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Abstract
Vascularization of tissue-engineered constructs, requiring the transport of oxygen, nutrients and
waste through a thick and cellular dense meshwork, continues to hamper the success of the
technology in addressing the donor organ shortage crisis. Microfluidic technology has emerged as
a viable alternative to traditional in vitro platforms utilized by tissue engineers, to understand how
the complex cellular microenvironment directs vascular cell behavior and functionality. In this
review, the essence of microfluidic technology and transport phenomenon that make them unique
for vascular tissue engineering will be briefly introduced. The main scope of this review is to
expose how new and innovative microfluidic fabrication techniques are being utilized for exciting
applications that have allowed insight into the spatio/temporal dynamics of vascular cell behavior.
Specifically, microfluidic devices which range in functionality from simultaneously controlling
oxygen and shear stress levels to perfusable biopolymer networks, will be discussed in the context
of how they bolster traditional in vitro platforms, by providing greater data output, accessibility,
and physiological relevance.

Introduction
Richard Feynman’s There’s Plenty of Room at the Bottom is the esteemed 1959 lecture
viewed by many as the inspirational seed giving rise to the field of micro and
nanotechnology, whose ramifications are evident in a myriad of disciplines ranging from
microelectromechanical (MEMs) systems utilized in the semiconductor industry to the
advent of lab-on-a-chip technologies for tissue engineering applications. Although high-
resolution features of sensors and transistors for electronic devices were being readily
produced on the micron scale by chemical etching and lithography techniques, it was not
until the 1979 invention of a miniaturized gas chromatographic analyzer, where the abilities
to manipulate small amounts of fluids were fully realized [1]. This miniaturized functional
device, recognized as the first microfluidic system, not only demonstrated portability,
minimal reagent use and sensitivity to detect small volumes of analyte in a high-throughput
fashion, but also showed the promise of precisely controlling fluids. Microfluidic devices
with cross-sectional geometries on the order of 10–100 μm [2] are unique in that fluids
exhibit laminar flow profiles described by low Reynolds numbers, the ratio of inertial to
viscous forces.

Through the advance in microfabrication techniques [3], as depicted in Figure 1,
microfluidic technology has emerged as a novel platform in tissue engineering, an
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interdisciplinary field aimed to augment or replace diseased tissues or organs, to develop in
vitro models that mimic physiological conditions and to accelerate drug development [4].
Though successful clinical application of tissue engineered skin, bone, cartilage, urethra, and
bladder show promise in the field [5], the challenge to engineer tissue constructs requiring
extensive vasculature remains [6]. Oxygen, nutrient and waste exchange are essential to
organ viability, and nearly all tissues reside within 100–200 μm from capillaries [7], blood
vessels only 5–10 μm in diameter that facilitate this transfer. Engineered tissue exceeding
this diffusional exchange limit fails due to ischemia [8], leading to an ever increasing need
for vascular tissue engineering research for developing pre-vascularized constructs,
uncovering the chemical and mechanical cues that govern the de novo (vasculogenesis), or
sprouting/branching (angiogenesis) formation of blood vessels, and understanding how these
cues mechanistically regulate healthy and diseased vascular physiology.

Scope of review
In this review, we discuss how vascular tissue engineering research involving microfluidic
systems circumvents the downfalls of traditional in vitro platforms, providing the
unprecedented capacity to address the aforementioned limitations to engineered tissue.
Specifically, we demarcate studies that use exciting new fabrication techniques to model the
vascular niche in two-dimensions and three-dimensions (2D; 3D), and emphasize the
versatility of microfluidic tools for studying: (a) endothelial cell responses to mechanical
stress and oxygen tensions, (b) angiogenic branching, sprouting and vessel network
formation as well as (c) future outlooks for microfluidic investigation of vasculogenesis
from embryonic and progenitor cells.

Utilizing microfluidic technology in vascular tissue engineering
Microfluidics and mechanics

The robustness of microfluidic systems over traditional in vitro platforms can be
summarized through three key metrics namely physiological relevance, accessibility and
data output [9]. These measures are specifically exemplified when investigating the
individual or synergistic effects of mechanical cues such as confinement, surface
topography, and shear stress on vascular cell behavior. Although perfusable arterial blood
vessels, veins, and capillaries differ in location, role, size and extracellular composition, they
all consist of a luminal monolayer of mechanosensing endothelial cells (ECs) that act as an
interface between blood and underlying tissue. Physical consequences of pulsatile blood
flow include a cyclic myogenic scheme, in which supporting stromal pericytes and smooth
muscles cells (SMCs) contract and dilate, generating cyclic pressures and stretch which ECs
experience, to maintain uniform luminal hemodynamic shear stresses (Figure 2). While
traditional in vitro platforms are used to investigate mechanical forces experienced by
vascular cells, they are limited in capturing the range of these stressors in a high-throughput
manner. For example, depending on the location and homeostatic state, ECs can experience
anywhere between 10 and 200 dyn/cm2 of shear stress [10]. Microfluidic systems are
compact platforms with the capacity to capture the breadth of physiologically relevant
microenvironments, requiring minimal reagents (10−6 to 10−18 l), cells and experimental
time [11]. The geometry of microfluidic systems also allows for the spatial control of
chemical signals via gradients, and molecular transport at interfaces through diffusion,
serving as a powerful tool to create a mosaic of chemical microenvironments to study cell
behavior [12].

There are a variety of techniques ranging from pneumatic and syringe pumps to electro-
kinetics to control shear stress in microfluidic devices. A computer-controlled assembly,
utilizing an array of piezoelectric, actuating Braille pins integrated into a PDMS
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microfluidic device, was used to the study the effects of a range of re-circulating pulsatile
shear on ECs [13]. Although monumental at the time, displaying the ability of ECs to align
and elongate in the presence of pulsatile flow, the system is limited to a maximum shear
stress of 12 dynes/cm2. However the design was unique, introducing the utility of Braille
display for fluid actuation in vascular studies.

The limitation of shear stress to higher ranges was overcome by an inventive PDMS
microfluidic design, consisting of a single inlet, outlet, and 10 microchannels. Unlike the
previous system, only an external peristaltic pump was needed for generating shear
conditions between 1 and 130 dynes/cm2, resulting in changes in EC morphology and
function in non-pulsatile flow [14]. While syringe pumps have been readily used to create
shear stress atop vascular cells in microfluidic devices, self-contained circulation of media
through pumping platforms prevents the removal of soluble factors secreted by vascular
cells that modulate cell–cell communication. To address this Shao and collogues
incorporated a novel fluid actuation pneumatic micropump into a PDMS based microfluidic
device, to create a self-circulating, unsteady pulsatile and oscillatory shear stress regime
(Figure 3i). Although fluid flow is one directional during the pulsatile condition, the cells
simultaneously experience forward (+8.15 dynes/cm2) and counter flow (−5.92 dynes/cm2)
shear in the device. Interestingly ECs did not align with the direction of flow, demonstrating
the sensitivity of EC behavior to steady laminar flow profiles [15]. While these
aforementioned microfluidic devices recapitulate either steady or pulsatile flow, other
systems are able to mimic both of these regimes in a single platform. Through a multi-tiered
PDMS assembly, separate functioning layers can be built into a single microfluidic device.
A slab containing pneumatic valves sandwiched in between a bottom microfluidic network
for EC culture and top pneumatic control piece was fabricated to study the effects of
pulsatile arterial shear levels on oxidative stress response. Mitochondrial morphology and
intracellular reactive oxygen species (ROS) production, two indicators of EC response
during inflammation, were evaluated between non-pulsatile shear conditions (constant 30
dynes/cm2), pulsatile resting (15 dynes/cm2 shear at 70 beats per minute (bpm)), and
exercise states (30 dynes/cm2 shear at 140 bpm). An increase in a diffuse and fragmented
mitochondria, compared to a filamentous reticular network morphology, as well as elevated
ROS levels under pulsatile conditions were observed, elucidating the importance of
introducing pulsatile flow in hemodynamic models [16] (Figure 3ii).

Multi-tiered devices have also been used to examine the synergistic effects of cyclic stretch
and fluid shear on vascular cells. Vacuum driven stretch was applied to a PDMS elastic
membrane initially seeded with a bottom layer of SMCs, followed by the addition of a top
layer of ECs [17]. Through application of stretch and shear to this co-culture system,
differences in EC attachment to SMCs were denoted, namely ECs displaying greater
spreading and adhesion to the supporting stromal cells under simultaneous shear and stretch
conditions in comparison to static conditions. Furthermore, an enhanced EC alignment was
observed under the two mechanical stressors, suggesting ECs can decipher between
individual stretches and shear forces.

Stem cells, either from embryonic, adult, or genetically reprogrammed origin, remain an
essential cell source for regenerative and vascular tissue engineering applications, in that
they have the unique ability to self-renew and differentiate into mature lineages. Having the
mechanosensing abilities of their mature counterparts, mesenchymal [18], endothelial
progenitor [19] and embryonic stem cells [20], have been shown to functionally respond to
shear stress environments through upregulation of markers related to ECs. Our lab is
particularly interested in creating microfluidic platforms to uncouple the synergetic effects
of shear stress and oxygen availability, a well-known contributor to angiogenesis in the
developing embryo, wound, and tumor microenvironment [21,22]. With a proof of concept
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study, we demonstrated the initial design and fabrication of a multilayer microfluidic device
constructed by micro-milling an oxygen impermeable material with the functionality of
maintaining dissolved oxygen tensions in both static and dynamic shear conditions [23•].
We expanded upon this system, using soft lithography for channel fabrication, and observed
morphological changes to endothelial colony forming cells (ECFCs) and stem cell derived
smooth muscle like cells [24], as well as mature ECs in different shear and oxygen tension
conditions [25••] (Figure 3iii).

3D microfluidics
Incorporating the ECM—In addition to cyclic stretch and shear mechanical forces,
vascular cells encounter a 3D extracellular matrix (ECM), a hydrated, fibrous structural
meshwork of proteins and molecules that serve to biochemically and mechanically guide
vascular cell behavior. Vascular tissue engineers are interested in the reproducible
development of scaffolding materials from both natural and synthetic sources that mirror
physiologically relevant chemistry, bio-degradability, nutrient transport, and structural
properties.

Conventional in vitro and 2D microfluidic platforms do not capture the physiologically
relevant 3D vascular microenvironment consisting of multi-cellular branching lumens of
circular cross-section, with integrated ECM components permissible to fluid flow and
remodeling. Perfusable, synthetic poly(ethylene glycol)-diacrylate polymer (PEGDA)
microgels were lithographically fabricated and manually assembled into vascular-like,
tubular concentric microfluidic networks containing inner EC and outer SMC layers. This
novel 3D biomimetic microfluidic device was also amenable to other geometrical
configurations, demonstrating the exquisite spatial control of sequentially assembly
scaffolding materials [26]. Using an adapted soft lithography technique, naturally derived
type 1 collagen with encapsulated stromal cells was used as an elastomeric replicating mold,
subsequently pressure sealed to matching layers to form open channels, in which after
seeding with ECs resulted in 3D microvascular networks [27]. This fabricated scheme
permitted the investigation of thrombosis, the unfavorable attachment and aggregation of
immune blood platelets, characteristic of many disease states including heart failure and
some cancers. By introducing chemical agents activating ECs from a quiescent to a
stimulated state, the researchers were able to visualize the spatial and temporal dynamics of
platelet adhesion, with future capabilities for testing vascular drug efficacy in fluidic
models. In another study, the potential for cancer drug discovery was exemplified when the
role of EC barrier function and the dynamics of tumor cell metastasis via intravasation was
evaluated by coupling a 3D microfluidic system to a high-resolution imaging platform
[28••].

Angiogenesis and vasculogenesis models
Developmental, regeneration and pathological states of tissues rely on angiogenesis, the
extension of pre-existing vasculature in response to inadequate oxygen and nutrient supply.
Although traditional in vitro platforms for studying angiogenesis, which either entailed
growing ECs on a coated 2D surface with instructive adhesive proteins or coaxing
monolayers of ECs to invade into 3D hydrogel scaffolds encapsulated with factors, provided
substantial insight into vessel assembly [29], they lack in the ability to simultaneously
introduce chemical and mechanical stimuli, with high specificity in a spatiotemporal
manner.

Three channel, PDMS based microfluidic assemblies containing scaffold regions have been
a powerful fabrication technique used to study angiogenesis with controlled gradients of
soluble factors. Pressure differences between two microfluidic channels, sandwiching a 3D
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collagen gel for cell seeding, created an interstitial flow environment (27–35 μm/min), that
was used to study EC angiogenesis in a co-culture system with hepatocytes, liver cells that
can secrete angiogenic growth factors when clustered [30]. Under interstitial flow,
hepatocytes as monolayers on one side of a collagen gel began organizing into 3D
constructs, and with the addition of ECs on the opposite side, formation of capillary
protrusions in which ECs extended toward the liver cells occurred, mirroring early stages of
liver regeneration processes. In the absence of the hepatocytes, on the other hand, ECs
formed 2D sheet like structures. Traditional cell culturing techniques are unable to capture
the high surface area to volume ratios like the capability of microfluidic devices, which
served advantageous in this study, allowing the direct examination of the cross-talk of
soluble factors excreted by multiple cell types.

In a similar design scheme, angiogenic sprouting was observed under three different
chemical gradients, namely horizontal and vertical gradients of soluble vascular endothelial
growth factor (VEGF), and supplemental diffusive gradient of angiopoietin 1 (ANG-1),
factors that induce EC sprouting [31] and vessel stabilization [32] respectively. With this
unique platform, live-cell microscopy uncovered the distinct roles of the synergy between
mechanical (type 1 collagen gel) and chemical (VEGF, ANG-1) cues on vessel
morphogenetic processes in 3D [33]. In addition to collagen scaffolds, hybrid hyaluronic
acid and collagen hydrogels have been used to study angiogenesis [34]. ECs that form a
luminal monolayer in vivo are oriented in circular cross-sections. Using viscous finger
patterning [35], and triple channel design, open lumens lined with ECs were exposed to
VEGF concentration gradients to observe sprouting [36]. With the additional ability to
introduce SMCs to the side channels, the migratory potential of ECs was hampered in
agreement with other microfluidic studies [37].

Sacrificial molding has emerged as yet another novel fabrication methodology for
developing 3D perfusible ECM microfluidic platforms. Structural lattices of sacrificial
carbohydrate glass, coated with poly(D-lactide-co-glycolide) (PDLGA), were encapsulated in
different biopolymers (Poly (ethylene glycol), Alginate, Agarose, Fibrin, Matrigel)
containing fibroblasts, cells present in the outermost layer of arteries and veins, and
degraded to form open microfluidic channels for EC seeding in a physiologically relevant
3D matrix [38••]. In this co-culture system, single and multicellular sprouts of ECs with
neighboring fibroblasts formed. An additional level of complexity was added to this system,
in which exponential, linear, and step gradients of cells and fluorescent beads were
encapsulated into the polymeric gels to demonstrate the possibility to immobilize chemical
cues such as peptides, growth factors and proteins in complex configurations. Subsequently,
the same group fabricated 3D microfluidic networks composed of spatially controlled type 1
collagen diffusive gradients with angiogenic growth factors, using gelatin as a sacrificial
element [39]. Through seeding a mixture of suspended human lung fibroblasts (LF) with
HUVECs in a fibrinogen/collagen type 1 ECM mixture in a three channel replica molded
PDMS microfluidic chip, perfusable microvascular networks spontaneously formed in a 3D
microenvironment. Additionally, after four days of culture, Kim et al. were able to generate
HUVEC sprouting events that lead to lumenized vessel structures, by seeding growth factor
secreting LF and HUVECs in opposing channels separated by a fibrin matrix in their device
[40] (Figure 4i). Using a similar EC, fibroblast co-culture system, Baker et al. were able to
demonstrate the growth factor dependent sprouting of ECs in a physiologically relevant
environment, with the capacity to spatially guide morphogenetic events in a high-resolution
manner, posing potentials for engineering vasculature in specific locations for tissue
scaffolds (Figure 4ii).
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Conclusion and future directions
The use of Braille display, micro-milling, multi-layer, sacrificial and replica molded
microfluidics are just a few of examples of novel fabrication techniques, built upon
traditional lithography, that serve as innovative platforms for vascular tissue engineering. As
fabrication techniques continually evolve, concurrent control over several parameters such
as chemical gradients, confinement, shear stress, oxygen, and substrate topography in
vascularized microfluidic constructs with thicknesses (millimeter range) mirroring tissues
found in vivo is feasible. Although much of this review focused on mature ECs and
angiogenesis, new studies have leveraged microfluidics systems to study interstitial flow on
vasculogenesis, the nascent formation of blood vessels through cellular maturation
pathways. Multiple connected, self-assembled 3D microtissues of ECFCs, co-cultured with
fibroblasts in an ECM suspension, formed when grown in physiologically relevant oxygen
levels in PDMS based microfluidic channels [41••,42] (Figure 4iii). In addition, the self-
organization of ECs co-cultured in suspension with stem cell derived pericytes in collagen
matrices into vessels was also recently investigated using a microfluidic platform [43••].
Drug effects on this self-organization process were also explored. As methodologies to
controllably guide stem cells to progenitor and mature vascular phenotypes [44,45] develop,
new and exciting avenues for microfluidic platforms are emerging, greatly enhancing the
field of vascular tissue engineering.
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Figure 1.
Microfluidic device fabrication by soft lithography. Left panel shows cross-sectional view
while the right panel displays a top down perspective of the fabrication process. (i)
Microfluidic channel geometries can be designed on a computer program and printed to a
high-resolution transparency film. (ii) After applying photoresist to a silicon wafer, the
drawn geometry can be transferred as a ‘master’ mold via photolithography. (iii)
Polydimethylsiloxane (PDMS), a soft elastomeric material, is poured over the master mold,
cured and (iv) peeled off, retaining the geometric features. (iv) Finally the new PDMS mold
can be sealed to a glass slide or coverslip, leaving open channels.
Adapted from [46].
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Figure 2.
Blood vessel schematic with mechanical and chemical environmental factors. Arterial
vessels (shown in red) carry oxygenated blood from the heart, narrow into capillary vessels
that exchange oxygen and other nutrients to surrounding tissues, which eventually broaden
into veins (shown in blue), which primarily carry deoxygenated blood toward the heart.
Arteries, veins and capillaries are similar in that they contain in inner layer of endothelial
cells. Capillaries contain stromal pericyte cells for vessel support while arteries and veins
contain smooth muscle cells. Vascular cells not only experience parallel (shear),
perpendicular (normal) and circumferential (cyclic) mechanical stressors resulting from
blood flow, but also topographical forces due to the microenvironment. If blood flow is
restricted within the vessels, the flow regime will shift from laminar to oscillatory or
disturbed turbulent flow profiles. In addition to these mechanical factors, vascular cells also
experience changes in chemical stimuli such as temperature, growth factors, oxygen levels,
and pH.
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Figure 3.
Microfluidic systems for investigating shear and oxygen tension on endothelial cell
behavior. (i) Illustration (a) and top view (b) of a PDMS based microcirculatory system
containing a pneumatic micropump for delivering pulsatile and oscillatory shear stress.
Scale bar is 5 mm. Reproduced from [15] with permission from the Royal Society of
Chemistry. (ii) (a) Schematic of a multilayer PDMS microfluidic chip for investigating
endothelial cell reactive oxygen species (ROS) production under different shear conditions.
(b) Top — normal mitochondria morphology; Bottom — mitochondria morphology while
undergoing apoptosis. (c). With increasing shear, endothelial cell mitochondria morphology
becomes fragmented, opposed to a filamentous reticular network in static conditions.
Reproduced from [16] with permission from the Royal Society of Chemistry. (iii)
Immunofluorescence images of CD31 expression (shown in white) of human endothelial
colony forming cells cultured in normoxic and hypoxic conditions for 24 h shows increase
in membrane localization in hypoxia. Scale bars are 100 μm. Reproduced from [25••] with
permission from Wiley.
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Figure 4.
Microfluidic angiogenesis and vasculogenesis models. (i) Left — Illustration of a three-
channel microfluidic system for investigating both angiogenesis and vasculogenesis. Right
— Immunofluorescence images showing propagation of angiogenic sprouts and
interconnected vessels. Reproduced from [40] with permission from the Royal Society of
Chemistry. (ii) An array of microfluidic geometries, used to generate various growth factor
gradients, displays the spatial control of endothelial cell sprouting in a 3D microfluidic
platform. Reproduced from [39] with permission from the Royal Society of Chemistry. (iii)
Immunofluorescence image of repeating self-assembled human microtissues within a novel
microfluidic platform. Reproduced from [41••] with permission from the Royal Society of
Chemistry.
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