Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 30;93(9):4403–4408. doi: 10.1073/pnas.93.9.4403

Synthesis and targeted delivery of an azidothymidine homodinucleotide conferring protection to macrophages against retroviral infection.

M Magnani 1, A Casabianca 1, A Fraternale 1, G Brandi 1, S Gessani 1, R Williams 1, M Giovine 1, G Damonte 1, A De Flora 1, U Benatti 1
PMCID: PMC39550  PMID: 8633079

Abstract

The infectivity and replication of human (HIV-1), feline (FIV), and murine (LP-BM5) immunodeficiency viruses are all inhibited by several nucleoside analogues after intracellular conversion to their triphosphorylated derivatives. At the cellular level, the main problems in the use of these drugs concern their limited phosphorylation in some cells (e.g., macrophages) and the cytotoxic side effects of nucleoside analogue triphosphates. To overcome these limitations a new nucleoside analogue homodinucleotide, di(thymidine-3'-azido-2',3'-dideoxy-D-riboside)-5'-5'-p1-p2-pyrophosphat e (AZTp2AZT), was designed and synthesized. AZTp2AZT was a poor in vitro inhibitor of HIV reverse transcriptase, although it showed antiviral and cytotoxic activities comparable to those of the parent AZT when added to cultures of a HTLV-1 transformed cell line. AZTp2AZT encapsulated into erythrocytes was remarkably stable. Induction of erythrocyte-membrane protein clusterization and subsequent phagocytosis of AZTp2AZT-loaded cells allowed the targeted delivery of this impermeant drug to macrophages where its metabolic activation occurs. The addition of AZTp2AZT-loaded erythrocytes to human, feline, and murine macrophages afforded almost complete in vitro protection of these cells from infection by HIVBa-L, FIV, and LP-BM5, respectively. Therefore, AZTp2AZT, unlike the membrane-diffusing azidothymidine, acts as a very efficient antiretroviral prodrug following selective targeting to macrophages by means of loaded erythrocytes.

Full text

PDF
4403

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. A., Horne R. Follicular dendritic cells and virus-like particles in AIDS-related lymphadenopathy. Lancet. 1984 Aug 18;2(8399):370–372. doi: 10.1016/s0140-6736(84)90540-3. [DOI] [PubMed] [Google Scholar]
  2. Bendinelli M., Pistello M., Lombardi S., Poli A., Garzelli C., Matteucci D., Ceccherini-Nelli L., Malvaldi G., Tozzini F. Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clin Microbiol Rev. 1995 Jan;8(1):87–112. doi: 10.1128/cmr.8.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busso M., Mian A. M., Hahn E. F., Resnick L. Nucleotide dimers suppress HIV expression in vitro. AIDS Res Hum Retroviruses. 1988 Dec;4(6):449–455. doi: 10.1089/aid.1988.4.449. [DOI] [PubMed] [Google Scholar]
  4. De Flora A., Zocchi E., Guida L., Polvani C., Benatti U. Conversion of encapsulated 5-fluoro-2'-deoxyuridine 5'-monophosphate to the antineoplastic drug 5-fluoro-2'-deoxyuridine in human erythrocytes. Proc Natl Acad Sci U S A. 1988 May;85(9):3145–3149. doi: 10.1073/pnas.85.9.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gao W. Y., Agbaria R., Driscoll J. S., Mitsuya H. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2',3'-dideoxynucleoside analogs in resting and activated human cells. J Biol Chem. 1994 Apr 29;269(17):12633–12638. [PubMed] [Google Scholar]
  6. Gao W. Y., Cara A., Gallo R. C., Lori F. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8925–8928. doi: 10.1073/pnas.90.19.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986 Jul 11;233(4760):215–219. doi: 10.1126/science.3014648. [DOI] [PubMed] [Google Scholar]
  8. Gasparini A., Giovine M., Damonte G., Tonetti M., Grandi T., Mazzei M., Balbi A., Silvestro L., Benatti U., De Flora A. A novel dimeric fluoropyrimidine molecule behaves as a remote precursor of 5-fluoro-2'-deoxyuridine in human erythrocytes. Biochem Pharmacol. 1994 Sep 15;48(6):1121–1128. doi: 10.1016/0006-2952(94)90148-1. [DOI] [PubMed] [Google Scholar]
  9. Ho D. D., Rota T. R., Hirsch M. S. Infection of monocyte/macrophages by human T lymphotropic virus type III. J Clin Invest. 1986 May;77(5):1712–1715. doi: 10.1172/JCI112491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaffé E. R., Neuman G. The synthesis of pyridine nucleotides in fresh and stored human erythrocytes. Transfusion. 1965 Sep-Oct;5(5):412–420. doi: 10.1111/j.1537-2995.1965.tb02917.x. [DOI] [PubMed] [Google Scholar]
  11. Koenig S., Gendelman H. E., Orenstein J. M., Dal Canto M. C., Pezeshkpour G. H., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986 Sep 5;233(4768):1089–1093. doi: 10.1126/science.3016903. [DOI] [PubMed] [Google Scholar]
  12. Lewis W., Dalakas M. C. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995 May;1(5):417–422. doi: 10.1038/nm0595-417. [DOI] [PubMed] [Google Scholar]
  13. MICHELSON A. M. SYNTHESIS OF NUCLEOTIDE ANHYDRIDES BY ANION EXCHANGE. Biochim Biophys Acta. 1964 Sep 11;91:1–13. doi: 10.1016/0926-6550(64)90164-1. [DOI] [PubMed] [Google Scholar]
  14. Magnani M., Bianchi M., Rossi L., Stocchi V. Human red blood cells as bioreactors for the release of 2',3'-dideoxycytidine, an inhibitor of HIV infectivity. Biochem Biophys Res Commun. 1989 Oct 16;164(1):446–452. doi: 10.1016/0006-291x(89)91740-3. [DOI] [PubMed] [Google Scholar]
  15. Magnani M., Rossi L., Bianchi M., Cucchiarini L., Stocchi V. Reversed-phase liquid chromatographic determination of 2',3'-dideoxycytidine in human blood samples. J Chromatogr. 1989 Jun 30;491(1):215–220. doi: 10.1016/s0378-4347(00)82835-2. [DOI] [PubMed] [Google Scholar]
  16. Magnani M., Rossi L., Brandi G., Schiavano G. F., Montroni M., Piedimonte G. Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6477–6481. doi: 10.1073/pnas.89.14.6477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Magnani M., Rossi L., Fraternale A., Silvotti L., Quintavalla F., Piedimonte G., Matteucci D., Baldinotti F., Bendinelli M. Feline immunodeficiency virus infection of macrophages: in vitro and in vivo inhibition by dideoxycytidine-5'-triphosphate-loaded erythrocytes. AIDS Res Hum Retroviruses. 1994 Sep;10(9):1179–1186. doi: 10.1089/aid.1994.10.1179. [DOI] [PubMed] [Google Scholar]
  18. Mitsuya H., Yarchoan R., Broder S. Molecular targets for AIDS therapy. Science. 1990 Sep 28;249(4976):1533–1544. doi: 10.1126/science.1699273. [DOI] [PubMed] [Google Scholar]
  19. Mosier D. E., Yetter R. A., Morse H. C., 3rd Functional T lymphocytes are required for a murine retrovirus-induced immunodeficiency disease (MAIDS). J Exp Med. 1987 Jun 1;165(6):1737–1742. doi: 10.1084/jem.165.6.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pauwels R., Balzarini J., Baba M., Snoeck R., Schols D., Herdewijn P., Desmyter J., De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988 Aug;20(4):309–321. doi: 10.1016/0166-0934(88)90134-6. [DOI] [PubMed] [Google Scholar]
  21. Perno C. F., Yarchoan R., Cooney D. A., Hartman N. R., Gartner S., Popovic M., Hao Z., Gerrard T. L., Wilson Y. A., Johns D. G. Inhibition of human immunodeficiency virus (HIV-1/HTLV-IIIBa-L) replication in fresh and cultured human peripheral blood monocytes/macrophages by azidothymidine and related 2',3'-dideoxynucleosides. J Exp Med. 1988 Sep 1;168(3):1111–1125. doi: 10.1084/jem.168.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perno C. F., Yarchoan R., Cooney D. A., Hartman N. R., Webb D. S., Hao Z., Mitsuya H., Johns D. G., Broder S. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3'-azido-2'3'-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine. J Exp Med. 1989 Mar 1;169(3):933–951. doi: 10.1084/jem.169.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Piedimonte G., Montroni M., Silvestri G., Silvotti L., Donatini A., Rossi L., Borghetti A. F., Magnani M. Phagocytosis reduces HIV-1 production in human monocytes/macrophages infected in vitro. Arch Virol. 1993;130(3-4):463–469. doi: 10.1007/BF01309674. [DOI] [PubMed] [Google Scholar]
  24. Puech F., Gosselin G., Balzarini J., Good S. S., Rideout J. L., De Clercq E., Imbach J. L. Synthesis and biological evaluation of dinucleoside methylphosphonates of 3'-azido-3'-deoxythymidine and 2', 3'-dideoxycytidine. Antiviral Res. 1990 Jul;14(1):11–23. doi: 10.1016/0166-3542(90)90062-c. [DOI] [PubMed] [Google Scholar]
  25. Richman D. D., Kornbluth R. S., Carson D. A. Failure of dideoxynucleosides to inhibit human immunodeficiency virus replication in cultured human macrophages. J Exp Med. 1987 Oct 1;166(4):1144–1149. doi: 10.1084/jem.166.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rossi L., Brandi G., Fraternale A., Schiavano G. F., Chiarantini L., Magnani M. Inhibition of murine retrovirus-induced immunodeficiency disease by dideoxycytidine and dideoxycytidine 5'-triphosphate. J Acquir Immune Defic Syndr. 1993 Nov;6(11):1179–1186. [PubMed] [Google Scholar]
  27. Salahuddin S. Z., Rose R. M., Groopman J. E., Markham P. D., Gallo R. C. Human T lymphotropic virus type III infection of human alveolar macrophages. Blood. 1986 Jul;68(1):281–284. [PubMed] [Google Scholar]
  28. Schinazi R. F., Sommadossi J. P., Saalmann V., Cannon D. L., Xie M. Y., Hart G. C., Smith G. A., Hahn E. F. Activities of 3'-azido-3'-deoxythymidine nucleotide dimers in primary lymphocytes infected with human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1990 Jun;34(6):1061–1067. doi: 10.1128/aac.34.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tschachler E., Groh V., Popovic M., Mann D. L., Konrad K., Safai B., Eron L., diMarzo Veronese F., Wolff K., Stingl G. Epidermal Langerhans cells--a target for HTLV-III/LAV infection. J Invest Dermatol. 1987 Feb;88(2):233–237. doi: 10.1111/1523-1747.ep12525402. [DOI] [PubMed] [Google Scholar]
  30. Velázquez S., Alvarez R., San-Félix A., Jimeno M. L., De Clercq E., Balzarini J., Camarasa M. J. Synthesis and anti-HIV activity of [AZT]-[TSAO-T] and [AZT]-[HEPT] dimers as potential multifunctional inhibitors of HIV-1 reverse transcriptase. J Med Chem. 1995 May 12;38(10):1641–1649. doi: 10.1021/jm00010a008. [DOI] [PubMed] [Google Scholar]
  31. Zocchi E., Guida L., Franco L., Silvestro L., Guerrini M., Benatti U., De Flora A. Free ADP-ribose in human erythrocytes: pathways of intra-erythrocytic conversion and non-enzymic binding to membrane proteins. Biochem J. 1993 Oct 1;295(Pt 1):121–130. doi: 10.1042/bj2950121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES