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Abstract

Objective—To examine associations among age, physical activity (PA), and birth cohort on 

body mass index (BMI) percentiles in men.

Design and Methods—Longitudinal analyses using quantile regression were conducted among 

men with ≥ two examinations between 1970 and 2006 from the Aerobics Center Longitudinal 

Study (n=17,759). Height and weight were measured; men reported their PA and were categorized 

as inactive, moderately or highly active at each visit. Analyses allowed for longitudinal changes in 

PA.

Results—BMI was greater in older than younger men and in those born in 1960 than those born 

in 1940. Inactive men gained weight significantly more rapidly than active men. At the 10th 

percentile, increases in BMI among inactive, moderately active, and highly active men were 

0.092, 0.078, and 0.069 kg/m2 per year of age, respectively. The 10th percentile increased by 0.081 

kg/m2 per birth year and by 0.180 kg/m2 at the 90th percentile, controlling for age.

Conclusion—Although BMI increased with age, PA reduced the magnitude of the gradient 

among active compared to inactive men. Regular PA had an important, protective effect against 

weight gain. This study provides evidence of the utility of quantile regression to examine the 

specific causes of the obesity epidemic.
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Introduction

The world-wide obesity epidemic (1-4) can be attributed to a widespread imbalance between 

energy intake and energy expenditure. The prevalence of obesity, defined as body mass 

index (BMI) ≥ 30.0 kg/m2, has increased dramatically among men over the past 50 years 

from 10.4% in 1960-62 (5) to 35.5% in 2009-10 (6). The specific factors that cause the 

energy imbalance are still poorly understood. Some have suggested that physical activity has 

been essentially unchanged during the obesity epidemic, and conclude that the cause of the 

epidemic must be an increase in energy intake (7, 8). However, a major factor to consider is 

the rapid change in occupational energy expenditure over the past 50 years, with a large 

decline in manufacturing, mining, and farming; and a consistent increase in service jobs with 

substantially lower energy requirements (9). Importantly, mean daily energy expenditure 

from occupational physical activity declined by more than 100 calories over the past five 

decades, and that decrease accounted for a significant portion of the mean weight gain 

during that time period (9).

Multiple individual and environmental factors may affect an individual’s ability to achieve 

energy balance and maintain a stable weight over time, and a number of observational and 

interventional studies have examined the potential effects of these factors (10-13). 

Assessments of the potential influences on obesity tend to focus on the upper percentiles of 

the frequency distribution of BMI in categorical logistic regression analyses or on the mean 

as in linear regression analyses. Both approaches are limited because they sacrifice what can 

be learned about the entire distribution. For instance, the influence of age, physical activity, 

and birth cohort on BMI may affect subgroups of the population differently; thus, the effect 

on mean BMI may not adequately convey the potential varying impact on the entire 

distribution. Quantile regression is an analytical method that is compatible with assessing 

associations throughout the distribution of BMI (14-19). To date, no study has used quantile 

regression to examine the influences of age, physical activity, and birth cohort prospectively 

on obesity among adult men.

Therefore, the primary purpose of this paper was to determine the associations among age, 

physical activity, and birth cohort on the BMI percentiles of the distribution in a large 

sample of men. We hypothesized that BMI values would be centered on higher values in 60-

year-old men than in 20-year-old men, and that BMI would be higher in 40-year-old men 

born in 1960 than in 40-year-old men born in 1940. We also expected that the BMI 

distribution would be shifted towards larger values with age to a greater degree in inactive 

men than in active men, but in a way that would not be uniform across the BMI distribution. 

The secondary purpose of this paper was to describe the application of an underutilized 

statistical method, quantile regression (14, 15), to study factors influencing BMI, an 

application for which the method seems particularly well suited.
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Methods and Procedures

Sample selection

The Aerobics Center Longitudinal Study (ACLS) is a prospective observational study (20). 

Participants came to the Cooper Clinic in Dallas, TX for periodic preventive health 

examinations and counseling regarding diet, exercise, and other lifestyle factors associated 

with increased risk of chronic disease. Between 1970 and 2006, participants received at least 

one comprehensive medical examination and maximal graded treadmill exercise test at the 

clinic, and were enrolled in the ACLS. Most study participants were non-Hispanic whites 

from middle-to-upper socioeconomic strata, and were either referred by their employers or 

physicians or were self-referred. The study was reviewed and approved annually by the 

Cooper Institute Institutional Review Board, and all participants gave written informed 

consent. From the initial sample of 120,649 observations from 50,787 men, we included 

men without any history of heart attack, stroke or cancer (observations = 103,379, 

participants = 46,132), 25 to 75 years old (observations = 102,229, participants = 45,515), 

and men with at least two visits (observations = 74,473, participants = 17,759). In the final 

sample, 7,334 men had two visits, 3,566 men had three visits, 1,989 men had four visits, and 

4,870 men had five or more visits.

Measures

The comprehensive health evaluation is described in detail elsewhere (20, 21). The outcome 

of interest in this study was BMI (kg/m2). Height and weight were measured on a 

physician’s scale and stadiometer. The exposures of interest were self-reported physical 

activity, diet, and smoking behavior. Physical activity was categorized based on 

participants’ responses to questions about their regular physical activity habits over the past 

three months (1 = no activity, 2 = some sports or activity or walk/jog/run up to 10 miles per 

week, 3 = walk/jog/run more than 10 miles per week) (21-23). Categories of physical 

activity were defined at each visit as “inactive” if physical activity = 1, “moderate” if 

physical activity = 2, and “high” if physical activity = 3. The analysis allowed for changes in 

physical activity level over time. Smoking habits were obtained from a standardized 

questionnaire. Participants were classified as a nonsmoker or current smoker at the time of 

each examination. Eating habits were self-reported as eating: 1) much less, 2) somewhat 

less, 3) just what, 4) somewhat more, or 5) much more than I want. Birth cohort was defined 

as each participant’s year of birth.

Statistical Analyses

We employed quantile regression to assess associations of predictor variables at the 10th, 

25th, 50th, 75th, and 90th percentiles of BMI. Quantile regression has the advantages of 

allowing examination at multiple points in the distribution of BMI rather than only at the 

mean. Quantile regression does not require any assumption about the distribution of the 

regression residuals and, unlike ordinary linear regression, is not influenced by outliers or 

skewness in the distribution of the dependent variable, providing greater statistical 

efficiency when outliers are present. In addition, inference on quantiles can accommodate 

transformation of the dependent variable without the problems encountered in ordinary 

linear regression (24).
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Quantile regression parameters are interpreted similarly to normal linear regression 

parameters except that the parameter indicates the change in the value at the modeled 

percentile, not the mean, of the dependent variable for each unit change in the independent 

variable. For example, a parameter estimate of 0.133 for age in the 75th percentile model 

would indicate that the 75th percentile of BMI increased by 0.133 kg/m2 for each one year 

increase in age.

The densities shown were smoothed by applying the Epanechnikov kernel function, K(x) = 

0.75 (1 − x2) I(|x| < 1), with bandwidth 3 to a dense set of estimated quantiles (2nd, 4th, …, 

98th percentile). A kernel function gives the weights of the nearby data points in making an 

estimate while ensuring that the result is a probability density function and that the average 

of the corresponding distribution is equal to that of the sample used. The repeated 

observations of BMI taken on the same men may be dependent. The quantile regression 

estimator is consistent when the data are dependent (25). Because we were interested in 

population-level, not individual-level, estimates, we estimated the standard errors and 

confidence intervals with 1,000 cluster bootstrap samples to account for the dependence 

(26-29).

For completeness, we complemented our inference on quantiles with that from two other, 

more traditional approaches: linear regression and multinomial logistic regression. The 

former permits inference about the mean of BMI whereas the latter allows estimation of the 

conditional probability of being in any given BMI class (18-25, 25-30, and ≥ 30 kg/m2). To 

take the potential intra-individual dependence into account, the standard errors were 

estimated by applying generalized estimating equations (GEE) with an exchangeable 

working covariance matrix for the linear regression on the mean (30) and the robust cluster 

sandwich estimator for multinomial logistic regression (31).

Results

The shape of the BMI distribution differed across the levels of physical activity with respect 

to location, spread, and skewness (Figure 1). Across the three levels of physical activity, 

there were no statistically significant differences in the mean or quartiles of age or height of 

the men (Table 1). There were, however, gradients in weight, waist circumference, BMI, and 

body fat mass in the expected direction, with inactive men having the greatest relative 

weight and fat, and highly active men having the least.

BMI was higher at older ages for all three physical activity levels, but with a smaller 

gradient in the physically active as compared to the inactive men (Table 2). The difference 

in the magnitude of increase was significant at the 10th and 25th percentiles, as indicated by 

the statistically significant cross-product interaction terms for age and physical activity level 

(high vs. inactive) in those models. At the 10th percentile, below which was the leanest 10% 

of the population, the gradients in BMI with age in the inactive, moderately active, and 

highly active were 0.092, 0.078, and 0.069 kg/m2 per year of age, respectively. The 10th 

percentile of BMI increased with year of birth by 0.081 kg/m2 per birth cohort year and by 

0.180 kg/m2 at the 90th percentile, adjusting for age, and the magnitude of increase 

associated with year of birth was larger at each successive percentile. Eating habits were 
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significantly associated with BMI at all percentiles, and the category “eat just what I want” 

showed the largest reduction of BMI values at all percentiles. Smoking and drinking habits 

were not significant predictors or confounders, and were omitted from all models.

Figure 2 illustrates the results of the quantile regression analysis and compares the estimates 

for the distribution of BMI in the inactive and highly active populations at age 30, 50, and 

70 (chart rows), in the cohorts born in 1940 and 1960 (chart columns) in those who reported 

that they eat “just what I want.” The distributions for moderate physical activity were similar 

to those for high physical activity and are not shown. The distribution in the active 

population in the 1940 cohort at age 30 is included as a shaded area in all graphs for 

reference. Moving down each column, the distribution of BMI shifted toward larger values 

with older age. Skewness abated with age in the inactive men because of the comparatively 

larger increase in the lower percentiles than in the higher ones. Conversely, skewness 

increased in the active population. Comparing the two columns, there was a conspicuous, 

significant cohort effect on both location and spread of the BMI distribution. The later 

generation shifted toward higher values and showed an accentuated elongation.

Table 3 reports the estimated coefficients and associated confidence intervals from GEE 

linear regression models for mean BMI, which increased with age at all levels of physical 

activity. All main effects were statistically significant (P < 0.05). The difference in the 

slopes of the increase in BMI over age across levels of physical activity is borderline 

significant (P = 0.060). These estimates however, were obtained after removing outliers 

(BMI < 14 or BMI > 50). Inference was dependent on which values were identified as 

outliers and removed. If all data were utilized, the estimated coefficients were substantially 

different, the standard errors inflated, the confidence intervals wider, and the difference in 

slopes far from statistically significant (data not shown).

Table 4 shows the estimated probability of being in one of three BMI categories at age 30, 

50 and 70, for the 1940 cohort that reported “eat what I want.” All main effects were 

statistically significant (P < 0.05). The probability of having normal BMI was lower with 

older age. At age 70 the probability of having normal BMI was more than twice as great for 

the highly active men than for the inactive men. Further, the probability for highly active 

obese men was less than half that of the inactive men.

DISCUSSION

Quantile regression permitted us to describe and quantify that, as expected, BMI was 

centered on larger values in older compared to younger men and in those born in 1960 

compared to those born in 1940. With the use of quantile regression, we also found that the 

distribution of BMI was shifted towards larger values in older ages to a greater degree in 

inactive men than in those who were physically active. It also allowed us to show that these 

relationships were not uniform across the distribution of BMI. For example, the association 

of physical activity and BMI was greater at the larger percentiles of BMI than at the smaller 

percentiles, as shown by the greater magnitude of the regression coefficients at the larger 

percentiles. Therefore, men in the normal BMI range who led inactive lives tended to have 

higher weight gradients with age than men who maintained an active lifestyle. For example, 
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at age 70, nearly half of the active men had a BMI that was below the 10th percentile of the 

inactive men. Quantile regression also permitted estimation of the entire distribution of BMI 

by age and year of birth adjusted for eating habits. Furthermore, quantile regression was 

statistically efficient and insensitive to extreme values of BMI.

Quantile regression has several advantages that apply directly to the analysis of our data set. 

First, research interest lies not in the mean of BMI but in its quantiles. Our study interest 

was in the complete distribution of BMI: the underweight, normal, overweight, and obese 

men. Inference on mean BMI alone would not be as informative as inference on multiple 

quantiles throughout the distribution. Quantile regression permits inference on multiple 

percentiles of BMI given a set of covariate values. Second, quantile regression has 

robustness to outliers and statistical efficiency. Large, outlying values have a major impact 

on the mean and therefore on linear regression estimates. Conversely, quantile regression is 

robust to them. Robustness to outliers makes the quantile estimator more efficient than the 

mean estimator when the population being sampled contains outliers. Third, quantile 

regression does not require transformations. When the relationship between dependent and 

independent variables is non-linear or the distribution of the dependent variable is skew, 

transforming the outcome may simplify modeling when using linear regression. 

Transformations such as the logarithm and the square root are frequently applied in linear 

regression, but are often challenging to implement in practice because of inconsistent back 

transformation and challenges in interpretation (32). In contrast, quantile regression 

accommodates skewed distributions seamlessly. This property of quantile regression has 

been exploited to great advantage in other settings, for example, power-transformations (33) 

and censored data (34), and is applicable to the analysis of BMI. Other measures of obesity 

may be bounded from above or below, such as percentage of body fat mass bounded 

between 0 and 100%, and quantile regression is also applicable for these measures (24).

These complex relationships could not be described by linear or multinomial logistic 

regression analyses. Inference about mean BMI from linear regression was unsatisfactory 

because it did not permit understanding the differential effect of physical activity across the 

distribution of BMI, and it was highly affected by the extreme values of BMI. Unless 

outliers were identified and removed through an ad hoc and somewhat arbitrary process, the 

amount of change in mean BMI with age did not appear to differ significantly across levels 

of physical activity, whereas in the quantile regression results, the differences in slope with 

age for differing activity levels were apparent in some quantiles. Multinomial logistic 

regression performed better than linear regression because it allowed inference about the 

upper tail of the distribution of BMI (i.e., overweight and obese), but it was inferior to 

quantile regression because it categorized the outcome BMI into a small number of groups 

that did not permit examination of the entire BMI distribution.

Quantile regression could be extended to the analysis of the effects of other risk factors on 

BMI or the analysis of other obesity measures. This analytic approach has the potential to 

contribute greatly to forming a fuller picture of the extent and causes of the obesity 

epidemic, and understanding the impact of large-scale obesity interventions, given that 

interventions may primarily affect one portion of the distribution of the outcome (35). 

Quantile regression is readily implemented by available statistical software (e.g., Stata, SAS, 
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S-plus). It should be used instead of linear regression in any study for which the effects of 

explanatory variables may differ across the range of the outcome variable and affect the 

shape of the distribution.

Therefore, analyses should not focus merely on the mean BMI, for these would provide 

diluted, tangential measures of the effects of interest. For instance, influences on BMI may 

differ across the population: stronger associations at the upper end of the distribution (> 70th 

percentile), moderate associations in the middle of the distribution (30th - 70th percentile), 

and low or no association at the lower end of the distribution (< 30th percentile). Thus, the 

effect on mean BMI may not adequately convey the impact on the entire distribution. 

Further, if, as Rose (36) argued there are potentially greater population benefits from 

approaches that encompass the large portion of the population at moderate risk, then we 

must employ methods that can provide information about effects throughout the distribution.

This study has strengths and limitations that deserve mention. A major strength is the large 

sample with multiple measurements over the period of thirty-six years. Another strength is 

the use of quantile regression which allowed for a comprehensive examination of the 

relationship between physical activity and BMI across the entire distribution of BMI. A 

limitation is that the ACLS cohort is predominately white, well-educated, and of middle-to-

upper socio-economic status, and is not representative of the general population (20). 

However, we contend that one of the advantages of the method proposed here is that it 

allows for more appropriate comparisons of findings from similar studies in other 

populations where distributions may be shifted or associations may vary across the 

distributions in different ways.

In summary, quantile regression was an effective statistical method that allowed us to 

examine how physical activity affected BMI across the entire distribution of BMI. Our 

findings demonstrated that the distribution of BMI ranged over higher values in older men 

than in younger men. However, the shift in the BMI distributions between younger and older 

men was smaller among regularly active men than among inactive men. The beneficial 

effect of regular physical activity in attenuating the BMI increase with ageing was most 

evident among the lower percentiles, which in younger men were within the range of normal 

BMI values. For example, the 25th percentile of BMI increased with age at a rate that was 

24% smaller in active men (76 g/m2 per year) than inactive men (100 g/m2 per year). This 

study provides compelling evidence of the utility of quantile regression to examine the 

specific causes of the obesity epidemic.
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What Is Already Known About This Subject

• The specific factors that cause energy imbalance are still poorly understood.

• Studies of the potential influences on obesity tend to focus on the upper 

percentiles of the frequency distribution of BMI in logistic regression or on the 

mean in linear regression.

• Both approaches are limited because they sacrifice what can be learned about 

the entire distribution.
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What This Study Adds

• More complete understanding of the distribution of BMI that showed higher 

values and more elongated shapes among the older individuals and more recent 

generations of our study population.

• Insights into the important, protective effect of regular physical activity against 

age and birth year that shifted and reshaped the distribution of BMI values 

toward a desirable range.

• An illustration of an application of quantile regression as an effective statistical 

method to examine the effects of possible specific causes of the obesity 

epidemic.
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Figure 1. 
Box plots of BMI by levels of physical activity of men, Dallas, Texas, 1970-2006. Values 

with BMI > 70 kg/m2 were excluded.
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Figure 2. 
Quantile regression estimates of the BMI distributions from the model shown in Table 2 in 

inactive (solid, green curve) and highly active (dashed, red curve) men at ages 30, 50, and 

70 in the 1940 cohort and 1960 cohort for men who “eat just what I want,” Dallas, Texas, 

1970-2006 (men = 8,885; observations = 17,304). Shaded area in all panels is for reference 

and represents physically active 30-year-old men in the 1940 cohort.
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Table 2

Effects of predictors at five percentiles (10th, 25th, 50th, 75th, and 90th) of the distribution of body mass index 

(kg/m2) estimated by quantile regression in men, Dallas, Texas, 1970-2006 (men = 8,885; observations = 

17,304)

10th percentile 25th percentile 50th percentile 75th percentile 90th percentile

PA (Moderate: vs. Inactive)

Coefficient 
a −0.358 −0.576 −0.850 −1.000 −1.368

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b −0.553, −0.164 −0.732, −0.420 -1.026, −0.674 -1.226, −0.774 −1.756, −0.979

PA (High vs. Inactive)

Coefficient 
a −0.834 −1.154 −1.563 −1.899 −2.512

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b −1.039, −0.629 −1.330, −0.978 −1.744, −1.383 −2.156, −1.641 −2.939, −2.085

Age (years, centered at 50)

Coefficient 
a 0.092 0.100 0.120 0.133 0.143

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b 0.069, 0.115 0.078, 0.122 0.098, 0.142 0.104, 0.162 0.100, 0.186

Interaction (Age × Moderate PA)

Coefficient 
a −0.014 −0.011 −0.016 −0.003 0.015

P 0.184 0.248 0.132 0.828 0.425

95% CI 
b −0.035, 0.007 −0.030, 0.008 −0.037, 0.005 −0.030, 0.024 −0.022, 0.053

Interaction (Age × High PA)

Coefficient 
b −0.023 −0.024 −0.017 0.005 0.009

P 0.026 0.017 0.128 0.702 0.674

95% CI 
a −0.043, −0.003 −0.043, −0.004 −0.038, 0.005 −0.022, 0.033 −0.033, 0.052

Eating Habit (2 vs. 1) 
c

Coefficient 
a −1.329 −1.893 −2.661 −3.499 −3.930

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b −1.844, −0.815 −2.235, −1.551 −3.093, −2.229 −3.960, −3.038 −4.625, −3.235

Eating Habit (3 vs. 1) 
c

Coefficient 
a −2.353 −2.861 −3.685 −4.592 −4.809

Obesity (Silver Spring). Author manuscript; available in PMC 2014 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bottai et al. Page 16

10th percentile 25th percentile 50th percentile 75th percentile 90th percentile

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b −2.880, −1.827 −3.198, −2.523 −4.139, −3.232 −5.089, −4.095 −5.520, −4.099

Eating Habit (4 vs. 1) 
c

Coefficient 
a −0.692 −0.967 −1.575 −2.363 −2.330

P 0.029 <0.001 <0.001 <0.001 <0.001

95% CI 
b −1.312, −0.071 −1.354, −0.580 −2.055, −1.095 −2.888, −1.837 −3.222, −1.438

Eating Habit (5 vs. 1) 
c

Coefficient 
a −0.102 0.392 0.664 0.480 1.205

P 0.821 0.388 0.097 0.372 0.086

95% CI 
b −0.984, 0.781 −0.498, 1.282 −0.121, 1.448 −0.572, 1.532 −0.172, 2.582

Cohort 
e

Coefficient 
a 0.081 0.090 0.110 0.144 0.180

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b 0.067, 0.096 0.077, 0.102 0.095, 0.125 0.129, 0.159 0.153, 0.207

Intercept 
d

Coefficient 
a 24.516 26.530 29.144 32.005 34.734

P <0.001 <0.001 <0.001 <0.001 <0.001

95% CI 
b 23.991, 25.040 26.173, 26.886 28.704, 29.583 31.507, 32.503 33.985, 35.484

BMI, body mass index; PA, physical activity.

a
The coefficient represents the change in the value at the nth percentile of BMI for each unit change in the independent variable. For interactions, 

the coefficient is the difference in the change in the value of BMI at the nth percentile compared to the main relative to the change when the 

interacting variable is at its reference level, so, for example, at the 10th percentile, BMI increases by 0.096 for each year of age for those who are 
inactive, but by 0.023 less than that per year of age for those with high physical activity.

b
Confidence intervals (CI) are based on 1,000 cluster bootstrap samples. Test for interaction terms: 10th (P = 0.082), 25th (P = 0.048), 50th (P = 

0.255), 75th (P = 0.695), 90th (P = 0.722).

c
1=Eat much less than I want; 2=Eat somewhat less than I want; 3=Eat just what I want; 4=Eat somewhat more than I want; 5=Eat much more than 

I want.

d
The intercept is the value of the nth percentile of BMI when all other variables are zero.

e
Birth year centered at 1940.
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Table 3

Effects of predictors at the mean of the distribution of body mass index estimated by generalized estimating 

equations after removing outliers 
a
 in men, Dallas, Texas, 1970-2006 (men = 8,882; observations = 17,295)

Coefficient P value 95% CI

PA (Moderate vs. Inactive) −0.335 <0.001 −0.413, −0.257

PA (High vs. Inactive) −0.787 <0.001 −0.881, −0.693

Age (years, centered at 50) 0.106 <0.001 0.096, 0.115

Interaction (Age × Moderate PA) 
b −0.003 0.433 −0.011, 0.005

Interaction (Age × High PA) 
b 0.006 0.226 −0.004, 0.016

Eating Habit (2 vs. 1) 
c −0.868 <0.001 −1.000, −0.736

Eating Habit (3 vs. 1) 
c −1.010 <0.001 −1.149, −0.870

Eating Habit (4 vs. 1) 
c −0.363 <0.001 −0.520, −0.206

Eating Habit (5 vs. 1) 
c 0.895 <0.001 0.594, 1.196

Cohort (birth year, centered at 1940) 0.114 <0.001 0.105, 0.123

Intercept 27.184 <0.001 27.029, 27.339

BMI, body mass index; CI, PA, physical activity.

a
Defined as BMI < 14 kg/m2 or BMI > 50 kg/m2.

b
Test for interaction terms: P = 0.060.

c
1=Eat much less than I want; 2=Eat somewhat less than I want; 3=Eat just what I want; 4=Eat somewhat more than I want; 5=Eat much more than 

I want.
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Table 4

Predicted probabilities for being in a defined BMI category (normal weight, overweight, obese) based on 

multinomial regression in the 1940 cohort of men who “Eat Just What I Want,” Dallas, Texas, 1970-2006 

(men = 8,885; observations = 17,304)

PA Level Normal Weight Overweight Obese

Age Pred.
Prob.

95% CIa Pred.
Prob. 95% CI

a Pred.
Prob. 95% CI

a

Inactive 30 0.77 0.81, 0.71 0.22 0.18, 0.27 0.02 0.01, 0.02

50 0.45 0.48, 0.42 0.46 0.43, 0.48 0.09 0.08, 0.10

70 0.15 0.20, 0.11 0.54 0.53, 0.54 0.31 0.27, 0.35

Moderate 30 0.82 0.85, 0.77 0.17 0.14, 0.21 0.01 0.01, 0.01

50 0.56 0.59, 0.54 0.39 0.37, 0.40 0.05 0.05, 0.06

70 0.25 0.30, 0.21 0.55 0.53, 0.57 0.19 0.17, 0.22

High 30 0.87 0.89, 0.83 0.13 0.10, 0.16 0.00 0.00, 0.01

50 0.66 0.68, 0.64 0.31 0.29, 0.33 0.03 0.02, 0.03

70 0.35 0.41, 0.29 0.52 0.48, 0.54 0.14 0.11, 0.17

BMI, body mass index, PA, physical activity; Pred. Prob., predictive probability; CI, confidence interval.

a
The 95% confidence intervals are based on robust, cluster, sandwich estimator for the standard error.
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