE to other structural methods

for future research.

Figure 1. Performance comparison of FEATURE-SVM, original FEATURE (FEATURE-NB) and Pfam. y-axis is recall value at approximately
99% precision. Vertical lines within bars indicate 95% confidence intervals. Pfam result for ZINC_PROTEASE was not available because the InterPro
database, which was used to map site names, does not have a mapping record for this functional site. The functional sites are sorted by increasing
recall value of FEATURE-SVM.
doi:10.1371/journal.pone.0091240.g001
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Conclusions

The combination of FEATURE properties and Support Vector

Machine classifier predicts precise location of functional sites in

unannotated protein structures with 99% precision and high recall

rates (exceeding 70% in all of the cases studied, and averaging

95%). As a result, the WebFEATURE service which implements

the FEATURE predictive models allows users to confidently

pursue laboratory confirmation of the predicted protein function.

Additionally, our findings suggest that bioinformaticians interested

in predictive modeling of protein activity should consider Support

Vector Machine classifiers for the most accurate results.
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S14, Recall vs. Precision: PROTEIN_KINASE_ST. Figure S15,
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