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Abstract
Autism spectrum disorders have been increasing in prevalence over the past two decades,
primarily because of increased awareness and diagnosis. However, autism is clearly a complex
human genetic disorder that involves interactions between genes and environment. Epigenetic
mechanisms such as DNA methylation act at the interface of genetic and environmental risk and
protective factors. Advancements in genome-wide sequencing has broadened the view of the
human methylome and revealed the organization of the human genome into large-scale
methylation domains that footprint over neurologically important genes involved in embryonic
development. Future integrative epigenomic analyses of genetic risk factors with environmental
exposures and methylome analyses are expected to be important for understanding the complex
etiology of autism spectrum disorders.

Introduction
Autism spectrum disorder (ASD) is collectively used to refer to the heterogeneous collection
of neurodevelopmental disorders with collective characteristics of severe impairments in
social interactions and communication, combined with restrictive and repetitive interests and
behaviors1. ASDs occur across ethnic, racial, and socioeconomic levels at a rate estimated
by the CDC in 2012 to be 1 in 88 children2. Boys with ASDs outnumber girls at around 5 to
1, making the prevalence in boys about 1 in 54. While increased awareness and diagnosis is
expected to explain a portion of the striking increased prevalence in ASDs over the last two
decades, many of the factors behind the rising rates have yet to be understood3. An overview
of the evidence for genetic and environmental risk and protective factors in ASD will be
provided in this review.

Epigenetic mechanisms such as DNA methylation act at the interface of genetic and
environmental factors and therefore may be an important portal into the complexity of
autism genetics. Genome-wide technologies have really served to broaden the view of the
methylome and revealed the importance of tissue specificity, developmental dynamics, and
genomic location in the context and relationship of DNA methylation and gene
transcriptional patterns. I shall further discuss the potential relevance of genome-wide
methylome mapping technologies and their use in understanding the interface between
genetic and environmental risk and protective factors.

The complex genetics of ASD
Historically, data from monozygotic twin studies provided an estimated very high
heritability rate for autism above 90%4, 5. However, in more recent twin studies, the
estimates of dizygotic twin concordance have been increasing and monozygotic twin
concordance have been decreasing6. A recent large twin cohort study actually put the
estimated risk of shared in utero environment at 30–80% for ASD higher than the genetic
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risk for ASD, at 14–67%7. These studies have suggested that while there is a strong genetic
basis for ASD in some individual cases, the genetics of ASD is decidedly complex, and
many cases of ASD are likely to involve complex interactions between genetic and
environmental risk factors.

A recent study of almost 10,000 dizygotic twin pairs assessed for autistic traits have
provided evidence for a genetically based “female protective effect” in ASD8. Siblings of
female probands scoring above 90% on population-based autistic trait distributions were
significantly more likely than those of male probands to also score above 90%. These results
support the idea that females may require a greater “load” of familial etiological factors to
manifest autistic traits than males, adding to evidence previously obtained in the analysis of
copy number variants in large autism cohorts9, 10. Another potential explanation for the
female protective effect in ASD comes from a study of Turner’s syndrome individuals with
a single X chromosome, in which evidence for an imprinted X-linked locus for social
behavior was obtained11. The female protective effect in ASD is also predicted to factor into
predictions of female carrier state of genetic heritability of risk factors, both for genes on the
X chromosome as well as autosomal inheritance with female protection12.

Genetic approaches for investigating genetic etiology of ASD have included cytogenetic
analyses, linkage analyses, genome-wide association studies (GWAS), copy number
variation (CNV) analyses, and whole-exome sequencing approaches. Cytogenetic analysis
can detect large deletions, duplications, or repeat expansions such as the FMR1 CGG
expansion in Fragile X syndrome or the >12 Mb duplications in 15q11–q13 that each make
up approximately 1–2% of ASD cases13, 14. Microarray technologies allow the finer
resolution of CNVs, including deletions and duplications ranging in size from several kb to
several Mb15. While many CNVs are polymorphic between humans, a higher frequency of
rare de novo CNVs has been reproducibly been observed in ASD compared to controls16–19.
Analysis of specific CNVs recurrent in autism have identified several recurrent genes and
gene pathways, including neuronal cell adhesion (NLGN1, NRXN1, ASTN2), ubiquitin
pathway (UBE3A, PARK2, RFWD2 and FBXO40)20, and GTPase/Ras pathway (AGAP1,
SYNGAP1, CDH13)21.

However, the total burden of CNVs and their overall size appears to be likely to be as
important as the individual genes. Interestingly, a recent study showed that increased CNV
deletion size correlated primarily with reduced IQ, but increased CNV duplication size
correlated with reduced sociability traits22. Furthermore, a recent analysis focused on highly
dynamic, CNV hotspots associated with autism or developmental delay syndromes
demonstrated that total burden of both rare and common duplications is significantly
associated with autism23. Together, these studies indicate that large scale CNVs are clearly
an important genetic risk factor for ASD, but highlight the need to look beyond the
individual genes disrupted by CNVs to consider both rare and common de novo events and
total CNV burden that affect common genetic pathways, as well as the impact of large
duplications on ASD risk.

GWAS has focused on the importance of single nucleotide polymorphisms (SNPs) in the
heritability of ASD through the analysis of common variants. One of the largest GWAS
studies compared ASD cases and controls and identified a significant association of
chromosome 5p21 in a large gene desert located between two cadherin genes (CDH9 and
CDH10) involved in embryonic cell adhesion24. Two other GWAS studies replicated
association to 5p14–15, but not to the same location25, 26. An additional GWAS study found
significant association at chromosome 20p12 within the MACROD2 gene locus27, encoding
an ADP-ribosylase implicated in chromatin and DNA repair events with the nucleus28, 29. In
a second stage GWAS analysis with increased ASD probands, no significant association was
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observed, but the strongest candidate mapped to CNTNAP2 on chromosome 730, a gene
previously implicated in ASD31, 32.

More recently, whole-exome resequencing efforts have focused on identifying rare variants
within protein coding sequences in ASD cases but not controls. The first whole-exome study
of 20 individuals with sporadic ASD identified four potential causative de novo variants in
FOXP1, GRIN2B, SCN1A, and LAMC333. A second study by the same group also later
identified CHD8 and SCNA2 as causative for ASD18. Interestingly, this study demonstrated
that de novo mutations were paternal in origin and the number of mutations positively
correlated with increasing paternal age. Therefore, the environmental factor of increasing
paternal age may appears to have an impact on the genetic risk for rare causal variants of
ASD, similar to the well known affects of maternal age on genetic aneuploidies such as
trisomy 21 causing the neurodevelopmental disorder Down syndrome34.

Environmental risk and protective factors for ASDs
Epidemiology studies of ASD risk have continued to find additional environmental factors
that both independently and together with genetic factors, increase the risk for ASD. Most of
the current evidence has focused attention on parental, perinatal, and obstetric factors. Some
historic environmental exposures, though currently rare in the population, provide important
evidence for exogenous factors that can greatly increase risk for ASD. These include rubella
infection or medications such as thalidomide or valproate exposure during pregnancy, which
each have been implicated in several hundred-fold increase in autism risk35–38. More recent
epidemiological studies have reinforced maternal infection, detected as the occurrence of
fever or influenza during pregnancy, as significantly increasing ASD risk39, 40. Animal
models using artificial immune challenge paradigms, however, have reinforced and
confirmed the findings that it is the maternal immune challenge itself, rather than a specific
viral infection, that is likely responsible41. Support for immune dysregulation in ASD has
come from evidence for maternal autoantibodies and altered cytokine responses in both
mothers and probands with ASD42–44.

Additional contributing maternal risk factors for ASD include advanced maternal age45,
maternal obesity46, later birth order47, and shorter pregnancy spacing interval48. Maternal
exposure to common environmental pollutants is also an emerging concern as factors such
as air pollution5, 49 and pesticides50 have been associated with increased ASD risk. Genetic
susceptibility likely plays a major role in the relatively low odds ratios observed with these
environmental risk factors.

Recently, epidemiological studies have raised the potential importance of transgenerational
environmental effects in the risk for ASD. First, one study revealed a significant association
with advanced grandpaternal age and risk of autism in grandchildren, suggesting that autism
risk could develop over generations51. A prior study found increased grandmaternal age to
be associated with autistic traits in grandchildren, and proposed a meiotic mismatch
methylation hypothesis to explain their unexpected results52. Briefly, the meiotic mismatch
methylation hypothesis suggest that the vulnerable window of methylation changes during
the grandmother’s pregnancy is in the second trimester meiosis I events in the fetal ovary
when the paired and recombining grandparental chromosomes could potentially be
influenced both by environmental factors and by genetic mutations such as small deletions
and duplications on the grandpaternal chromosomes during pairing. A transgenerational
effect that cannot be explained by fetal meiotic events, however, is a large population-based
longitudinal cohort study (Nurses’ Health Study II) that identified maternal exposure to
child abuse in early life as a risk factor for having a child with autism53. These studies from
human population studies are perhaps less surprising in light of emerging evidence for
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environmental factors such as stress54–56 or environmental enrichment57, endocrine
disruptors such as vinclozolin58 and BPA59, and nutrition60, 61 that have all been shown to
exhibit transgenerational effects in animal models relevant to ASD.

Interestingly, prenatal folic acid supplementation is a protective factor for both neural tube
defects and ASD. Folate and folic acid are major environmental contributors to DNA
methylation and are protective factors for a number of human diseases, but the epigenomics
of protection is poorly understood. Studies have shown that mothers of children with autism
were significantly less likely to take a prenatal supplement around conception and reported
significantly lower average intake of folic acid than mothers of typically developing children
during the first pregnancy month62,63, 64. Further, if mothers did not report taking prenatal
supplements periconceptionally and they or their child had the susceptible MTHFR allele,
their child was at much higher risk for autism62. Because supplemental folic acid
demonstrates antioxidant properties65 and rectifies conditions of oxidative stress and low
methylation capacity66, 67 potentially induced by environmental toxins, the reduced risk
associated with periconceptional prenatal vitamin use could be a result of mechanisms that
combat the effects of environmental toxins on the by providing important methyl donors.

Perinatal life is a critical time for DNA methylation and for susceptibility to
environmental factors

Epigenetic marks such as DNA methylation may be able to explain some of the variability
observed with both environmental and genetic risk factors in autism. Epigenetic
modifications to nucleotides or chromatin provide long-lived effects on gene expression and
phenotype without modifying the DNA sequence. Epigenetic mechanisms such as DNA
methylation can be altered by environmental changes68, 69 and are heritable and stably
maintained following environmental exposures, thus providing an important interface
between genetic and environmental risk factors in complex disorders such as autism. Several
environmental exposures have been correlated with reduced global DNA methylation in
humans67, 69, 70. Nutritional modification of folate levels can alter DNA methylation with
profound effects on phenotypic outcome of social animals such as queen determination in
honeybees71 as well as agouti coat color and obesity in mice72. Deficiencies in methylation
and oxidative stress pathways have been implicated in autism67. Therefore, the protective
nature of folate and other B vitamins is likely at the epigenetic interface of DNA
methylation where it may counteract the impact of environmental factors that reduce DNA
methylation levels.

The earliest stages of pregnancy are the most critical for dietary methyl donors. Oocytes,
early pre-implantation embryos, and embryonic stem cells have higher overall levels of
DNA methylation, as they utilize non-CpG methylation in addition to higher CpG
methylation as compared to differentiated cell types73. Two global waves of demethylation
and remethylation occur in early development, first at an early postzygotic stage and again
in the fetal primordial germ cells74. Pre- and periconception stages are like the most critical
window for folic acid protection of neural tube defects and autism is because these early
embryonic events require methyl donors for dynamic DNA methylation changes at a time
when they are also most vulnerable to environmental exposures.

The developing human brain is also acutely sensitive to alterations in epigenetic pathways,
as observed by the fact that mutations in epigenetic effectors can result in human
neurodevelopmental disorders75, 76. Classic examples of ASDs caused by epigenetic
mediators include Rett syndrome (RTT), caused by mutations in the X-linked gene encoding
the “reader” of DNA methylation marks methyl CpG binding protein 2 (MeCP2)77, and
Rubinstein-Taybi syndrome, caused by mutations in the gene encoding the transcriptional
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activator CREB binding protein (CBP)78. Levels of MeCP2 protein in brain are reduced in
79% of ASD individuals compared to controls and correlated with increased methylation of
the MECP2 promoter in males79. Alterations in DNA methylation patters have also been
observed in blood in the circadian gene RORA and the oxytocin receptor gene OXTR in
cases with ASD but not controls80, 81.

Controlling genetic susceptibility is likely to be critical to understanding environmental
interactions at the epigenetic interface. My laboratory recently used a mouse model of
genetic and epigenetic susceptibility to ASD, the Mecp2308 mutant mouse, and perinatally
exposed the dams to human-relevant doses of organic pollutant polybrominated diphenyl
ether (PBDE)82. PBDE exposure of the dams resulted in long-lasting effect on learning and
social behaviors, primarily in the female offspring. Decreased sociability was associated
with reduced global DNA methylation levels in female but not male offspring, and a
compounding interaction of both PBDE exposure and MeCP2 mutation was observed in a
long term test of spatial and memory.

Furthermore, the reciprocally imprinted human ASDs Angelman and Prader-Willi
syndromes83, 84 have highlighted the importance of parental imprinting in brain
development and how methylation imprinting errors can be sufficient to cause
neurodevelopmental problems85, 86. Interestingly, imprinting mutations in Angelman
syndrome, while rare in the population, are significantly increased in offspring from
pregnancies obtained through artificial reproductive technologies87–89. In addition, the most
frequent large CNV observed in ASD are duplications of 15q11-q13 (Dup15q syndrome)13,
and my laboratory has recently observed an unexpected but significant association with the
persistant organic pollutant PCB-95 levels in brain and Dup15q syndrome90. Together, these
observations have suggested that genes and environmental factors are intertwined within
epigenetic pathways in the risk for ASD.

Genome-wide analyses of the methylome of relevance to neuronal
development and ASDs

In the past, DNA methylation analyses were mostly limited to the analysis of individual
gene promoters and CpG islands (CGIs) through time-consuming and low-throughput
bisulfite sequencing-based methods. Analysis of the whole human DNA methylome at base
resolution through recent next-generation sequencing efforts has revealed striking
differences in the epigenomic landscapes of pluripotent and lineage-committed human
cells73, 91. In brief, these studies have confirmed that CGI promoters are strongly depleted
for DNA methylation and gene promoter methylation is inversely correlated with gene
expression. However, the “shores” of CGIs, defined as the regions 2 kb upstream and
downstream of the CGI promoter, carry the most informative marks relevant to tissue-type
discrimination92. Interestingly, gene bodies and intergenic regions show high (>75%)
methylation in many human tissues, including embryonic stem cells and cortex73, 92–94. In
all cell types, gene body methylation levels actually positively correlate with transcript level,
making methylated-associated silencing of CGI promoters that is observed for X
chromosome inactivated or imprinted genes the exception rather than the rule.

But some of the best evidence for DNA methylation levels having a positive association
with transcription comes from genome-wide methylome sequencing of multiple eukaryotic
species. Gene body methylation is evolutionarily conserved in eukaryotes, and shows a
parabolic correlation with gene expression, as intermediately expressed genes show the
highest level of gene body methylation95. Highly developed multicellular organisms have
increased levels of DNA methylation compared to lower organisms within kingdoms95. In
humans, gene body methylation levels and patterns vary considerably between cell types and
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developmental stages92, 96, 97, with pluripotent embryonic stem cells showing drastically
different epigenomic landscapes than primary fibroblasts. These studies suggest that
increased methylation levels, as well as differential methylation patterns marking cell
lineages and developmental stages is a feature of recent evolution.

DNA methylation levels also appear to be critically important for the mammalian nervous
system. In the context of neurons, increased transcription of neurogenic genes during
neuronal differentiation require the DNA methyltransferase Dnmt3a and the deposition of
DNA methylation patterns at regions flanking promoter regions98. This suggests that
neurogenic transcription requires an unmethylated promoter flanked by highly methylated
shores. Multiple studies indicate that the proper deposition of methylation patterns is
important for brain function, as indicated by the fact that DNMT1 and/or DNMT3A regulate
synaptic function99, memory formation100 and behavioral plasticity101.

Active demethylation is another process by which DNA methylation patterns can be
diversified and is hypothesized to be important in activity-dependent transcriptional
responses of neurons. Several studies indicate that demethylation may play a role in
neurogenesis102 and neurotransmission103 and implicate TET1 hydroxylation of
methylcytosine in brain104. In addition, multiple lines of evidence suggest an involvement of
activation-induced cytidine deaminase (AID or AICDA) in demethylation. AID bound silent
methylated OCT4 and NANOG differentiation factor genes and was required for
reprogramming of human induced pluripotent cells (iPSC)105. AID also contributes to the
global demethylation that occurs in mouse primordial germ cells106 and overexpression of
AID in culture results in demethylation of hydroxymethylcytosine (hmC)104. Interestingly,
AID was first characterized for its role in immunoglobulin class-switch DNA recombination
where it targets transcription-induced R-loops107, 108. R-loops are hybrid structures of RNA
and DNA in which a nascent RNA molecule with high G content (G-skew, found frequently
in CpG islands) displaces one strand of DNA because of increased affinity109. R-loops have
recently been demonstrated to protect active CGI promoters genome-wide from de novo
DNA methylation110. Altogether, this suggests that active methylation and demethylation
may regulate postnatal neuronal maturation in response to transcriptional changes from early
life exposures and experiences.

Using bisulfite conversion followed by high-throughput sequencing (MethylC-seq), my
laboratory recently discovered that human SH-SY5Y neuronal cells contain partially
methylated domains or PMDs111. Novel hidden Markov models (HMM) were developed to
computationally map the genomic locations of PMDs in both cell types and showed that
autosomal PMDs can be over 9 Mb in length and cover 41% of the IMR90 (lung fibroblast)
genome and 19% of the SH-SY5Y genome. Genomic regions marked by cell line-specific
PMDs contain genes that are expressed in a tissue-specific manner, with PMDs being a mark
of repressed transcription. Genes contained within N-HMDs (neuronal HMDs, defined as a
PMD in IMR90 but HMD in SH-SY5Y) were significantly enriched for neuronal
differentiation functions. Not all neuronally expressed genes were contained within N-
HMDs, however. Instead, N-HMD genes showed significant enrichment for specific subsets
of neuronal gene functions, including cell adhesion, ion transport, cell-cell signaling,
synaptic transmission, transmission of nerve impulses, and neuron differentiation. Autism
candidate genes were significantly enriched within PMDs, including CNTNAP2, GABRB3,
MACROD2, and NRXN1. Interestingly, the largest PMD observed in SH-SY5Y cells marked
a 10 Mb cluster of cadherin genes (including CDH9 and CDH10) with strong genetic
association to ASD on chromosome 5p1424, 111, 112 In addition to cultured cell lines, we
have recently performed MethylC-seq on five human tissues (cerebrum, cerebellum, kidney,
NK cells, placenta) and placenta was the only tissue containing PMDs113. These results have
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suggested that PMDs are a developmentally dynamic feature of the human methylome that
can be observed in a normal human tissue that is a normal byproduct of all births.

Future directions of integrative epigenomic strategies
Our recent results suggest that large-scale methylation domain maps could be relevant to
interpreting and directing future investigations into the elusive etiology of autism. We
hypothesize that the transition between PMD and HMD may be an important epigenetic
event in neuronal maturation and that in utero environmental factors impacting the
methylome may alter the optimal expression of a network of synaptic genes with relevance
to ASD. A large number of known autism candidate genes are found in methylation domains
that will be detectable in placenta, including the domains highly methylated in both neurons
and placenta but not lung fibroblasts (L-PMDs) and those highly methylated only in neurons
(N-HMDs). These findings suggest that deficiencies in methylation levels within these
defined genomic regions may predict a problem in neuronal methylation and transcription of
these important synaptic genes.

Genome-wide data from the Encyclopedia of DNA Elements (ENCODE, http://
www.nature.com/encode) project is still in the early stages, providing epigenomic data on a
few human cell lines. However, these publically available data sets will continue provide
rich sources of information about epigenetic differences between tissue types that are
expected to be useful in interpreting the vast amounts of individual genome sequences that
are rapidly coming available. For advancing understanding of etiological causes of ASD, it
will be very important to the field to integrate the various layers of genetic and epigenetic
information together with precise measurements of behavior and individual exposures.
Human epidemiology studies may need to continue to look across generations in order to
understand how human genomes and epigenomes may be coming increasing susceptible to
ASD risk through a multitude of environmental factors.

Since the interface of genetics and environmental exposures in humans can be overly
complex and overwhelming, even to the best designed human studies, animal models in
which genetics and environmental factors can be controlled and systematically tested for
impacts on social behaviors will continue to be important experimental validations of
suspected causal associations. Cell culture model systems for studying human neurons, such
as patient derived induced pluripotent stem cells (iPSCs)114 or next generation genetic
technologies of artificial zinc finger technologies115, transcription activator-like effectors
(TALEs)116 and genome editing with CRISPR/Cas systems117, 118 will also likely to be
important approaches for studying the human gene, environmental, epigenetic interface.

There is growing appreciation in the field of ASD research that a single discipline or
methodology will not be sufficient to solve the complex etiologies of these increasingly
common disorders. While genetic strategies have been successful in identifying specific
genes and gene pathways in rare ASD cases, a more integrated approach of examining
genetic, environmental, and epigenetic events will be essential in solving the complex
enigma of ASD etiology and treatment.
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