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Abstract

Many real networks exhibit a layered structure in which links in each layer reflect the function of nodes on different
environments. These multiple types of links are usually represented by a multiplex network in which each layer has a
different topology. In real-world networks, however, not all nodes are present on every layer. To generate a more realistic
scenario, we use a generalized multiplex network and assume that only a fraction q of the nodes are shared by the layers.
We develop a theoretical framework for a branching process to describe the spread of an epidemic on these partially
overlapped multiplex networks. This allows us to obtain the fraction of infected individuals as a function of the effective
probability that the disease will be transmitted T . We also theoretically determine the dependence of the epidemic
threshold on the fraction qw0 of shared nodes in a system composed of two layers. We find that in the limit of q?0 the
threshold is dominated by the layer with the smaller isolated threshold. Although a system of two completely isolated
networks is nearly indistinguishable from a system of two networks that share just a few nodes, we find that the presence of
these few shared nodes causes the epidemic threshold of the isolated network with the lower propagating capacity to
change discontinuously and to acquire the threshold of the other network.

Citation: Buono C, Alvarez-Zuzek LG, Macri PA, Braunstein LA (2014) Epidemics in Partially Overlapped Multiplex Networks. PLoS ONE 9(3): e92200. doi:10.1371/
journal.pone.0092200

Editor: Alain Barrat, Centre de Physique Théorique, France
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Introduction

Although the study of isolated networks allows us to understand

how network topology affects network activity [1], most real-world

networks are not isolated, instead they interact with other

networks. In recent years, many researchers have studied how

interconnections between networks produce phenomena that are

absent in isolated networks [2]. A system composed of intercon-

nected networks, often called a network of networks [3–6], retains

connectivity links within each individual network but adds

dependency links that connect each network to other networks

in the system. This interdependency is the cause of many real-

world multiple network phenomena, such as failure cascades [7],

avalanches [8], and traffic overloads [9]. Very recently physicists

have begun to consider a particular class of network of networks in

which the nodes have multiple types of links across different layers

[10–16]. These so-called multiplex networks were introduced in

the social sciences several years ago [17] and provide a new way to

advance the study of network complexity. They enable us to

determine how the interplay between layers affects the dynamic

processes running through them. This multiplex network ap-

proach has proven to be a successful tool in modeling a number of

real-world systems, e.g., the European air transport system [18,19]

and the global cargo ship network [20].

The study of propagation processes in multiplex networks is a

rapidly evolving research area. In particular, because of the urgent

need for control strategies, the study of the propagation of disease

epidemics has been the focus of much recent work. One of the

most successful models used to describe the propagation of

recurrent diseases is the susceptible-infected-susceptible (SIS)

model. Research using the SIS model on multiplex networks

[21–23] has found that the dynamics of the disease across a

multiplex system is characterized by a critical point that is lower

than the critical point of each isolated layer. Very recently Cozzo

et al. [24] studied the SIS model in a multiplex network using a

contact-contagion formulation with a rate of infection within each

layer and a rate of infection between layers. They found that the

critical point of the total system is always dominated by one of the

layers. Although the SIS model can describe the propagation

dynamics for recurrent diseases in which individuals are constantly

being reinfected, there are many diseases in which ill individuals

either die or after recovery become immune to future infections.

For this class of disease, the favorite approach to describing the

spreading process is the susceptible-infected-recovered (SIR)

model [25–27]. At present there are only a few instances in which

the SIR model has been applied to a network of networks.

Dickison et al. [28] use the SIR model to numerically explore two

interacting networks in order to determine the probabilities that

the disease will spread within each individual network and

between the networks of the system. Marceau et al. [29] developed

an analytical approach that captures the dynamic interaction

between two different SIR propagations over a multiplex network.

Yagan et al. [30] studied the SIR model in a multiplex network

with two different information layers, a virtual layer and a physical

layer, each with different propagation speeds. They found that,

even when the disease does not propagate in a particular layer, an

epidemic can occur in the conjoint virtual-physical network.

In social interactions, individuals are not necessarily present in

all layers of a society. To allow for this significant constraint, we

use a partially overlapped multiplex network in which only a fraction of
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individuals are present in all layers. Our goal is to study how this

overlapping fraction affects the spreading of such nonrecurrent

diseases as influenza, the H5N5 flu or the Severe Acute

Respiratory Syndrome (SARS) [31]. We use the SIR model over

a partially overlapped multiplex network. In the SIR model each

individual of the population can be in one of three different states:

susceptible, infected, or recovered. Infected individuals transmit

the disease to its susceptible neighbors with a probability b and

recover after a fixed time tr. The spreading process stops when all

the infected individuals are recovered. The dynamic of the

epidemic is controlled by the transmissibility T~Ptr

n~0 b(1{b)n{1~1{(1{b)tr , which is a measure of disease

virulence, i.e., the effective probability that the disease will be

transmitted across any given link. As in the SIR model, an

individual cannot be reinfected, the disease spreads through

branches of infection that have a tree-like structure, and thus can

be described using a generating function formalism [32,33] that

holds in the thermodynamic limit.

We first examine some of the concepts of the generating

function formalism for an isolated network, and we then extend

this formalism to the partially overlapped multiplex network. In

the generating function framework, the relevant magnitude that

provides information about the process is the probability f that a

branch of infection can extend throughout the network [34,35].

When a branch of infection reaches a node of connectivity k across

one of its links, the branch can only expand through its remaining

k{1 connections. Thus the probability that a node of connectivity

k belongs to a branch of infection is proportional to

k½1{(1{Tf )k{1�, since the probability to reach a node through

a link is proportional to its connectivity. Thus f verifies the self-

consistent equation f ~1{G1(1{Tf ) in isolated networks, where

G1(h)~
P

k kP(k)=SkT hk{1 is the generating function of the

underlying branching process [33], P(k) is the degree distribution,

and SkT is the average degree of the network. In the steady state of

the epidemics, the branches of infection form a single cluster of

recovered individuals made up of nodes that were infected by

some of its connections. Thus the fraction of nodes in the cluster of

infection of an isolated network is given by R~1{G0(1{Tf ),

where G0(h)~
P

k P(k)hk is the generating function of the degree

distribution. Within this formalism we find that the self-consistent

equation has a nontrivial solution above the critical transmissibility

Tc~1=(k{1), where k~Sk2T=SkT is the branching factor and

Sk2T is the second moment of P(k). Since k can be used to

measure the connectivity dispersion of the network, we find that

the critical threshold is very small for heterogeneous networks. At

this critical threshold, the fraction of recovered individuals R

overcomes a second-order phase transition where at Tc and below

Tc the disease cannot spread and above Tc the disease infects a

significant fraction of the population and becomes an epidemic.

Therefore an epidemic occurs only if the number of recovered

individuals in the steady state reaches or exceed a minimum size

sc. In this letter, we use sc~200 for all our simulations [36].

Method

In our model we use an overlapping multiplex network formed

by two layers, A and B, of the same size N, where an overlapping

fraction q of shared individuals is active in both layers. Figure 1(a)

shows schematically the partially overlapped network. The dashed

lines that represent the fraction q of shared individuals should not

to be interpreted as interacting or interdependent links but as the

shared nodes and their counterpart in the other layer.

For the simulation, we construct each layer using the Molloy

Reed algorithm [37], we choose randomly a fraction q of nodes in

each of the layers that represent the same nodes. In our model of

the SIR process we assume that the transmissibility is the same in

both layers because there is only one disease and all individuals in

the system spread equally. We begin by infecting a randomly

chosen individual in layer A. The spreading process then follows

the SIR dynamics in both layers, the overlapped nodes in both

layers have the same state because they represent the same

individuals. After all infected nodes infect their susceptible

neighbors with probability b in both layers, the time is increased

in one, and the states of the nodes are updated simultaneously.

Note that because there are shared nodes the branches of infection

can cross between the two layers. Thus the probability that,

following a random link, a node belonging to the infected cluster

will be reached in each layer can be written

fA~(1{q) ½1{GA
1 (1{TfA)�zq ½1{GA

1 (1{TfA) GB
0 (1{TfB)� ,

fB~(1{q) ½1{GB
1 (1{TfB)�zq ½1{GB

1 (1{TfB) GA
0 (1{TfA)� ,

ð1Þ

where G
A=B
0 and G

A=B
1 are the generating functions defined above

for layer A and B, respectively. In Eq. (1) both fA and fB are

written as the sum of two terms that takes into account all possible

spreading of the branches of infection. The first term corresponds

to those branches of infection that only spread within their own

layer, while the second term takes into account those branches that

spread through both layers. Figure 1(b) shows how a node is

reached through an ingoing link marked by an arrow. The disease

spreads through both available outgoing links of that node in layer

A and develops two branches of infection. The green dotted line

denotes the branch that stays in layer A and corresponds to the

first term of Eq. (1) for fA. The second term of Eq. (1) for fA is

indicated by the blue dot-dashed branch that reaches layer B

through a shared node and then spreads to its neighbors on that

layer. After the shared node is infected, the branch spreads

through five links in layer B and reaches another shared node that

allows the branch of infection to spread back to layer A. An

analogous interpretation holds for the terms of fB.

Results

The solution of Eq. (1) for all T above and at criticality is given

by the intersection of fA and fB, which can be derived by solving

the determinant equation jJ{I j~0, where I is the identity and J

is the Jacobian matrix of Eq. (1). The only possibility to have a

non-epidemic regime is that none of the branches of infection

spread, i.e. fA~fB~0. Therefore below and at criticality

fA~fB~0, an evaluation of the Jacobian matrix

Jij~(Lfi=Lfj)jfA~fB~0 given by

JjfA~fB~0~

T(kA{1) TqSkBT

TqSkBT T(kB{1)

0
BBB@

1
CCCA ð2Þ

allow us to obtain a quadratic equation for Tc with only one stable
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solution [38] given by,

Tc~

½(kA{1)z(kB{1)�{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(kA{1){(kB{1)�2z4q2SkATSkBT

q

2(kA{1)(kB{1){2q2SkATSkBT
,

ð3Þ

where k~1z1=Tc is the total branching factor and kA, kB are the

isolated branching factors of layer A and B respectively. For q?0
we recover the isolated network result Tc~1=(kA{1), which is

compatible with our model in which the infection starts in layer A

and, because q~0, the disease never reaches layer B. In contrast,

when q?1, we find Tc~1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(kA{kB)�2z4SkATSkBT

q
. Note

that Tc(q?1)vTc(q?0). In general, Tc decreases as a function of

q. This is the case because an increase in the overlapping between

layers causes an increasing in the dispersion of the degrees of the

nodes, therefore the total system becomes more heterogeneous in

degree making the total branching factor to increase, i.e., the total

branching factor is equal to or bigger than the branching factor of

the isolated layers. Figure 2 shows this behavior with a plot of a

phase diagram in the plane T{q for Erdös-Rényi (ER) layers [39]

whose degree distribution is Poissonian P(k)~SkTke{SkT=k! and

its branching factor is given by k~SkTz1. Figure 2 shows the

critical lines Tc given by Eq. (3) as a function of the overlapping

fraction q when one of the layers is fixed at SkBT~4 for the

different average connectivities SkAT of layer A. The colored areas

correspond to the epidemic-free phase for a given connectivity in

layer A, and the region above the critical lines belongs to the

epidemic phase. The left and right extremes of the critical lines

correspond to the limits q?0 and q?1 for Eq. (3) mentioned

above.

In the steady state, the fraction of nodes reached by the

branches of infection, i.e., the recovered individuals in each layer,

can be written

RA~(1{q) ½1{GA
0 (1{TfA)�zq ½1{GA

0 (1{TfA) GB
0 (1{TfB)� ,

RB~(1{q) ½1{GB
0 (1{TfB)�zq ½1{GB

0 (1{TfB) GA
0 (1{TfA)� ,

ð4Þ

and the total fraction of recovered individuals R is given by

R~(RAzRB{j)=(2{q) , ð5Þ

where j~q ½1{GA
0 (1{TfA)GB

0 (1{TfB)� is the fraction of shared

nodes that have recovered in the steady state. The factor (2{q)
appears because the total number of individuals in the system is

(2{q)N. Figure 3 plots the total fraction R of recovered

individuals, obtained from Eq. (5), as a function of T for different

values of the overlapping fraction q and compares it with

Figure 1. Scheme of a SIR epidemic process in a partially overlapped multiplex network. Partially overlapped multiplex network with
layer size N~15 and fraction of shared nodes q~0:2. The total size of the network is (2{q)N~27 individuals. The dashed lines are used as a guide
to show the fraction q of shared nodes. (a) Before the spreading dynamics, all individuals are in the susceptible stage represented by black circles. (b)
In the steady state of the epidemic, the recovered individuals are denoted by orange circles. The branches of infection start in the link denoted by a
red arrow, which leads to an infected orange node denoted with a black contour. Two branches expand through the two available links of that node.
One of the branches denoted by green dotted lines corresponds to a branch of infection that only spreads through layer A that is described by the
first term of fA in Eq. (1). The other branch denoted in blue dash-dotted lines is a branch of infection that spreads through both layers and is
described by the second term of fA in Eq. (1). An analogous interpretation holds for the terms of fB of Eq. (1).
doi:10.1371/journal.pone.0092200.g001

Figure 2. Dependence of the epidemic threshold of the SIR
model with the overlapping fraction and topology of the
layers. Phase diagram in the T{q plane for two Erdös-Rényi layers
with SkBT~4 and different values of SkAT. The black full lines
correspond to Tc obtained theoretically from Eq. (3) for SkAT~4,5,6,7,8
from top to bottom. The limit q?0 corresponds to a disease spreading
in layer A when it is isolated and the limit q?1 represents the fully
overlapped multiplex network. Colored regions correspond to the
epidemic-free phase for each value of SkAT, while the region above Tc

corresponds to the epidemic-phase.
doi:10.1371/journal.pone.0092200.g002

ð3Þ
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simulation results for N~105 nodes and 105 realizations. Figure 3

shows the results for (a) two ER layers with SkAT~6 and SkBT~4
and (b) two power law distributed layers with an exponential cutoff

c~20, where P(k)*k{le{c=k, and exponents lA~2:5 and

lB~3:5. In both cases we observe the typical second order phase

transition of the SIR process with the transmissibility T as the

control parameter—with perfect agreement between the theory

and the simulations. As the overlapping fraction q increases [see

Eq. (3)] the critical threshold moves to the left and the increase in

R becomes more abrupt but the second-order character of the SIR

for isolated networks is preserved [40]. In the case of the power-

law distributed layers, when c??, (kA{1)??, which elimi-

nates any dependence of the critical threshold on q, as can be

inferred from Eq. (3).

Finally we investigate the effect of the overlapping fraction by

observing the epidemic in each layer separately, shown in Fig. 4.

When q~1, the threshold [see Eq. (3)] is at its minimum and both

layers have the same fraction of recovered nodes. This is the case

because the layer with the bigger isolated threshold (or the smaller

isolated branching factor) can be infected by either its own

infection branches or by those coming from the other layer. This

second possibility decreases with q. For lower values of q the

epidemic threshold increases because the total branching factor is

lower and the layer with the lower isolated threshold cannot as

effectively infect the other layer. As a consequence, when TwTc

the fraction of recovered individuals of the layers detach from each

other and show a difference that increases as q?0 [see Eq. (3)]. In

this limit, the joined threshold approaches quadratically the

threshold of the isolated layer with the higher branching factor.

Thus no matter how small the overlapping fraction is, when q?0
the epidemic threshold of the system is given by the lower isolated

threshold that corresponds to the layer with the higher propaga-

tion capability. This limit is consistent with the results found in

Ref. [24] for the SIS model in which the epidemic threshold of the

system is dominated by the layer with the lower isolated threshold.

Thus although a system of two completely isolated layers is

indistinguishable from a system of two layers that share only a few

nodes (q?0), the isolated epidemic threshold of the less

propagating layer will change discontinuously and acquire the

isolated threshold of the other layer.

Discussion

In summary, we have studied a SIR epidemic propagation

model in a partially overlapped multiplex network formed by two

layers that share a fraction q of nodes. We find that the epidemic

threshold Tc of the multiplex network depends on both the

topology of each layer and the overlapping fraction q. Using of a

generating function framework, we find the equation for the

threshold Tc and also the equation for the recovered individuals in

the steady state of the spreading process. Our analytical

predictions are in agreement with extensive simulation results.

Finally, we analyze the fraction of recovered individuals in the

steady state as a function of the transmissibility T for layer A and

layer B separately. When q?1, we find that the epidemic

threshold is at its minimum and, because all individuals belong to

both layers, that both layers have the same fraction of recovered

nodes for all T . As q decreases, the total branching factor of the

system decreases and the epidemic threshold increases, and when

TwTc the fraction of recovered individuals in both layers detach

from each other. When q?0, the epidemic threshold of the system

is dominated by the isolated epidemic threshold of the layer with

the larger propagation capability and thus it reaches a higher

value. Thus although a system of two completely isolated layers is

indistinguishable from a system of two layers that share only a few

nodes, the presence of these few shared nodes causes the epidemic

threshold of the isolated network with the lower propagating

capability to discontinuously change to the threshold of the other

network. This result may have important implications for the

implementation of non-pharmaceutical interventions to control

the propagation of diseases on real scenarios. Our study suggests

that vaccinating or isolating only that layer with the higher

propagation capacity can drastically reduce the total branching

factor of the network, as can be seen from Eq. (3). As a

consequence, the epidemic threshold of the system increases

significantly, and the risk that a disease epidemic will propagate

across the entire network is reduced.

Figure 3. Theoretical predictions and simulations for the
fraction of recovered individuals in the steady state of the
epidemics. Total fraction of recovered individuals in the steady state
of the SIR model with tr~1 for (a) two Erdös-Rényi layers with SkAT~6
and SkBT~4 and for (b) two power law layers with exponential cutoff
c~20 with lA~2:5 and lB~3:5, the minimum and maximum values of
k where set as kmin~2 and kmax~500, respectively, for both layers. In
both panels full black lines correspond to theory given by Eq. (5) and
simulations results are given for q~0:1 in pink circles, q~0:5 in green
squares and q~1 in blue diamonds. All simulations were done with a
total system size of (2{q)N~105 and over 105 realizations.
doi:10.1371/journal.pone.0092200.g003

Figure 4. Effect of the overlapping fraction in the SIR epidemic
threshold on individual layers. Fraction of recovered individuals vs
the transmissibility in the steady state of the SIR model. The values were
obtained theoretically from Eq. (4) for two Erdös-Rényi layers with
SkAT~6, SkBT~4 and different overlapping fraction values. In orange
circles q~0:01, in green squares q~0:2, in blue triangles q~0:5 and in
violet diamonds q~1. In the upper panel we plot RA and in the bottom
panel we plot RB. The arrows indicate the threshold Tc(q) and are used
as a guide to show that Tc(q) is the same for RA and RB. The black full
lines denote RA (up) and RB (down) when both networks are isolated
and q~0.
doi:10.1371/journal.pone.0092200.g004
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