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Abstract
Hippocampal neuronal populations exhibit multiple kinds of activity patterns, from the dominant
theta rhythm during active exploration to high-frequency ripple-like activity during periods of
relative inactivity. In animals, evidence is rapidly accruing that these high-frequency ripple
activity patterns subserve retention of spatial learning performance. In a translational effort to
address the possible function of offline hippocampal processes in humans, we measured
spontaneous gamma activity during an awake rest period within a virtual spatial learning context.
Whole-head magnetoencephalographic (MEG) recordings were taken while healthy participants
(N = 24) quietly rested (eyes open) between encoding and retrieval phases of a hippocampal-
dependent virtual Morris water maze task. Results are that fast gamma activity (80-140 Hz) in the
septal or posterior region of the hippocampus (bilaterally) was positively correlated across
participants with subsequent within-session spatial learning rate. Fast gamma did not predict initial
retrieval performance following rest, failing to provide evidence of a direct link between
spontaneous high-frequency activity patterns during awake rest and consolidation of previous
spatial memories. The findings nevertheless are consistent with a prospective role for offline
human hippocampal processes in spatial learning and indicate that higher spontaneous gamma
activity in the septal hippocampal region is related to faster updating of spatial knowledge in
familiar virtual surroundings.
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1. Introduction
Hippocampal neuronal populations exhibit multiple kinds of coherent activity that support
learning and memory. The most studied network pattern is the theta rhythm, which takes the
form of sinusoidal-like 4-10 Hz oscillations that are prevalent during exploratory behavior
[1]. Elegant empirical and computational studies have provided key insights into theta
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(reviewed in [2]), including its potential role in regulating place cell firing [3, 4] as well as
its link to spatial memory performance in animals [5] and humans [6-9]. In addition to theta,
the hippocampus also exhibits rhythmic gamma oscillations (>30 Hz) and irregular sharp-
wave activity (i.e., ripples) containing high frequency components (>80 Hz), particularly
during non-exploratory behavioral states such as consummation, quiet rest and sleep [10,
11]. These high-frequency activity patterns have garnered significant interest for their
possible role in ‘offline’ signaling between the hippocampus and neocortex, a candidate
mechanism for long term memory consolidation [10, 12, 13].

Growing evidence indicates that offline high-frequency ripples are critical for learning [14].
Single-unit recordings have revealed that the same hippocampal neuronal populations that
are active during spatial exploration show reactivation or ‘replay’ during ripple events after
spatial exploration. Replay is thought to strengthen patterned activity and potentially drive
hippocampal-neocortical signaling as a mechanism of memory consolidation [12]. Indeed,
disrupting ripple activity leads to impaired memory performance [15-17]. Originally
associated with sleep [18, 19], recent studies have confirmed that ripple-associated neuronal
replay also occurs during awake rest periods [20]. Comparatively little is known about the
functional relevance of these offline activity patterns for human learning [21]. Initial
findings in epileptic patients are consistent with a role for ripple activity in verbal memory
performance [22]. In that study, the number of rhinal cortical ripples, rather than
hippocampal ripples, during awake rest was positively associated with subsequent item
retrieval. No evidence in humans, however, has been reported in a spatial learning context.
This is the ideal starting point for translating findings from animal research to the human
hippocampus given that the former traditionally uses spatial learning paradigms to study
hippocampal functioning.

We noninvasively studied dynamical brain activity during an awake rest period situated
between encoding and retrieval phases of a hippocampal-dependent virtual reality Morris
water maze task [23,24]. For these healthy participants, a positive association was
previously reported between navigation-related hippocampal theta and task performance [8].
Magnetoencephalographic (MEG) recordings of participants’ quietly resting were used to
reconstruct spontaneous hippocampal activity by adaptive beamforming [25, 26], which was
correlated with spatial performance. We targeted spontaneous 80-140 Hz activity (‘fast
gamma’) to match that used by Axmacher and colleagues [22] for quantifying hippocampal
and rhinal cortical ripples from intracranial recordings in humans. We predicted that the
overall magnitude of hippocampal region fast-gamma power measured during awake rest
would positively correlate with subsequent spatial performance, indicating a possible
contribution of offline hippocampal region high frequency activity in human spatial
learning.

2. Material and Methods
2.1 Participants

Twenty-five healthy, right-handed adults completed the study and were paid for
participation, as previously described [8]. One participant from the original sample was
removed from the present analyses because of excessive head movement during the awake
rest recording, leaving an N = 24 (12 women; age, mean ± SD = 29 ± 6 y). All participants
gave informed consent in writing prior to participation. The study was approved by the
Combined Neuroscience Institutional Review Board of the National Institutes of Health.
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2.2 Task procedure
Participants performed a virtual Morris water maze task, which is also described in Cornwell
et al. [8]. Briefly, participants navigated two virtual pools to an escape platform. In one pool,
participants were at risk of receiving electric shocks before reaching the platform (threat). In
the other pool, they were completely safe from shocks (safe). Participants alternated
between pools, performing four trials during each alternation from one of four starting
positions (N, S, E, W), randomized without replacement. Other than the distal cues on the
surrounding walls that can be used as landmarks for navigation, the pools were structurally
identical. The threat manipulation was designed to reveal contributions of navigation-related
hippocampal theta (2-8 Hz) to spatial cognition and anxiety [8], but was not relevant to the
current goal of linking offline hippocampal gamma activity to subsequent spatial learning
performance. Accordingly, navigation data were averaged between the two pool contexts.

Two tasks runs were administered. The first consisted of visible platform trials (encoding
phase), with the platform's position fixed. There were 20 visible platform trials completed
per pool followed by one probe trial per pool at the end of the run. During the probe trials
the platform was removed unbeknownst to the participants. The second task run consisted of
20 hidden platform trials per pool (retrieval phase), with the platform fixed in the same
position as during the first task run. During these trials, the platform was initially hidden but
became visible after 15 s if it was not found beforehand. Participants were informed that the
platform location in each pool context was fixed throughout the task. They were instructed
to navigate as quickly and directly as possible to the platform on each trial regardless of
whether it was visible or hidden.

In between the two task runs, a single MEG recording was collected while participants
relaxed with their eyes open for 5 m. During the awake rest recording, participants were
closely monitored by video camera to ensure that they remained awake during this period.
They were not given any additional instructions other than to hold still, keep their eyes open
and not sleep.

2.3 MEG acquisition
Neuromagnetic activity was measured by a 275-channel whole-head magnetometer (VSM
MedTech, Inc., British Columbia, Canada) in a magnetically-shielded room using 3rd-
gradient balancing for active noise cancellation. For the awake rest recording, data were
collected at 1200 Hz for 5 m with a 0-300 Hz bandpass. Fiducial coils placed at the nasion
and preauricular sites were energized during the run to record head position continuously
and used for offline coregistration with each participant's anatomical magnetic resonance
images (MRI) that were acquired in a separate session. MEG data from the task runs are
presented elsewhere [8].

2.4 Resting-state source analyses
A minimum-variance adaptive beamformer algorithm was utilized to estimate regional
oscillatory power during rest ([25, 26]; for a similar resting-state analytic approach, see
Rutter et al. [27]). Signal covariance across the sensor array was computed from a single 280
s epoch (after removing the first and last 10 s of the 5 m recording). This was done
separately for data bandpass filtered in the slow gamma (30-80 Hz) and fast gamma (80-140
Hz) frequency bands. A multi-sphere source space model generated from participants’ MRIs
was used for source power estimation (5-mm spatial sampling grid). Band-specific source
power at each grid point or voxel was integrated over the entire 280-s epoch and divided by
a constant noise estimate, which was derived from the same covariance matrices for each
frequency band, to correct for depth biases in beamformer power estimates (pseudo-Z
metric). Using Analysis of Functional NeuroImages (AFNI, [28]) individual subject source
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volumes were within-volume normalized, co-registered to their anatomical MRIs and
spatially warped to a Talairach template for group analyses.

Based on our a priori hypothesis, we performed a targeted analysis of bilateral
hippocampus. We used the same anatomical masks as in Cornwell et al. [8], which were
created with the automated Talairach Atlas Daemon [29] and resampled to the 5-mm grid of
the source imaging data. Spontaneous oscillatory power estimates were averaged for voxels
in septal (posterior, –45 < y < –29 mm in Talairach space) and temporal (anterior, –9 > y > –
20 mm) thirds of the left and right hippocampus and extracted for analyses in SPSS 18. The
intermediate third of the hippocampus was not included in our analyses in order to maximize
independent septal and temporal hippocampal source power estimates [8]. Figure 1 shows
short segments from the entire time courses of fast gamma activity reconstructed from
sample voxels located within septal and temporal hippocampal subregions.

Although the standardized atlas-based masks are centered at the left and right hippocampus,
we do not make the strong claim that the source power estimates are exclusively measuring
activity of the hippocampus proper. First, through resampling to a 5-mm grid, it is likely that
the masks slightly extend 1-2 mm into surrounding parahippocampal cortices in some
places. Second, spatial normalization procedures that rely on whole-brain parameters can
lead to coregistration errors and noisy regional measurements given inter-subject anatomical
variability of medial temporal cortices [30]. Accordingly, the power estimates from septal
and temporal subregions likely contain some mixture of source activity from the
hippocampus proper and surrounding parahippocampal cortices. Nevertheless, we have
shown previously that adaptive beamformers are able to produce sufficiently independent
estimates to identify functional differences between septal and temporal thirds of the
hippocampus [8]; and through multiple regression analyses here, spatial selectivity can be
addressed at an important theoretical level (i.e., subregions along the longitudinal axis) even
if hippocampal source activity cannot be completely distinguished from adjacent
parahippocampal source activity.

Bivariate correlations between subregion power estimates and performance metrics were
first calculated for descriptive purposes. Multiple regression analyses were performed to test
for a selective association between septal hippocampal fast gamma power and subsequent
spatial performance, controlling for temporal hippocampal gamma power to demonstrate
regional specificity and controlling for septal hippocampal slow gamma power (30-80 Hz)
to demonstrate spectral specificity (4 regressors of interest). Separate analyses were carried
out for the left and right hippocampal spontaneous power estimates to guard against
overfitting the regression models. In total, four multiple regression analyses were conducted,
and to evaluate the overall model fit in each case, family-wise alpha level was kept at .05
using a modified-Bonferroni correction method [31].

2.5 Whole-brain analysis of correlations
As a secondary analysis, whole-brain images were generated to visualize the volumetric
distribution of between-subject correlation coefficients between fast gamma power and
spatial learning rate. This analysis was intended to show the degree to which the
anatomically-based masks overlap with clusters of high correlation coefficients in the
volumetric data for comparative purposes and to validate the region of interest approach
used for the main analyses. With high overlap, we can be confident that the masks are
selectively capturing signal from the hippocampal region and the data are not being biased
by spatial leakage from a large cluster centered elsewhere (e.g., superior temporal cortex).
We also computed the Euclidean distance in standardized space between the local maxima
within temporal cortices and the left and right hippocampal masks to quantify the amount of
disparity. The choice of not using whole-brain analyses to draw our primary inferences was

Cornwell et al. Page 4

Behav Brain Res. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



motivated by the substantial loss of statistical power that stems from multiple test correction
when the majority of these tests are outside the focus of the present investigation.

2.6 Performance measures
Probe (platform-less) trials were included at the end of the visible platform run to establish
that participants had, at least, partially encoded the platform's location in relation to the
distal cues in the pools before the awake rest recording. We calculated the percentage of the
total trial time spent in the correct quadrant (i.e., where the platform had been located) on
these probe trials to identify systematic biases in their search behavior that would be best
explained as reflecting accrual of knowledge of the platform's location (>25%).

Heading error on the subsequent retrieval trials in the hidden platform run was used as the
dependent variable to address whether spontaneous hippocampal region gamma during
awake rest is related to spatial learning performance. These data, which consist of 5 blocks
of 4 trials per pool, were analyzed previously to study performance differences between the
threat and safe pools (see Figure 2 in [8]). Because of the variable starting positions within
each block, mean heading error is sensitive to the extent to which participants use one or
more distal cues as landmarks in selecting their paths to the hidden platform.

After averaging threat and safe navigation data, we focused on two dependent variables: 1st

block mean heading error, which taps initial retrieval performance following rest, and linear
change in mean heading error from the 1st to 5th block (using a weighted sum [2, 1, 0, –1, –
2] for mean heading error across blocks), which operationalizes within-session spatial
learning rate. For this latter measure, positive values reflect better performance as a function
of trial block (i.e., within-session spatial learning). While initial retrieval performance is
similar to the kind of ‘all-or-nothing’ test commonly used to measure declarative memory
performance (e.g., [22]), within-session performance change captures gradual refinement
and dynamic updating of a spatial memory that is driven, in part, by new encoding.

3. Results
3.1 Behavioral performance

To determine whether participants had gained knowledge of the platform's location prior to
the awake rest period, we quantified their search biases on the final probe (platform-less)
trials in the first task run. Averaged across pool contexts, participants spent significantly
more time searching in the quadrant in which the platforms had been previously located
(35%) than expected by chance (25%), one-sample t(23) = 2.22, p = .037. This result
suggests that participants had acquired some knowledge of the platform location before the
rest recording. Moreover, mean linear change in heading errors across hidden platform trials
in the second task run (after rest) was significantly greater than zero, one-sample t(23) =
3.26, p = .003. This improvement in navigation performance from the 1st to the 5th block of
hidden trials indicates that participants gradually refined their knowledge of the platform's
location (i.e., within-session spatial learning).

3.2 Spontaneous hippocampal region gamma – spatial performance relationship
Table 1 shows Pearson correlation coefficients for hippocampal region gamma power
estimates and heading error performance variables for the hidden platform run. Regression
models were run separately for left and right hippocampal region gamma power (see section
2.4) with 1st block mean heading error and linear change in mean heading error. The model
fits for 1st block mean heading error regressed on left or right hippocampal region (slow and
fast) gamma power estimates were not significant, F's < 1. This outcome indicates that left
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and right spontaneous hippocampal region gamma during awake rest showed no evidence of
being related to retrieval performance on the first block of hidden trials following rest.

For the next two regression analyses, we included 1st block mean heading error as an
additional regressor because as a linear change metric, linear change in mean heading error
(spatial learning rate) is likely to be partly dependent upon (and thus related to) initial
heading error values. The model fit for spatial learning rates regressed on left hippocampal
region gamma power was significant, F(5,18) = 3.91, adjusted r2 = .39, p < .05 (corrected).
Fast gamma (80-140 Hz) power in the left septal subregion showed a positive association
with learning rate, t(18) = 2.37, p = .029, β = .41, partial r = .49, variance inflation factor
(VIF) = 1.12 (Figure 2). The model fit for spatial learning rates regressed on right
hippocampal region gamma power was also significant, F(5,18) = 4.21, adjusted r2 = .41, p
< .05 (corrected). Fast gamma power in the right septal subregion showed a positive
association with learning rate, t(18) = 2.46, p = .024, β = .49, partial r = .50, VIF = 1.51
(Figure 2). All other hippocampal-based predictor variables for each model, including slow
gamma power estimates, failed to show significant associations with learning rates, all p's
> .56.

3.3 Secondary whole-brain analysis of fast gamma – spatial performance correlations
Figure 3 shows whole-brain images of correlation coefficients (Pearson's r) for fast gamma
power and linear change in mean heading error, which ranged from –.64 to .63. Clusters of
high correlation coefficients can be seen to overlap with the left and right hippocampal
masks, particularly around the septal (posterior) subregions. The maximum correlation in the
right temporal cortex (xyz = [28, –27, –5], r = .61) was positioned 5 mm rostral to the right
hippocampal mask. The maximum correlation in the left temporal cortex (xyz = [–17, –42,
2], r = .63) was positioned 11.2 mm caudomedial to the left hippocampal mask. These
observations indicate good correspondence between the whole-brain pattern of correlations
and the a priori anatomical masks that were used for extracting hippocampal source power
estimates. This outcome provides reasonable assurance that the signal extracted from the
anatomically-based masks for the main analyses originated from the hippocampal region
rather than being the product of spatial leakage from source(s) centered elsewhere.

4. Discussion
We found that spontaneous fast gamma (80-140 Hz) activity measured during awake rest
from the septal (posterior) region of the hippocampus correlates with subsequent spatial
learning. Those participants who showed the most within-session learning on the virtual
Morris water maze task evidenced greater offline septal hippocampal fast gamma activity
than those who showed little change in spatial performance. This finding complements
growing evidence in humans that theta activity (4-8 Hz) in the septal hippocampal region
during virtual navigation (‘online’) indexes spatial performance level [6-9], suggesting that
this structure's functional role in human spatial learning and memory spans periods of active
navigation and relative inactivity. Our data demonstrate both regional and spectral
specificity in the offline human hippocampal region dynamics that are correlated with
spatial learning, extending electrophysiological evidence obtained with invasive
measurements in epileptic patients [22].

Consistent with previous work [8], we observed that septal hippocampal activity is
particularly linked to superior spatial performance, compared to temporal (anterior)
hippocampal activity that does not appear to make a substantial contribution in this regard.
This fits with a large corpus of data in animals indicating a predominant role for the septal
third of the hippocampus in cognitive processes such as spatial learning and memory
[32-34]. While the temporal third of the human hippocampus likely mediates spatial
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processing to an extent [8, 35], it is believed to also support a wider range of phenomena,
including nonspatial processes [36] and affective functions [8, 37]. Unlike our previous
MEG work that predominantly implicated online left hippocampal theta in spatial
performance, the present data supports the role of bilateral septal hippocampal gamma in
offline processes (Table 1). Individually, both left and right septal hippocampal region
gamma accounted for significant variance in spatial performance, suggesting that these
offline processes do not show a lateralized functional bias.

Fast gamma during awake rest was specifically predictive of spatial learning rate after
controlling for the contribution of slow gamma (30-80 Hz) power estimated from the same
hippocampal subregions. The selective relationship for spontaneous fast gamma activity is
in line with claims of functional heterogeneity of oscillatory activity along the gamma
spectrum [38, 39]. Together with evidence that during active, virtual navigation theta
oscillatory (4-8 Hz) activity is correlated with spatial performance [6-9], the current findings
extend to humans the view that the functional importance of specific hippocampal
population dynamics varies by behavioral context [10]. During active exploration,
hippocampal place cells discharge systematically in relation to the ongoing theta rhythm
[40], such that the relative theta phase of firing of these cell assemblies encodes an animal's
location more precisely than their mean firing rate [3, 4]. It is thought that by temporally
constraining the firing of sequentially-activated place cell assemblies as an animal navigates
through its environment, theta oscillations link these cell assemblies into higher-order
dynamic structures embodying spatiotemporal context [2]. Accordingly, these theta-centered
dynamics may support spatial encoding.

After exploring an environment, these cell assemblies are known to fire in the same (and
also reverse) temporal sequence during sleep and awake rest, a phenomenon called replay
[20, 41]. Neuronal replay is embedded in high-frequency ripple events, such that entire
sequences of population activity are reenacted in time-compressed fashion. This
compression may facilitate spike-timing-dependent plasticity and support memory
consolidation by facilitating signal transfer from the hippocampus to the neocortex [42].
Indeed, recent manipulations in animals support a causal role for high-frequency ripple
activity during sleep and awake rest in retention of long term memories [15-17]. In humans,
similar electrophysiological phenomena in sleep and awake rest have been reported [21, 43],
but functional evidence is limited. Axmacher et al. [22] reported that number of ripple
events in rhinal cortex recorded invasively during awake rest correlates with subsequent
item memory retrieval. Our data extend this work to a possible role for high-frequency
activity in human spatial learning.

We found that fast gamma activity predicted the linear decrease in mean heading error
across the five hidden trial blocks (within-session learning rate), but did not correlate with
performance on the 1st trial block (initial retrieval performance). The lack of a relationship
between offline fast gamma activity and initial retrieval performance prevents a
straightforward link to be drawn between the former and spatial memory consolidation.
Nonetheless, offline hippocampal region fast gamma may function more broadly than
simply consolidating past experiences. Notably, hippocampal ripple activity has been
implicated in preplay in which novel sequences of population activity are generated that are
related to recent experiences but do not specifically reenact prior population activity patterns
[44]. It is speculated that preplay may contribute to facilitation of learning when a novel task
is introduced gradually [44]. Thus, one possible explanation is that offline hippocampal
region fast gamma mediates constructive processes that facilitate the prospective use of
distal cues to navigate in a familiar environment when local information (the platform) is no
longer available [45]. Spontaneous hippocampal activity may, in short, optimize subsequent
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integration of new information as spatial knowledge of the environment is dynamically
updated, which would be reflected in within-session learning rates.

An alternative hypothesis is that the magnitude of offline fast gamma reflects general
integrity of the hippocampus and surrounding cortical regions. Accordingly, the observed
relationship could be trait-related in the sense that good spatial learners may generally show
greater high-frequency activity compared to poor learners regardless of the experimental
context. A second measurement of spontaneous activity taken outside the critical learning
context (e.g., before exposure to the task) would address this possibility. Reconfiguring the
task procedures may allow for properly testing these hypotheses, and overcome the
inferential limitations imposed by the current experimental design. Finally, it should be
recognized that high frequency oscillations generally have low amplitudes and reliable
estimation of fast gamma from hippocampal sources with MEG may be especially
challenging. However, in animals, ripple events can measure several times the amplitude of
theta oscillations [11], suggesting that noninvasive MEG may be a promising method of
capturing high as well as low frequency hippocampal population activity.

In summary, these findings in humans converge with a growing literature in animals on the
role of spontaneous high frequency activity patterns during awake rest and sleep in learning
and memory. Using a highly translational model of spatial learning (i.e., Morris water
maze), we observed that fast gamma activity that was measured noninvasively with MEG
during awake rest from the septal hippocampal region correlates with subsequent spatial
learning rate. This complements evidence that theta activity measured during active
navigation from the same hippocampal region also contributes to spatial performance [8].
Further specification of the repertoire of hippocampal region dynamics during active and
rest periods may inform on their functional importance in mediating learning and memory in
humans to keep pace with recent insights from animal models.
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Highlights

• Spontaneous hippocampal region gamma correlates with spatial learning in
humans

• Gamma in the septal hippocampal subregion is associated with superior learning

• Fast gamma between 80-140 Hz is especially linked to spatial performance
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Figure 1.
Example virtual sensor time series of spontaneous fast gamma (80-140 Hz) hippocampal
activity from two participants. Septal and temporal (Tem.) hippocampal activity (left and
right) was reconstructed by adaptive minimum-variance beamformers and source power was
integrated over a 280-s window during which participants rested. Brief periods of increased
fast gamma power can be observed in the time window displayed (1.53 s), which may be
related to hippocampal ripple events observed rodents.
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Figure 2.
Partial regression plots (with least square lines) show relationships between left and right
spontaneous septal or posterior hippocampal fast gamma (80-140 Hz) power and within-
session spatial learning rate (1st- 5th block linear trend).
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Figure 3.
Volumetric distribution of correlation coefficients for fast gamma activity (80-140 Hz)
during awake rest and within-session spatial learning rate. The resampled bilateral
hippocampal mask (in green) is overlayed on a standardized brain template (top row). The
correlation data are also overlayed on a standardized brain template and thresholded at
Pearson's r > .45, .50 and .55. (bottom rows). Red voxels are those that contain correlation
coefficients that exceed the threshold and are included in the anatomical masks. Orange
voxels also contain correlation coefficients that exceed the threshold but are not included in
the masks. Images are in neurological orientation (left = left). L = left, LH = left hemisphere,
RH = right hemisphere.
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Table 1

Pearson correlation coefficients (N = 24) for spontaneous high-frequency oscillatory power estimated from
hippocampal subregions during awake rest and initial spatial retrieval performance (1st block) and subsequent
spatial learning rate (linear trend).

Left hippocampus Right hippocampus

Frequency Anterior Posterior Anterior Posterior

1st block mean heading error

    80-140 Hz −.05 .03 .07 .05

    30-80 Hz −.08 −.18 .27 −.07

1st-5th block linear trend

    80-140 Hz .16 .47 .14 .53

    30-80 Hz .17 .16 .10 .22

Note: For 1st block mean heading error, negative coefficients indicate that straighter path trajectories are linked to greater spontaneous power

estimates. For 1st-5th block linear trend, positive coefficients indicate that greater linear decreases in error across blocks are related to greater
spontaneous power estimates.
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