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Abstract
Background—The phase-amplitude coupling (PAC) between distinct neural oscillations is
critical to brain functions that include cross-scale organization, selection of attention, routing the
flow of information through neural circuits, memory processing and information coding. Several
methods for PAC estimation have been proposed but the limitations of PAC estimation as well as
the assumptions about the data for accurate PAC estimation are unclear.

New Method—We define boundary conditions for standard PAC algorithms and propose
“oscillation-triggered coupling” (OTC), a parameter-free, data-driven algorithm for unbiased
estimation of PAC. OTC establishes a unified framework that treats individual oscillations as
discrete events for estimating PAC from a set of oscillations and for characterizing events from
time windows as short as a single modulating oscillation.

Results—For accurate PAC estimation, standard PAC algorithms require amplitude filters with a
bandwidth at least twice the modulatory frequency. The phase filters must be moderately narrow-
band, especially when the modulatory rhythm is non-sinusoidal. The minimally appropriate
analysis window is ~10 seconds. We then demonstrate that OTC can characterize PAC by treating
neural oscillations as discrete events rather than continuous phase and amplitude time series.

Comparison with existing methods—These findings show that in addition to providing the
same information about PAC as the standard approach, OTC facilitates characterization of single
oscillations and their sequences, in addition to explaining the role of individual oscillations in
generating PAC patterns.

Conclusions—OTC allows PAC analysis at the level of individual oscillations and therefore
enables investigation of PAC at the time scales of cognitive phenomena.
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1.0 Introduction
The mammalian brain is a complex system with a distributed organization of sensory, motor,
and executive computation centers across large areas of the cortex. While the distributed
organization allows for parallel and specialized processing of information, it requires a
mechanism for binding information from different computations into a coherent, unitary
mental experience (von der Malsburg, 1981, Engel and Singer, 2001). The multipurpose,
functional organization of local brain circuits also requires a mechanism for achieving
dynamic, context-dependent cognitive and attentional control, a mechanism for the efficient
routing of information between different brain computation centers, as well as a robust and
efficient mechanism for coding the information in the dynamics of neural discharge (Phillips
and Singer, 1997, Kelemen and Fenton, 2010). Various forms of neural synchrony, the
coordinated synchronized activation of same-function cells and the active desynchronization
of different-function cells have been proposed as this fundamental mechanism of neural
computation (von der Malsburg and Schneider, 1986, Buzsaki, 2010). In the recent decade,
phase-amplitude synchrony of field potential oscillations, the coupling between the phase of
a slow oscillation and the amplitude of a faster oscillation, has received significant attention
as a candidate synchronizing mechanism and is the subject of the present work.

In phase-amplitude coupling (PAC), the amplitude of a fast signal (e.g. gamma 30–100 Hz)
is modulated by the phase of a slow signal (e.g. theta 5–12 Hz). This interaction is
sometimes called “nesting” because the fast oscillation is precisely fitted within the cycle of
the slower oscillation (Lakatos et al., 2005). The term phase-amplitude cross-frequency
coupling (CFC) has also been used for this phenomenon, because the interaction happens
between two distinct oscillatory bands (Bragin et al., 1995). This particular property makes
PAC principally different from other synchrony measures such as amplitude synchrony
(assessed by cross -correlation) or phase synchrony (assessed by phase locking statistics)
because it reflects the dynamical relationship between two oscillations that are generated by
distinct neurophysiological mechanisms. As the oscillations have different biophysical
origins, the consequent PAC is not easily attributed to the spurious occurrence of synchrony
caused by volume conduction, selection of reference or synchronized noise. The concept of
a cross-scale organization of neural activity (Jensen and Colgin, 2007, Le Van Quyen, 2011)
offers a possible neural mechanism for integrating information between several functionally
distinct networks, to accomplish perceptual binding, selective attention, cognitive control
and the recruitment of computational and representational cell assemblies. Neural activity in
macroscopic (slow oscillations), mesoscopic (high frequency oscillations) and microscopic
(single neuron activity) scales are braided together such that a progressively faster activity
occurs within a specific, short time window of a slower activity. Indeed, several conceptual
and theoretical frameworks have been proposed for the computational role of PAC (Knight
and Canolty, 2010). Given the growing interest, and the substantial value in PAC as a
mechanism for neural computation it is important for the broader neuroscience community
to understand how to accurately measure and interpret PAC, and appreciate the limitations
of the current methods.

This paper is written in two parts. The first part is an analysis of the standard approach to
computing PAC. We examine the assumptions and by parametric analyses, identify the filter
and temporal requirements for estimating PAC accurately. The second part introduces a
novel approach to estimate, measure and characterize PAC. It operates on two time scales,
one is global, and like traditional methods it is only robust when applied to long time series
of data, on the order of many seconds. The approach also allows the characterization of PAC
on short time scales, as short as a single oscillation.
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2.0 Materials and Methods
Multiple algorithms for quantifying PAC have been proposed (Fig. 1). The common starting
point of all algorithms is an extraction of the phase and the amplitude information from the
sampled signal x(t). This can be accomplished by band-pass filtering the signal into the
bands of interest, for example theta 7–9 Hz and fast gamma 62–100 Hz followed by the
Hilbert transform (Fig. 1 A–C). There are other methods for extraction of phase and
amplitude information, for example convolution of the signal with a complex wavelet but
since these methods lead in principle to the same result (LeVan Quyen et al., 2001) we use
the Hilbert transform approach throughout our study. The Hilbert transform converts a band-
pass filtered time series into a complex analytical time series. The instantaneous phase φ(t)
and amplitude A(t) time series are then extracted from the analytic signal by taking the
argument or modulus, respectively. The relationship between the phase and the amplitude
time series, often referred to as the modulation index can then be studied by means of
circular statistics, i.e. by computing the mean vector of the complex composite signal:

 (Fig. 1d); (Canolty et al., 2006). Another method to calculate the
modulation index calculates the phase relationship between the instantaneous phase time
series φ(t) and φA(t), where φA(t) is the instantaneous phase extracted from the amplitude
time series A(t) (Penny et al., 2008). Other methods to calculate the modulation index are
based on analysis of the power spectral density of the amplitude time series A(t) (Cohen,
2008) or coherence spectrum between A(t) and the original signal x(t) (Colgin et al., 2009).
Most recently, a method based on the analysis of the phase-amplitude distribution was
proposed (Tort et al., 2010). This measure computes a normalized Kullback-Leibler (KL)
divergence between the phase-amplitude distribution and the uniform distribution (Fig. 1E).
Since in the first, review part of this paper, we primarily focus on the initial steps of the
algorithm, i.e. selection of filters for extraction of the phase and the amplitude information,
we refer the interested reader to an extensive review and comparison of the above methods
(Tort et al., 2010). The first part of the present report has mainly used modulation index
estimates that are based on the phase-amplitude histogram (Tort et al., 2010).

It is not always certain, a priori, what frequency bands are involved in PAC, and thus PAC
estimation typically begins with construction of a comodulogram to reveal the frequency
bands that can be observed to interact in a particular dataset. The comodulogram analysis
varies the frequency of both filters used to separately extract the amplitude A(t) and the
phase φ (t) series from one signal and computes the modulation index for all combinations
of the two series (Fig. 1F).

To test the significance of the modulation index (MIraw), surrogate tests can be used
(Hurtado et al., 2004). All surrogate techniques follow a similar approach. One of the time
series (for example the phase time series) is randomly shuffled to create a new phase time
series with broken temporal relationships between the phase and amplitude information. The
shuffled phase time series is then used with the observed amplitude time series to estimate a
surrogate modulation index. This procedure is repeated several hundred times to obtain the
null distribution of surrogate modulation index values. A normalized modulation index
(MInorm) is then obtained as a z-score: , where μ and σ are the mean
and standard deviation obtained from the null distribution.

2.1 Subjects
All procedures were performed in accordance with National Institutes of Health guidelines
and were approved by the SUNY, Downstate and NYU animal use committees. Data were
collected from adult male Long-Evans rats and adult male C57bl/6J mice that were obtained
from a commercial breeder (Taconic Farms, Germantown, NY).
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2.2 Electrophysiology
The recordings of action potentials and local field potentials from urethane-anesthetized rats
have been described (Olypher et al., 2006). Briefly, rats were anesthetized with urethane
(1.25 g/kg i.p.) and supplemented as necessary. Hydration was maintained by a saline drip
and the EKG was monitored to ensure stable physiological function. The rat was mounted in
a stereotaxic frame, the scalp was cut and retracted and a burr hole was drilled in the skull
overlying each dorsal hippocampus. Stereotaxic micromanipulators positioned a 30-gauge
stainless steel cannula for infusing 1 μl of saline with tetrodotoxin (5ng/μl) into one
hippocampus (relative to bregma: anteroposterior, 3.5; mediolateral, 2.6; dorsoventral, 3.5).
Additional micromanipulators were used to lower tetrodes made from four twisted 25-um
nichrome wires, to the pyramidal cell layers in the dorsal and ventral hippocampus opposite
to the injected side.

The methods for recording LFPs in freely-moving animals have been described (Fenton et
al., 2008, Kelemen and Fenton, 2010). Briefly, for the recordings from rats, tetrodes were
assembled in a custom microdrive, implanted under Nembutal anesthesia (50mg/kg i.p.) and
fixed to the skull with bone screws and dental cement. Tetrodes were directed to the dorsal
hippocampus (AP: −4.0 mm, ML: −2.5 mm, DV: −1.9 mm below the brain surface). One
week after surgery, the tetrodes were moved toward the hippocampus pyramidal cell layer
until action potentials from CA1 place cells could be recorded. Extracellular LFPs were
acquired from one wire of the tetrode using a commercial recording system (dacqUSB,
Axona Ltd., St. Albans U.K.). LFPs were band-pass filtered (0.1–300 Hz) and digitized at 2
kHz. For the LFP recordings from mice, a six-contact electrode was created by twisting
insulated 75-μm nichrome wires such that the spacing between the tips was 250 μm. The
electrode was implanted, similar to the rat, so that the recording contacts spanned the CA1
and dentate gyrus subfields of the dorsal hippocampus (AP: −1.8 mm, MI: 1.3 mm, DV: 1.6
mm). The recording sites were localized to specific hippocampal dendritic and cell layers
according to electrophysiological landmarks, in particular the theta oscillation maximum
that is at the hippocampal fissure. This localization was confirmed by the theta phase
reversal between stratum radiatum and stratum lacunosum moleculare and by histological
verification. All LFPs were recorded from freely moving mice or rats in a circular arena that
was 40 cm in diameter for mice and 81 cm for rats. During the recordings the rats foraged
for 20-mg food pellets (Bio-serve, Frenchtown, NJ) that were scattered onto the arena from
an overhead feeder on a pseudo-random schedule with period ~25 seconds. All analyses
were performed on the rat data, except for what is presented in Figure 7 A1, A2, which is
from mouse.

Before any analysis, each LFP was z-score normalized by subtracting its mean and then
dividing by its standard deviation. This was done to remove electrode-specific differences in
the absolute magnitude of electrophysiological signals. This ensured that differences in
electrode quality such as impedance and placement did not influence quantitative
estimations.

3.0 Results
Part I

3.1 Analysis of the component steps of PAC estimation methods
3.1.1 Filters: Filters used for the extraction of oscillatory signals of interest are perhaps the
most crucial part of the PAC algorithm to use properly. Several aspects of filters such as the
filter center frequency, bandwidth, filter type, filter transition band and filtering algorithm
have to be considered carefully. In the majority of published work, these properties are
entrusted to various public toolboxes such as EEGLAB (Delorme and Makeig, 2004).
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3.1.2 Filter frequency and bandwidth: Filter center frequency is typically selected based
on known physiological bands (e.g. hippocampal theta oscillations 5–12 Hz, gamma
oscillations 30–100 Hz). Another option is to parametrically search through a wide range of
frequencies (Canolty et al., 2006). In this scenario, LFP signals are filtered using an array of
filters with center frequencies that cover the range of oscillations of potential interest and the
modulation index is estimated for each phase-amplitude filter pair (Fig. 1F). While this
approach may be comprehensive, it is however, extremely computationally intensive. As an
example, the filter for extracting phase information can be varied from 2 to 20 Hz with step
of 1 Hz and the filter for extracting the amplitude information can be varied between 25 and
250 Hz with step of 5 Hz. This strategy yields 874 filter combinations for which the
modulation index needs to be estimated.

The filters for extracting the frequency-specific amplitude information have to be
sufficiently wide to capture the amplitude fluctuations of the fast oscillations. In PAC, by
definition, the amplitude of the high frequency signal gets modulated during a time-limited
window. According to the Heisenberg-Gabor limit, the bandwidth of the modulated signal
increases as this time-limited window decreases, to limit the phase interval in which the
amplitude is modulated. Because many physiologists are not familiar with the Heisenberg-
Gabor limit, we conducted a numerical analysis to illustrate this fact and identify the
minimum bandwidth of the filter that is required to capture the amplitude fluctuations of a
fast signal within the cycle of a slow signal, as required for estimating PAC. A synthetic
signal is shown on the right side of Fig. 2A1. It has PAC that resembles what can be
observed physiologically. It was constructed by adding a fast oscillation (e.g. a 80 Hz sine
wave) to a slow oscillation (e.g. 10 Hz sine wave) and multiplying the fast oscillation by a
modulatory oscillation (e.g. a 10 Hz sine wave) s′ = sslow + sfast × smod. This signal can be
simplified to isolate the PAC component by ignoring the slow oscillation s′ = sfast × smod,
which is the simplest synthetic signal (Berman et al., 2012) for the present purpose of
evaluating the filter bandwidth requirement for detecting PAC in an arbitrary signal (Fig.
2A1 left).

The spectra of s′ can be shown analytically to have three frequency components
(

). This is illustrated in Fig. 2A1 bottom. It has a total bandwidth of 20 Hz, which is double
the modulatory frequency. The signals in Fig. 2A2 result from narrowing by 50%, the time
during which the fast signal is modulated by the slow signal period, which amounts to
increasing the modulatory frequency from 10 Hz to 20 Hz while keeping both the slow and
fast frequency components constant. The spectra of this PAC component signal shows that
the bandwidth doubled to 40 Hz (Fig. 2A2 bottom). Consistent with this relationship, the
bandwidth of the filter for extracting the amplitude information from a modulated signal
needs to be at least twice the frequency of the modulatory signal in order to characterize the
modulation of the amplitude within the period of the slower oscillation.

To directly evaluate this claim in LFP data, we used a series of parametrically-varying filters
(Fig. 2B) for extracting the amplitude series and computing the normalized modulation
indexes for a single LFP (Fig. 2C). These filters were defined by combinations of the center
frequency (30–140 Hz, steps 2 Hz) and filter bandwith (5–40 Hz, steps 2 Hz). The filter for
extracting phase information was centered at 8 Hz with 2 Hz bandwidth. Both of these
values were estimated from the theta peak in the power spectrum of the LFP recorded from
hippocampus in the freely moving rat. We used several window lengths ranging from 5 to
40 seconds because longer analysis windows provide more robust statistical results (higher
normalized modulation index) and therefore narrower amplitude filters might be sufficient in
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these cases. While this is indeed the case (Fig. 2D), we were only able to observe significant
modulation index estimates (> 2 S.D.) for bandwidths > 25 Hz in the case of 10 s long
analysis windows and > 15 Hz in the case of 20 s long analysis windows. This analysis
demonstrates that estimating PAC is sensitive to the bandwidth of the filter that is used for
extracting amplitude. The results also demonstrate that estimating PAC is sensitive to the
duration of the data segments that are analysed. Indeed, we were unable to observe
significant PAC at any band and for any filter bandwidth we tried when this LFP was
segmented into 5 s long analysis windows. We performed a detailed examination of how the
the analysis window impacts PAC estimation in section 3.1.5 below.

While the amplitude filter is required to be wideband, we also need to avoid merging sub-
bands of the higher frequencies, because they may have different physiological origins,
different phase coupling, and may potentially convey different information (Colgin et al.,
2009). This is especially the case for hippocampal gamma oscillations, where multiple sub-
bands have been identified (Belluscio et al., 2012).

The filters used for extracting the phase information are typically very narrow in order to
extract a nearly sinusoidal waveform, which is necessary for robust phase estimation
(Chavez et al., 2006). When this narrowband condition is not met, the signal might contain
additional fundamental frequencies and therefore several centers of rotations in the phase
plane, in which case the phase of the signal cannot be reliably defined. In this regard, a
particular challenge to PAC estimation is that neural oscillations, such as hippocampal theta,
are not purely sinusoidal (Buzsaki et al., 1985, Belluscio et al., 2012) and therefore filters
that are too narrow will necessarily cause errors in the phase estimate. In order to quantify
the phase error caused by the narrow band-pass filter used for the phase estimation we
compared the phase estimation using two different methods, by the Hilbert method (Fig.
3A)and by waveform analysis (Fig. 3B) (Belluscio et al., 2012). Because the waveform
analysis uses wide-band signals to estimate the signal phase, we set this phase to be the
reference. We then varied the bandwidth of the band-pass filter used by the Hilbert method
and computed the error as the average difference between the two methods (Fig. 3D). The
resulting phase error was minimized for a phase filter bandwidth of approximately 7 Hz
(Fig. 3E).

3.1.3 Filter transition band: An important property of a filter is its transition band, also
known as the filter “roll-off”. The transition band is the bandwidth (specified in Hz) after
which the filter attenuates the power of the signal by a required amount (specified in
decibels - dB). The transition band is directly related to the length of a digital filter (number
of filter coefficients). A shorter transition band (sharper filter) requires more coefficients and
therefore longer computation time. Importantly, although a shorter transition band provides
for a sharper filter, it is also more prone to ringing artifacts such as the generation of false
oscillations in the filtered signal when there is a sharp edge transition in the input signal
(Kramer et al., 2008). A filter with a wider transition band, although it is less precise in
defining the frequencies of interest, is also less prone to the ringing artifact from a sharp
edge transition. Ringing artifacts are especially important to consider as they can generate
what look like high frequency gamma-like oscillations in LFP data.

3.1.4 Filter type: Generally, there are two types of digital filters - Finite Input Response
(FIR) and Infinite Input Response (IIR) filters. IIR filters such as the Butterworth,
Chebyshev or Elliptic filter are based on analog electronic filters and their main advantage is
performance. Because IIR filters work with feedback, their transition band is shorter than the
transition band of the FIR filter of the same length. This means that for a defined width of
the transition band of the filter, the filter uses fewer coefficients and the computation time
required to filter a signal is therefore shorter than with a FIR filter. This slight advantage of
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IIR filters (which is weakened by the advance of computing power in modern computers) is
outweighed by a crucial disadvantage of IIR filters – the nonlinear phase response in the
pass band. This essentially means that different frequencies contained in the filtered signal
are time-shifted by a variable amount of time. This results in a distortion of the phase
relationships in the signal, which is a serious problem when phase relationships are the
subject of study. The nonlinear phase response can be corrected by the so called “forward-
backward” filtering algorithm, which filters the signal in two consecutive steps “forward”
and “backward”. In this case, all time shifts introduced in the first step are removed in the
second step. While this approach makes the filtered signal zero-phase distorted it also
introduces two related problems. First, the algorithm doubles the filter order so the execution
time is several times longer than in the case of standard filtering. According to our
benchmarks, the Matlab implementation of the forward-backward algorithm (filtfilt) takes
over seven times longer to compute than the standard (filter) algorithm. Second, the
algorithm squares the amplitude response, which can increase the pass-band ripple of the
filter. FIR filters introduce a phase delay as well, but importantly, the phase delay is constant
over the pass-band of the filter. Correction of the phase delay is then simply performed by
shifting the signal by a constant number of samples.

Taken together, FIR filters provide crucial advantages over IIR filters when phase
relationships are the subject of study. While it is difficult or impossible to provide any hard
values for the bandwidths of filters that should be generally used for phase and amplitude
estimation in PAC analysis, the amplitude filters need to be at least twice as wide as the
frequency of the modulatory rhythm while phase filters need to be wide enough to capture
any possible non-sinusoidal characteristics of the signal, as well as be sufficiently narrow
band in order to allow robust phase estimates. Within these guidelines, it is necessary to
select the filter properties that are appropriate for the specific signals that are being
investigated.

3.1.5 Window size: Numerically, to estimate PAC, the modulation index can be computed
from a time series of a minimum length given by a single cycle of the slow oscillation that
provides the phase information. However, robust estimates can only be obtained by the
analysis of multiple cycles in order to rule out the possibility of spurious coupling between
phase and amplitude as a result of noise fluctuations. Generally, as illustrated in Figs. 2D
and 4B, longer windows provide more robust evaluation of the coupling strength. In other
words, it is less likely to measure a high coupling strength (high modulation index) as a
result of noise for a long window rather than for a short window. This aspect is crucial when
estimating PAC from signals with high amounts of background noise such as scalp EEG. If
for example, the 50/60 Hz line noise is present in the EEG, it is unlikely to be modulated by
the phase of the slower oscillation, rather by definition it is independent of it. In terms of the
coupling algorithm logic, the amplitude of the line noise is constant across various phases of
the slow oscillation, but this can only be determined when a sufficiently high number of
slow oscillation cycles are analyzed. Longer runs of data are therefore needed for robust
estimation of PAC. In contrast, the use of long data windows assumes stationarity of the
variables of interest within the windows, which is unlikely for many applications, especially
for cognitive variables like attention, memory, and decisions, which may have sub-second
dynamics.

We investigated what the minimum appropriate window length might be for suitable
analysis of PAC in the rat hippocampal LFP. We did this by extracting theta (7–9 Hz) phase
and slow gamma (20–40 Hz) amplitude information from the hippocampal LFP and on the
basis of the slow theta oscillation phase, we divided both signals into individual cycles. We
then computed modulation indexes separately for all theta cycles and selected as our dataset,
the 10% of cycles with the highest individual modulation indexes. We then combined the
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data from these individual cycles into analysis windows (N = 100) that ranged from 2.5 to
50 seconds, computed the modulation index for each of these windows, and finally,
averaged the results from all the windows. With analysis windows shorter than about 10
seconds, the overall average tended to diverge from the mean modulation index estimated
from the dataset of selected theta cycles (Fig. 4A). This can be attributed to the presence of
spurious coupling between phase and amplitude information in short time windows. We then
computed the normalized modulation indexes using the same surrogate procedure as
described above (Fig. 4B). As expected, longer time windows provided more robust PAC
estimates. Significant PAC values were only obtained for windows longer than
approximately 5 seconds. We also varied the minimum surrogate series offset to investigate
its effect on the estimate of PAC. For minimum surrogate offsets smaller than 1 second, the
normalized modulation indexes tended to underestimate PAC. This can be assigned to the
increased temporal correlations between the data and surrogate phase and amplitude time
series when the surrogate offsets are small. Finally, we computed the ratio of windows with
significant modulation index (> 2 S.D.) for different window lengths. For window lengths >
12 seconds, most of the modulation index estimates were significant.

Taken together, robust modulation index estimates can be observed for analysis windows of
at least several seconds long (practically over 10 seconds) with minimal surrogate offsets of
about 1 second. These requirements make it difficult to investigate PAC associated with
sub-second events, such as what might be expected for cognitive events like attentional
shifts, decision, and associative learning between transient stimuli and reinforcement. Our
research program, is in fact interested in studying the electrophysiological correlates of such
fast timescale cognitive events (Kelemen and Fenton, 2010; 2013), which motivated us to
explore an alternative, event-based framework for estimating PAC and characterizing PAC-
associated oscillation events as short as a single oscillation.

Part II
3.2 An event-based parameter-free approach to estimating PAC—As
demonstrated above, an important limitation of current PAC algorithms is the time
resolution. Several seconds (> 10 seconds practically) of data are needed for robust PAC
estimation and appropriate statistical validation of the result using surrogate tests (Fig. 4). A
second limitation of these algorithms is the requirement to define all the filter properties a
priori, either as anticipated “typical” values of known physiological bands (such as theta and
gamma rhythms) or by a wide parameter search through a range of frequencies, such as is
provided by the comodulogram. A third challenge to the algorithm is the necessity to extract
the phase of the slow rhythm, which can be challenging in the presence of noise and the
reality of non-sinusoidal oscillations (Fig. 3). Here we propose an event-based parameter-
free algorithm for estimating PAC that circumvents these limitations (Fig. 5).

The central idea of this algorithm is to treat oscillations as time- and frequency- specific
events, rather than continuous variables, as in the standard PAC algorithms we reviewed and
characterized above. This event-based approach, we call “oscillation-triggered coupling”
(OTC) has features that resemble those in the detection of single unit activity from
extracellular action potential recordings. The OTC approach works on two distinct,
complementary time scales. The “global” scale (Fig. 5A left), similar to standard PAC
analysis, estimates the overall properties of phase-amplitude coupling such as the
frequencies of the modulatory rhythms (e.g. delta or theta), the frequencies of modulated
bands (e.g. slow gamma, fast gamma and high frequency oscillations) as well as the
preferred phases of coupling for the individual modulated bands. The “local” scale (Fig. 5A
right), uses the global scale properties of phase-amplitude coupling to filter all oscillatory
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events into subtypes, that can be characterized, for example, by being theta-modulated or
non-modulated slow and fast gamma oscillations.

3.2.1 Global scale of OTC: The goal of the OTC algorithm at the global scale is to extract
the overall properties of the phase-amplitude coupling using oscillatory events. The essential
idea comes from the approach to signal filtering that is based on event-triggered averaging,
like what is used for study of event-related potentials (ERP In a). signal with phase-
amplitude coupling, by definition, the amplitude of the fast oscillation is phase locked to a
particular phase of the slow oscillation. If such a bias is reliable, then identifying the peaks
of the higher frequency oscillations as events and superimposing the raw (unfiltered) LFP
segments centered on these peaks should reveal any modulatory slow frequency signals due
to constructive interference in the averaging, whereas inconsistent modulatory relationships
will average out due to destructive interference (Chrobak and Buzsaki, 1998).

The first step of the OTC algorithm is to transform the LFP signal (Fig. 5B) into a time-
frequency representation (Fig. 5C). We do this by convolving the LFP signal s(t) with a
group of frequency-specific Morlet wavelets w(t, f0) followed by squaring such as E(t, f0) = |
w(t, f0) * s(t)|2, where symbol * denotes convolution. The Morlet wavelet is defined as

, where σf = 1/2πσt (σt and σf denoting standard
deviation in the time and frequency domains, respectively), normalization factor

 ensures that the total wavelet energy is 1, and  practically (Tallon-
Baudry et al., 1997). The resulting signals are then normalized (using a z score) in order to
remove the 1/f nature of the spectral power. While a time-frequency representation can also
be obtained by band-pass filtering the LFP, we prefer to use Morlet wavelets because of
their Gaussian shape in both the time and frequency domains. This provides a
straightforward estimation of their time-frequency resolution, which is crucial for
understanding the limits of the time-frequency resolution of the method. As a concrete
example, such a wavelet with center frequency f0 = 7 Hz (typical theta frequency) would
have duration (2σt) of 318 ms and spectral bandwidth (2σf) of 2 Hz. At 40 Hz (typical slow
gamma frequency), this would lead to 2σt = 56 ms and 2σf = 11 Hz. At 80 Hz (typical fast
gamma frequency), this would lead to 2σt = 28 ms and 2σf = 23 Hz. Finally, at 160 Hz
(typical high-frequency oscillation frequency), this would lead to 2σt = 14 ms and 2σf = 46
Hz.

In the next step, oscillatory events are detected as local peaks in the normalized time-
frequency space. To reveal the modulatory signal ŝ for a specific band (for example 80 Hz;
thick dashed line in Fig. 5C), events with large enough power within the band of interest are
used as time locking points to superimpose segments of raw LFP that are time locked to the
centers of the selected segments. In our analysis we define the band as f ∓ σf, where σf
denotes the frequency resolution of the Morlet wavelet at frequency f. We also select only
those events with power higher than the 95th percentile in the band of interest in order to
reduce the effect of noise in estimating the modulatory signal. The modulatory signal ŝ is
then defined as

where n = 1..N corresponds to time stamps of the selected power peaks within the band of
interest and T corresponds to the time window around the time stamp, which is taken into
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the sum. The sum is selected here instead of the average so that the amplitude of the
resulting signal also reflects the total number of detected oscillatory events, which is related
to the strength of phase-amplitude coupling as will be demonstrated shortly. Fig. 5D shows
the results of the process when different numbers of events are selected for the sum. As
expected, the amplitude of the resulting signal increases with the number of events because
there is a systematic occurrence of power peaks at specific phases of the slower rhythm.
Furthermore, as the number of events is increased, the signal also becomes smoother
because all activity that is not phase-locked to the power peaks is washed out by the
summation. The resulting modulatory signal (Fig. 5D bottom) has several important
properties (Fig. 5E). First, its base frequency (or frequencies in the case of multiple
modulatory rhythms) corresponds to the frequency of the modulatory rhythm. Second, the
phase of the modulatory signal at time 0 (corresponding to the location of power peaks)
marks the preferred phase of coupling. Third, the peak-to-peak amplitude of the signal
reflects the strength of the coupling.

The significance of the result can be determined using a surrogate test. By summing the
same number of time windows but with random time stamps, we can estimate the peak-to-
peak amplitude of the chance modulatory signal. Repeating this process several hundred
times provides a null distribution, against which the peak-to-peak amplitude of the original
modulatory signal can be compared to obtain z scores and significance intervals (red dashed
lines in Fig. 5D; notice that the significance of the result increases as the number of events
added to the sum increases). A similar approach can also be used to find out how many
events need to be averaged in order to obtain a significant result (Fig. 5F). We computed a z
score using the peak-to-peak amplitude of the original modulatory signal and the parameters
from the null distribution after parametrically varying the number of randomly selected
oscillatory events for the OTC analysis. The significance level of p < 0.05 could be reached
after averaging approximately 80 events, corresponding to ~30 seconds of data. Repeating
the above steps for a range of frequencies (e.g. 20 to 200 Hz) generates the data for an
oscillation-triggered comodulogram (OTCG) as shown in Figure 5G. The OTCG contains
the same information as the standard PAC comodulogram. This can be verified by
comparing Figure 1F with 5G, H, which were computed from the same LFP data. In
addition, the OTC shows the modulatory phase for each frequency band. Computing the
peak-to-peak value of the modulatory signal for each frequency results in a relationship
between the modulated frequency and the strength of coupling (a modulation strength
profile, the black line at the right of Fig. 5G). Analysis of this relationship provides
information about the potentially distinct modulated bands such as slow and fast gamma,
which appear as peaks in the modulation strength profile (red arrow heads). A similar result
can be obtained by taking the FFT of the frequency-specific modulatory signal (Fig. 5H). If
a strong modulatory rhythm is present, the FFT should display a peak at this frequency.

Thus the OTCG provides global estimates of the modulatory frequency or frequencies,
ranges of the modulated bands, the preferred phases of modulation as well as the modulatory
strength across various bands.

3.2.2 Local scale of OTC: The pattern in the OTCG in Fig. 5G illustrates the important
point that the peak times of the detected frequency-specific oscillation events are sufficient
to reveal phase-amplitude coupling patterns. This event-based approach contrasts with the
standard PAC methods, which use the whole LFP signal, not only the frequency-specific
peak oscillatory events.

If we are able to separate phase-modulated oscillations from random power fluctuations, we
would be able to better explain the origin of the phase-amplitude coupling that is measured
by standard PAC methods, study the phase-amplitude coupling at the resolution of single
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oscillations, and importantly, at the scale that is relevant for ongoing neural computations
and behavior (Buzsaki, 2010, Kelemen and Fenton, 2010, 2013). With this in mind we now
return to the frequency-specific power peaks that were detected (Fig. 5C) to explore and
characterize them as individual oscillations. An example of a single, isolated oscillation is
shown in Figure 6A. Several features of each oscillation can be extracted, such as the peak
power, bandwidth (distance between the two closest power minima above and below the
power peak in the frequency domain), duration (time interval between the two closest power
minima before and after the power peak in the time domain) and center frequency
(corresponding frequency of the power peak). Furthermore, the corresponding instantaneous
phase and amplitude of the modulatory frequency (such as theta) can be extracted for
example by filtering the LFP using a band-pass filter centered at the modulatory frequency
(obtained from the OTCG) followed by the Hilbert transform. By knowing the frequency
and phase together with other features of each detected oscillation, we can compute a phase-
frequency histogram. Of all the features we analyzed, the total number of high power (>95th

percentile power) oscillations per unit time (Fig. 6B top, left) shows the strongest
modulatory pattern in both slow (25–60 Hz) and fast (60–100 Hz) gamma bands. This
confirms what was already observed in the OTCG (compare Fig. 6B with Fig. 5G). These
patterns are much stronger than the patterns associated with the power of the oscillations
(Fig. 6B top, right), their duration (Fig. 6B bottom, left) or bandwidth (Fig. 6B bottom,
right). These observations suggest that the actual appearance of the high-power oscillatory
events at the preferred phase is the most important contributor to modulation index estimates
of PAC.

To further evaluate the hypothesis that the modulation index is an estimate of the number of
phase-locked high power frequency-specific events, we extracted the features of oscillations
from the same windows that were used for calculating the standard PAC modulation index
(Fig. 6C). Because the modulation index cannot be robustly estimated from time windows
smaller than 10 seconds (Fig. 4), we averaged the features of the multiple individual
oscillations within each 10 s analysis window. We selected only the high power (>95th

percentile power) oscillatory events with a corresponding theta phase that was close (< 60°)
to the modulatory phase that was obtained from the OTCG (Fig. 6C top, left). To investigate
the relationship between power of the oscillation events and the modulation index (Fig. 6C
top, middle) we didn’t apply the power threshold. To investigate the relationship between
the circular variance of the oscillation events and the modulation index (Fig 6C top, right)
we did not apply a phase threshold. As expected, high modulation indexes were positively
and significantly correlated with higher numbers of high-power phase-modulated oscillatory
events (Fig. 6C top, left), and with increased power of phase-modulated oscillatory events
(Fig. 6C top, middle). In addition, high modulation indexes were negatively correlated with
the circular variance of the high-power oscillatory events (Fig. 6C top, right). The remaining
features of the isolated oscillations (bandwidth, duration and number of cycles of the
oscillation) were independent of the modulation index.

3.3 An example: Investigating high-frequency oscillations with OTC—We now
provide an example of using OTC to investigate cross-frequency coupling in the
hippocampal LFP. This example was selected because it illustrates some of the utility of the
OTC approach. The gamma rhythm originally referred to the 35–85 Hz band (Bressler and
Freeman, 1980). In more recent work, authors have subdivided the gamma band into slow (<
50 Hz) and “high” or “fast” (> 50 Hz) components. Furthermore, fast gamma was recently
extended up to 140 Hz (Csicsvari et al., 1999, Canolty et al., 2006, Colgin et al., 2009).
However, it is also necessary to be cautious when analyzing frequencies above 100 Hz
because they can be contaminated by the wideband spectral content of action potentials and
associated after potentials (Colgin et al., 2009, Ray and Maunsell, 2011, Belluscio et al.,
2012, Schomburg et al., 2012, Scheffer-Teixeira et al., 2013). Indeed, because these signals
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are typically only defined by their spectral properties, there has been some controversy
because it is unclear whether signals in the LFP above 100 Hz represent a unitary set of
phenomena. Because OTC resembles spike-triggered averaging (in OTC, the trigger is an
oscillatory event), we performed OTC analyses of the high frequency components of the
LFP. By directly analyzing the modulated signals it should be apparent with OTC whether
the >100 Hz theta-modulated signals are from true oscillatory activity or from spiking-
related activity.

To investigate the performance of OTC in the > 100 Hz high frequency range, we analyzed
LFP signals recorded from CA1 stratum oriens and the upper blade of the dentate gyrus of
the mouse hippocampus because of their activity patterns in the high frequency range. The
standard PAC comodulogram from CA1 stratum oriens (Fig. 7 A1 left) shows a narrow-
band peak around 150 Hz that is modulated by a ~9 Hz theta rhythm. The OTC
comodulogram from the same data (Fig. 7 A1 right) reveals the modulated activity at the
same frequency band with the preferred phase located at the trough of the theta oscillation.
The PAC comodulogram from the upper blade of the dentate gyrus (Fig. 7 A2 left) shows
significantly phase modulated activity in a higher and wider frequency range > 200 Hz. The
OTC comodulogram shows modulated activity in the same range (Fig. 7 A2 right) but in
addition it shows a clear nonlinearity in the otherwise smooth OTC profile (white arrows in
Fig. 7 A2 right), which are located around the trough of the theta oscillation. This suggests
the presence of an abrupt voltage change that is systematically phase-locked to the theta
oscillation. As can be seen from the figure, the spike-like profile of the activity can be best
seen in the highest frequency range, however, its impact on the smoothness of the OTC
profile can be clearly traced even to the range of HFOs and perhaps slower frequencies.

To further investigate whether action potential -related activity contributes to standard PAC,
as has been debated in the literature, we took advantage of a published data set in which
action potentials had been blocked without eliminating LFPs at gamma frequencies and
below (Olypher et al., 2006). We performed standard PAC analysis on the LFP signals
obtained from the ventral hippocampus after tetrodotoxin (TTX) was injected into the dorsal
hippocampus of the urethane-anesthetized rat. TTX caused an abrupt block of action and
local field potentials in the dorsal hippocampus where the drug diffused (Olypher et al.,
2006). The TTX caused a delayed cessation of action potentials in the ventral hippocampus
(Fig. 7B), and a transient, 15-min reduction in the power in the LFPs of the ventral
hippocampus (Fig. 7C) that was coincident with a loss of excitation-inhibition coupling
(Olypher et al., 2006). Before TTX, the standard PAC comodulogram from LFPs in the
ventral hippocampus shows clear modulation of the amplitude of fast oscillations >150 Hz
by theta phase ~4–6 Hz. After TTX, the modulation in this range disappeared during the
intervals that action potentials were eliminated (Fig. 7D).

4.0 Discussion
4.1 Properties of standard PAC algorithms—We investigated the boundary
conditions for the appropriate estimation of phase-amplitude coupling in LFP recordings.
We demonstrated the importance of filter properties and analysis window size for estimating
PAC. Because these properties define the time-frequency resolution of the analyses, it is
necessary to consider them carefully. Phase filters should be narrow band to obtain
meaningful phase information but not excessively narrow to distort non-sinusoidal shapes of
rhythms such as hippocampal theta (Fig. 3), whereas the amplitude filters for extracting the
instantaneous amplitude should be at least twice as wide as the frequency of the modulatory
rhythm (Fig. 2). The minimum window length for robust computation of PAC is ~10
seconds (Fig. 4). Shorter windows lead to overestimates of coupling and lower significance
of the modulation index. We emphasize that we are not suggesting any fixed values for these
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parameters, but rather methods for estimating ideal bandwidths of phase and amplitude
filters, which will be use-specific when optimized for different types of neural signals and
particular experimental questions.

4.2 Interpreting previous work—Although all filter properties such as bandwidth,
transition band and attenuation strongly affect PAC estimation, they have often been
entrusted (Canolty et al., 2006, Tort et al., 2009, Voytek et al., 2010) to third party software
such as the EEGLAB, which does not allow for sufficient optimization for unbiased PAC
estimation. Using the EEGLAB filters, PAC has been estimated from different bands using
filters with very different properties (bandwidth, transition band and attenuation of the
filter). As an example, in one of the first papers describing PAC (Canolty et al., 2006) it was
claimed that 4-Hz wide filters were used to extract the phase and amplitude information.
Because it is not possible to measure significant amounts of PAC with amplitudes filtered
with narrower bandwidths than the frequency of the modulatory rhythm (Fig. 2), there
appears to be an inconsistency. The problem lies in the filtering routine of the EEGLAB
package (EEGFILT). This routine computes the transition band of the filter as a ratio of the
low-pass and high-pass frequencies and therefore the total bandwidth of the filter scales with
increasing frequency. This results in a higher total bandwidth of the filter than intended (4
Hz), which, was serendipitous because it made it possible to detect PAC. Filters with
unnecessarily wide bandwidth can also merge physiologically distinct bands and may be
responsible for apparent conflicts in the literature about the identity of discrete oscillatory
bands. As an example, the continuing controversy concerning the distinction between the
common “gamma” rhythm and oscillations above ~100 Hz can be seen in recent papers.
While (Colgin et al., 2009) refers to “fast gamma” as a rhythm occupying 65–140 Hz in
hippocampus CA1, others observe two rhythms occupying the very same band in the same
region of the hippocampus - “mid-frequency gamma” 50–90 Hz and “fast gamma” or
“epsilon band” 90–150 Hz (Belluscio et al., 2012).

4.3 Origin of >100 Hz high frequency oscillations—The origin of oscillatory activity
above the traditional gamma range (> 100 Hz) is not fully understood. Some of the activity
such as hippocampal sharp wave associated ripples (140–220 Hz) is a bona fide oscillation
that is distinct from fast gamma (Sullivan et al., 2011). The additional high-frequency
spectral content can be explained by both high frequency oscillations (HFOs) and
components of extracellular action potentials (Ray and Maunsell, 2011, Belluscio et al.,
2012). The ambiguity is further complicated because both potential sources can be theta-
phase modulated resulting in increased modulation index in both cases (Fig. 7). Strategies to
dissociate modulated HFOs from modulated spike-related activity were recently proposed
(Tort et al., 2013). Modulated HFO activity can be distinguished in the raw LFP signal, and
is confined to a fairly narrow frequency range compared to the wideband contribution of
spike-related activity. Importantly, the OTC analysis which we propose here can directly
detect nonlinearities in the oscillation-triggered modulatory signal and therefore dissociate
PAC caused by oscillatory activity or spike-related activity (Fig. 7). Finally, when single
neuron activity is available, the phase distribution of average firing rates with the phase
distribution of amplitudes in the high frequency range can be compared. Our TTX-injection
experiments (Fig. 7) demonstrated that abolishing spiking activity removed modulated
activity above 150 Hz and therefore argues that this band is associated with spike-related
activity. Modulated spike-related activity can provide valuable information about the global
organization and discharge features of large cell populations (Schomburg et al., 2012).

4.4 PAC as neural computation—The notion that PAC itself is a neural computation
has gained support as significant amounts of PAC have been reported in various species and
across multiple brain areas, including rat hippocampus (Bragin et al., 1995, Tort et al., 2008,
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Tort et al., 2009), mouse hippocampus (Buzsaki et al., 2003), human neocortex (Canolty et
al., 2006), human hippocampus (Axmacher et al., 2010) and monkey auditory cortex
(Lakatos et al., 2005). PAC may be a mechanism for routing the flow of information through
neural circuits (Colgin et al., 2009), memory processing (Tort et al., 2009, Axmacher et al.,
2010), the selection of attention (Schroeder and Lakatos, 2009) and decision (Tort et al.,
2008). However, the physiological bases of PAC are not well understood. Perisomatic
basket cells in the hippocampus might play a role in the spatiotemporal organization of cell
assemblies by firing theta rhythmic trains of action potentials at gamma frequency and
therefore contribute to both rhythms and their phase-amplitude and phase-phase
relationships (Buzsaki et al., 1983, Belluscio et al., 2012).

As demonstrated here, the hippocampus LFP of the freely-behaving rat offers a particularly
robust example of PAC, which can be understood as a mechanism of neural computation.
The phase of the hippocampal theta oscillation modulates the amplitude of hippocampal
gamma oscillations. In turn, gamma oscillations provide millisecond-scale “windows of
opportunity” when the discharge probability of hippocampal pyramidal cells is the greatest
(Leung and Buzsaki, 1983, Colgin et al., 2009, Mizuseki et al., 2009). Because of
conduction delays, slow oscillations like theta, may synchronize functionally-coupled
networks over longer distances (Buzsaki and Draguhn, 2004, Uhlhaas et al., 2006). In
contrast, fast oscillations like gamma might transiently synchronize action potential
discharge into same-function assemblies over relatively short spatial scales (Kajikawa and
Schroeder, 2011) that can be as long as a few hundred microns (Harris et al., 2003, Kelemen
and Fenton, 2010). The interplay between the two oscillations might then provide a
mechanism for spatial integration from a local to a global scale. In this scheme, the faster
gamma oscillations that emerge at the specific phase of the slower theta oscillations might
recruit subsets of cells that signal the same information and organize them into a cell
assembly of co-active cells for neuronal information processing. Theta oscillations might
then serve as an integration mechanism between multiple functional networks, each
associated with a particular gamma episode, across longer periods of time (Jensen and
Colgin, 2007). Another framework for understanding PAC as neural computation is based
on the idea of phase coding, where PAC is a mechanism for encoding different information
at different phases of the theta cycle. In this scenario, gamma oscillations appearing at
specific phases of theta oscillations may enable activation of distinct neural ensembles,
which encode distinct representations (Lisman and Idiart, 1995, Colgin et al., 2009) as is
necessary for many higher order neurological and cognitive functions. These notions predict
that single oscillations with a specific set of features that might include the modulatory
frequency and phase, amplitude and duration would define and thus correlate with specific
network-level computations. Accordingly, it may be valuable to investigate the utility of a
multi-dimensional feature parameter space to classify individual oscillatory events into
unitary event clusters in an attempt to identify their sensory and/or behavioral correlates.
The example in Fig. 8, shows that a set of individual oscillatory events that have been
characterized by local-scale OTC analyses can be investigated within the framework of a
oscillatory event parameter space, which would also make it possible to apply standard
methods of dimensionality reduction like principal component analysis (PCA) and then to
examine the time course of these event sequences as trajectories through this state space.
Such an effort, that treats oscillations in the LFP as unitary events would be similar to what
is now routine for action potentials and their classification into single unit waveform clusters
for investigating the neural dynamics and the neural correlates of cognitive variables.

4.5 Looking for correlates of cognitive variables—Time resolution is an important
limitation of all published PAC studies. We estimate the smallest window size for a robust
modulation index estimate to be ~10 seconds. However, such long windows assume
stationarity, which is hardly the case because many oscillations appear and disappear within

Dvorak and Fenton Page 14

J Neurosci Methods. Author manuscript; available in PMC 2015 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the period of the modulatory rhythms like theta or delta. Furthermore, long time windows
are typically beyond the cognitive behavioral scales of several hundred milliseconds to a few
seconds, which is the most crucial obstacle for linking PAC and cognitive processes. On the
other hand, shorter time windows, while appropriate for investigating cognitive phenomena,
are nonetheless more prone to overestimating the modulation index due to spurious coupling
between phase and amplitude and don’t provide statistically strong estimates (Fig. 4). This
fundamental limitation can be partially overcome with a trial-based experimental design
(Tort et al., 2008), which can reduce the analysis window below 1 second. Even a 1-second
resolution, however, only allows tracking of neural network “states” that are reflected in
PAC, rather than individual phase-amplitude coupled “events” that are hypothesized to be
linked to particular cognitive processing steps. To overcome this limitation, in particular for
assessing the relationship between PAC and cognitive variables, we suggest an event-based
algorithm like the OTC method, for detecting individual phase-modulated oscillations.
Importantly, this method requires few prior assumptions about the input data. Indeed, this
data-driven approach can be used where all global properties of PAC such as separate bands
of phase-modulated oscillations, preferred phases of modulation and frequency of the
modulatory signal emerge from the data, independent of most preconceptions (Fig. 5). We
used the OTC method to extract features of individual modulated oscillations (Fig. 6). Such
features such as the peak power, bandwidth, duration and associated phase of the
modulatory rhythm may have predictive value and can provide a means to dissect modulated
and non-modulated oscillations at functionally different bands such as slow and fast gamma
or HFOs. Detecting modulated oscillations at behaviorally, or cognitively relevant time
scales, such as a single theta cycle, is crucial for further understanding the role of PAC in
brain function in general, and in cognitive information processing in particular.
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Highilghts

Boundary conditions are determined for appropriate use of standard PAC algorithms

Oscillation triggered coupling (OTC) estimates PAC by treating oscillations as
events

The occurrence of high power phase and frequency specific oscillations explains
PAC

OTC can separate phase locked oscillatory activity from spiking related activity
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Figure 1.
Phase-amplitude coupling analysis applied to an LFP recording from rat CA1. [A] A raw
signal is pass-band filtered in a low frequency range (7–9 Hz) and [B] the signal phase is
extracted. The raw signal is also filtered in a high frequency range (62–100 Hz) and [C] the
signal amplitude is extracted. When amplitude is phase modulated, the [D] mean vector of
the composite signal created by the combination of the low frequency phase and the high
frequency amplitude information will be non-zero and will point to the preferred phase of
the modulation. The strength of the coupling (modulation index) corresponds directly to the
mean vector length. A modulation index can also be estimated by [E] binning the phase time
series into equal bins (here twenty 18° bins) and averaging the corresponding amplitude
values within each bin. High modulation index values correspond to [E top] a large
deviation of the resulting distribution from the uniform distribution. On the contrary, low
modulation index values correspond to [E bottom] small deviations from the uniform
distribution. Repeating the above steps for a range of slow and fast frequencies [F] results in
a comodulogram that describes the extent to which the phase of oscillations at frequencies
on the x-axis modulates the amplitudes of oscillations at frequencies on the y-axis.
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Figure 2.
Effect of the amplitude filter bandwidth on modulation index estimation. [A1 top] In this
synthetic signal, an 80 Hz sinusoid sfast is modulated by a 10 Hz sinusoid smod (red line
shows signal amplitude) across 100 % of the slow sinusoidal cycle sslow. Modulated 80 Hz
sinusoids sfast × smod exhibit [A1 bottom] three peaks in the power spectra with total
bandwidth of 20 Hz. [A2 top] Increasing the modulatory frequency to 20 Hz, by narrowing
the time window in which the amplitude is modulated [A2 bottom] increases the bandwidth
to 40 Hz. [B] Pass-band filter properties, filter center frequency and filter pass-band width
were varied in a range of 30–140 Hz and 5–40 Hz, respectively and [C] the normalized
modulation index was computed for all these combinations using 10-s long windows. The
data were the same as those used for computing the comodulogram in Fig. 1F. The theta
filter (2 Hz pass-band width) was the same for all combinations and was centered on the
theta peak (~ 8 Hz). Notice that significant modulation indexes (> 2 S.D.) for both slow-
gamma and fast-gamma bands can only be observed for filter bandwidths above 15 Hz. [D]
Since longer analysis windows result in stronger surrogate tests, the minimum filter
bandwidth required for observing significant modulation can be lowered, but its value is still
above 10 Hz for all bands of interest.
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Figure 3.
Error in the phase estimate of non-sinusoidal signals such as hippocampus theta oscillations.
[A] The phase obtained from using a narrow pass-band filter followed by the Hilbert
transform was compared with [B] the “reference” phase obtained from the signal using
waveform analysis. Waveform analysis reveals [C] an asymmetry of the ascending and
descending phases of hippocampus theta oscillations because the ascending phase is faster
than the descending phase. [D] Comparing the phases obtained using the two methods
provides a function to estimate the error in the phase estimate from the Hilbert transform.
[E] The average error is plotted for a range of bandwidths of the phase filter. The plot shows
the error is minimized for a filter bandwidth of about 7 Hz.

Dvorak and Fenton Page 21

J Neurosci Methods. Author manuscript; available in PMC 2015 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Effect of data window length on modulation index estimates. [A] The modulation index was
computed for data window lengths in the range 2–50 s. Each window was composed from
randomly selected theta cycles (N=2000 corresponding to 10% of the theta cycles with the
highest individual modulation indexes). The process was repeated 100 times for each
window length. The raw modulation index shows a converging trend towards the
modulation index value that is obtained from all the available theta cycles. The elevated
modulation index values below window sizes of 10–15 s indicates overestimation which is
likely caused by spurious coupling between the short phase and amplitude time series. [B]
Normalized modulation index values computed for a range of minimal surrogate offsets
250–3000 ms indicate underestimation for surrogate shifts shorter than 1000 ms due to
temporal correlations between the phase and amplitude time series. [C] The percentage of
windows with a significant normalized modulation index (S.D. > 2) increases with the
window length. With a window length > 10 seconds, most modulation index values were
significant.
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Figure 5.
Oscillation triggered coupling (OTC) analysis. [A] The OTC algorithm operates at two
temporal scales – the “global” scale, which estimates the general properties of PAC
(modulated bands, preferred phases of coupling) and the “local” scale of individual
oscillations. Oscillations that are initially used to create the oscillation triggered
comodulogram (OTCG) at the global scale can be filtered using various criteria (e.g. specific
frequency, phase and power) in order to obtain the specific events that are responsible for
generating phase-amplitude coupling. [B] In the first step, the raw LFP signal is transformed
into [C] a z-score normalized wavelet spectra. Individual oscillations are detected as local
maxima in time-frequency space. [D] Time stamps of large (> 2 S.D. from mean power) and
frequency-specific (f ± σf) oscillations are then used as trigger points for summing the time
windows of the raw LFPs centered at these time stamps. The development of the OTC signal
is displayed as a function of increasing numbers of summed event windows N=1, 50, 100
and 1000. Notice that the amplitude and smoothness of the resulting OTC signal increases
with the number of events. This indicates there is a systematic relationship between the
peaks of detected oscillations and the phase of the slow rhythm. The red dotted horizontal
lines mark the significant amplitude threshold of the OTC signal, which was computed from
a surrogate test using random trigger points. [E] The resulting OTC signal displays several
important properties. Its peak-to-peak amplitude corresponds to the strength of coupling, its
phase at time 0 (middle of the time window) corresponds to the preferred phase of the
coupling and its frequency corresponds to the modulatory rhythm. [F] In order to obtain a
significant amplitude of the modulatory signal, approximately 70 events (corresponding to
approx. 30 seconds of data) need to be added to the summation. [G] The above process can
be repeated for a range of frequency bands (e.g. 20–200 Hz) to obtain the oscillation -
triggered comodulogram (OTCG). The profile of the modulation strength (peak-to-peak
amplitude of the modulatory signal) across frequencies (G right) shows peaks in the slow
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(~40 Hz) and fast (~80 Hz) gamma bands (red arrows). [H] The same peaks can be also
observed in the FFT spectra computed from all frequency-specific modulatory signals. The
FFT also shows that the wave pattern of the OTC corresponds to a single modulatory
frequency of ~8 Hz (theta) that is present across the whole frequency range (20–200 Hz).
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Figure 6.
The relationship of the standard PAC modulation index to the features of oscillatory events.
[A] Each oscillatory event can be described by several features including its peak power,
center frequency, bandwidth, duration and corresponding phase of the slow oscillation
(theta). [B] The frequency-phase histogram of the number of high power (> 2 S.D. from
mean power) events (top, left) reveals a strong phase modulation of the event occurrence as
well as a clear separation and phase-specificity of slow (20–60 Hz) and fast (60–100 Hz)
gamma band events. The histogram of the average power of all events (top, right) also
displays a theta phase-modulated pattern but it is weaker than in the case of high power
event counts. The average duration and bandwidth of oscillations show only weak phase-
modulated patterns. All histograms were independently normalized for each frequency. [C]
The standard PAC modulation indexes within the fast gamma band (70–90 Hz) were
computed from 10 s sliding data windows and compared to the average features of the fast
gamma oscillatory events that happened within the same time windows. Higher modulation
indexes were positively and significantly (p < 0.001) correlated with the more frequent
appearance of oscillatory events (top, left) as well as the power of these events (top, middle).
As expected, modulation indexes were negatively correlated with the circular variance
(spread) of oscillatory events across the phases of the modulatory rhythm (top, right).
Modulation indexes were not correlated with the bandwidth (bottom left), duration (bottom
middle) and number of consecutive cycles (bottom right) of the specific oscillatory events.
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Figure 7.
Origin of > 100 Hz high frequency oscillations. [A1 left] A standard PAC comodulogram
obtained from stratum oriens of mouse CA1 shows a narrow-band peak at ~150 Hz that
corresponds to typical high frequency oscillations (HFOs). [A1 right] The corresponding
OTC comodulogram shows modulation in the same band. [A2 left] The PAC comodulogram
from the upper blade of the dentate gyrus shows a wide-band, significant PAC above 200
Hz. [A2 right] The corresponding OTC comodulogram shows abrupt changes in the
typically smooth OTC profiles (white lines) for frequencies above 150 Hz, pointing to the
spike-related activity that is phase-locked to the slow theta rhythm. [B] Under urethane
anesthesia, TTX was injected into the dorsal hippocampus of a rat while using the same
electrode to record action potentials and LFPs from the ventral hippocampus. The recording
site was at least 5 mm from the dorsal injection site. TTX blocked action potentials in the
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ventral hippocampus ~20 min after TTX injection. [C] The TTX injection also suppressed
LFP power at all frequencies during the 20 min after injection. Afterwards, relative to pre-
injection levels, there was a wideband increase of power below 50 Hz while the oscillations
across the rest of the spectrum recovered to only a modest decrease from the pre-injection
levels. [D] Before TTX, the comodulogram for 15-min intervals shows 4–6 Hz theta phase
modulation of oscillation amplitudes both below 100 Hz and above 150 Hz. After TTX, the
phase-amplitude modulation above 150 Hz disappeared, in apparent correspondence with
the blockade of local action potentials. The high frequency region of interest is shown by the
white dotted line.
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Figure 8.
Oscillatory events and their temporal dynamics represented in a multidimensional parameter
space. Each oscillatory event from a rat CA1 recording can be characterized as an event in a
multi-dimensional features space. The features we used to describe the individual
oscillations were frequency, power, band-normalized power, bandwidth, duration, number
of oscillatory cycles, energy of the oscillation, and corresponding instantaneous theta phase
and amplitude. The 9 dimensions of this feature space were reduced to 3 dimensions using
principal component analysis (PCA). The first three principal components (in decreasing
order of importance) were frequency, phase and power which altogether accounted for
~90% of the variance in the dataset. Only a random subset (N=2000) of the events from the
45 min recording was plotted in the PCA space. The blue dots represent phase-modulated
(105° ± 60°), slow gamma (39 Hz ± 10 Hz) with significant power (> 95th percentile from
power mean). The red dots represent phase-modulated (80° ± 60°), fast gamma (76 Hz ± 10
Hz) events with significant power (> 95th percentile from power mean). All threshold values
were obtained from the OTCG. The black line represents an example trajectory (a sequence
of events) through the space that connects the two indicated fast and slow gamma events
across several events with different frequency, phase and power specificity. The line
corresponds to~200 ms.
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