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Abstract
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent
class clustering, but they have very different sets of strengths and weaknesses. Taxometric
procedures, popular in psychiatric and psychopathology applications, do not rely on distributional
assumptions. Their sole purpose is to detect the presence of latent classes. The procedures
capitalize on the assumption that, due to mean differences between two classes, item covariances
within class are smaller than item covariances between the classes. FMM goes beyond class
detection and permits the specification of hypothesis-based within-class covariance structures
ranging from local independence to multidimensional within-class factor models. In principle,
FMM permits the comparison of alternative models using likelihood-based indexes. These
advantages come at the price of distributional assumptions. In addition, models are often highly
parameterized and susceptible to misspecifications of the within-class covariance structure.

Following an illustration with an empirical data set of binary depression items, the MAXEIG
procedure and FMM are compared in a simulation study focusing on class detection and the
assignment of subjects to the latent classes. FMM generally outperformed MAXEIG in terms of
class detection and class assignment. Substantially different class sizes negatively impacted the
performance of both approaches, whereas low class separation was much more problematic for
MAXEIG than for the FMM.

One of the classic and long-standing debates in psychology revolves around the question of
whether individual differences should be conceived of in terms of typologies or in terms of
continuous traits (e.g., Kendell, 1991; Meehl, 1992; Rutter & Shaffer, 1980; Wilson, 1993).
Recently, this question has regained momentum in psychiatry (Pickles & Angold, 2003). For
example, Attention Deficit/Hyperactivity Disorder (ADHD) has been defined in terms of
distinct subtypes in the Diagnostic and Statistical Manual of Mental Disorders (American
Psychiatric Association, 2000), but it has also been argued that it is more adequate to assume
gradual differences with respect to the severity of the disorder (Hudziak, Achenbach,
Althoff, & Pine, 2007; Hudziak et al., 1998; Lubke, Hudziak, Derks, van Bijsterveldt, &
Boomsma, 2009; Lubke et al., 2007; Rohde et al., 2001). The distinction between types and
traits has practical relevance not only in diagnosis, prevention, or intervention, but also in
genetic research where it is important to consider the usefulness of searching for subtype-
specific genes (Lasky-Su et al., 2008).
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It is often unknown whether or how many subtypes exist, and several methodologies have
been developed to determine whether individual differences are more adequately described
in terms of traits or types. Independent of the method, differences between types can
typically be detected only when the mean differences between the types are sufficiently
large in a given set of data. Types can be formalized as latent classes, and mean differences
between the classes can be measured for instance with the multivariate Mahalanobis
distance. Methods can differ with respect to their sensitivity of detecting the latent
clustering. When classes are detected, an ensuing challenge is how to accurately assign
subjects to their true class. Taxometric procedures and factor mixture models (FMMs) are
two widely used approaches designed to detect latent classes and assign subjects to classes.

This study compares FMM and taxometric procedures with respect to the detection of latent
classes and with respect to class assignment. Previous comparisons are limited. Cleland,
Rothschild, and Haslam (2000) found that using taxometric methods and fitting
unconstrained finite mixture models performed roughly the same in their respective abilities
to detect whether data where produced from a one- or two-class structure. The FMM is a
special case of the normal finite mixture model. In an applied study, Lenzenweger,
McLachlan, and Rubin (2007) found that taxometrics and an unconstrained finite mixture
model produced consistent results, and Marcus, Ruscio, Lilienfeld, and Hughes (2008)
reported taxometrics and latent class analysis (LCA) yield consistent results. LCA is a
submodel of the more general FMM that resembles most closely the main idea behind
taxometrics. None of the three studies have evaluated class assignment.

Taxometric procedures were first developed by Meehl and colleagues (Meehl & Yonce,
1996; Waller & Meehl, 1998). Taxometrics aim at discriminating between two latent
classes, the taxon and its compliment. Taxometric procedures have been used frequently in
psychiatric, psychopathology, and personality research (see Ruscio, 2008; Ruscio, Haslam,
& Ruscio, 2006, pp. 266–267, for a comprehensive list of applications of taxometric
procedures). FMMs fall into the broad category of latent variable models that are typically
fitted using maximum likelihood. The FMM combines LCA and confirmatory factor
analysis, and can in principle be used to discriminate between any number of user-specified
latent classes. Variations of this model have been proposed by several different researchers
(e.g., Arminger, Stein, & Wittenberg, 1999; Dolan & Van der Maas, 1998; Heinen, 1996;
Jedidi, Jagpal, & DeSarbo, 1997; B. Muthén & Shedden, 1999; Vermunt & Magidson, 2003;
Yung, 1997). An attractive feature of FMM is the possibility to specify and compare
different within-class models. FMM has been applied in an increasing number of substantive
areas such as developmental psychology (e.g., Nylund, Bellmore, Nishina, & Graham,
2007), psychopathology and addiction (e.g., Greenbaum & Dedrick, 2007; Neale, Aggen,
Maes, Kubarych, & Schmitt, 2006), criminology (e.g., Nagin & Land, 1993), and psychiatric
applications (e.g., Lubke et al., 2009; Lubke et al., 2007).

Taxometric procedures typically address only one of the questions that can be investigated
with FMMs, namely whether or not subjects in a given data set are best described in terms
of two clusters or in terms of a single homogeneous population. Because the FMM is a
general model permitting the specification of a large number of alternative submodels, the
range of applications of FMMs is much wider. This study focuses mainly on data conditions
in the area of application of taxometric procedures, and investigates the sensitivity of the
two methods in detecting two clusters when present in the data. The comparison is carried
out with simulated data and includes a range of conditions known to be unproblematic but
also some known to be problematic for either or both approaches. In addition, we evaluate
classification accuracy, which is especially important given the increasing number of
empirical studies reporting post-hoc comparisons between latent classes carried out after
assigning subjects to classes. Class assignment is usually based on some probability measure
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of belonging to a class, and, consequently, contains uncertainty (Tueller & Lubke, 2010).1

Because the validity of post-hoc comparisons between classes will depend on the size of the
assignment error, we compute error rates for both taxometrics and FMM.

The next section introduces the two methodologies. This is followed by an empirical
example using data that are common in psychopathology research. The empirical data are
analyzed by applying multiple taxometric procedures and by comparing the fit of a number
of alternative FMMs. The empirical analyses also illustrate the flexibility of FMMs to
conduct analyses that go beyond determining whether two classes are more appropriate than
a single class. The remainder of the article describes the simulation study comparing the
taxometric procedure MAXEIG and FMM with respect to class detection and class
assignment.

TAXOMETRIC PROCEDURES AND THE FMM
This section provides a conceptual description of the essential features of taxometric
procedures and the FMM. Much more detail can be found in Meehl (1973, 1995), Waller
and Meehl (1998), and Ruscio et al. (2006) for taxometric procedures, and B. Muthén and
Shedden (1999), Yung (1997), Jedidi et al. (1997), Dolan and Van der Maas (1998), and
Lubke and Muthén (2005) for the FMM. In addition, the measures of class separation used
in the taxometric and FMM literature are described and compared.

Taxometric Procedures
Taxometric procedures were developed by Meehl and colleagues (Meehl & Yonce, 1994,
1996; Waller & Meehl, 1998), and have received recent attention by Ruscio and colleagues
(Ruscio, 2007; Ruscio et al., 2006; Ruscio & Marcus, 2007), who have provided user-
friendly functions to carry out the procedures in R (R Development Core Team, 2008). This
study uses the MAXimum EIGenvalue procedure (MAXEIG; Waller & Meehl, 1998) and
the Comparison Curve Fit Index (CCFI; Ruscio & Marcus, 2007; Ruscio, Ruscio, & Meron,
2007) for detecting types, and uses the base rate classification technique (Ruscio, 2007,
2009; Ruscio et al., 2006) for assigning subjects to classes. Computation times for the CCFI
restricted this study to one taxometric procedure. MAXEIG was selected because of its
multivariate treatment of data, and because of its bivariate special case maximum covariance
(MAXCOV), which is the most widely studied and applied taxometric procedure (see
Ruscio et al., 2006, for a detailed review of studies using each taxometric procedure).

The general idea of taxometric procedures can be illustrated by means of the MAXCOV
procedure (Meehl, 1973). MAXCOV evaluates the covariance of two indicators called
output indicators for different ranges (e.g., “windows”) of a third indicator called the input
indicator. The input indicator is assumed to be a proxy of a latent dimension on which the
two classes (if they exist) should differ. If subjects are ordered on the input indicator, then
sliding a window over the range of the output indicators will initially contain only subjects
of one class, then a mix of two classes, and, finally, only subjects of the second class.
Assuming local independence within class, the covariance between the two output variables
is zero if a window of the indicator variable only contains subjects of the first class. The
covariance increases as the window contains subjects from two classes because it deviates
from zero due to mean differences between the classes, and then decreases again when the
sliding window contains only subjects of the second class. The user specifies the number of
overlapping windows. The degree of overlap is determined by the subsample size and the
number of subsamples. The covariances between the two output variables can then be

1See Tueller and Lubke (2010) for methods to estimate the uncertainty in classification probabilities in applied settings.
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plotted and visually inspected. A flat plot should indicate absence of latent clustering,
whereas a peaked plot is interpreted as evidence of a taxon and its complement. Maraun,
Slaney, and Goddyn (2003) and Maraun and Slaney (2005) have investigated data types that
are exceptions to the general hypothesis that one-class data will produce a flat plot and that
two-class data will produce a single peak.2

Although MAXCOV can in principle be repeated for all pairs of variables in a multivariate
data set, the approach becomes cumbersome as the number of variables increases. MAXEIG
has been developed to treat larger numbers of indicators more parsimoniously (Waller &
Meehl, 1998). As in MAXCOV, subjects are first ordered on the input variable to select
overlapping subsamples with increasing means on the input variable. Instead of taking the
covariance of a pair of output indicators in each window, MAXEIG uses the largest
eigenvalue of the covariance matrix of the variables. The eigenvalues are computed using a
modified covariance matrix. The variances on the diagonal of the covariance matrix are
replaced with zeros, leaving only the covariances. The removal of variances enhances the
difference in the largest eigenvalue across overlapping subsamples if local independence
within class holds, and therefore eases the decision making when evaluating the plots. Just
as with MAXCOV, a single-peaked MAXEIG plot is taken as evidence that the data come
from two classes and that a flat MAXEIG plot indicates that data come from a continuous
underlying trait.

This process is repeated with each variable acting as the input indicator, resulting in as many
MAXEIG plots as there are indicators. Examining each plot can reveal indicators that do or
do not discriminate between classes, and an average plot can be produced and examined to
inform the general decision of whether there is sufficient evidence to conclude that there are
one or two classes. The point of the maximum eigenvalues (called the HITMAX) is used to
compute estimates of the base rate (i.e., class proportions), and the average of the base rates
across all input indicators is typically used as the final estimate of the base rate of the
sample.

Recent taxometric studies have used the base rate classification technique to assign subjects
to classes. Base rate classification requires the raw data and an estimate of the base rate, and
is therefore independent of the clustering method beyond estimation of the base rate. The
total sum score for all observed variables is computed and sorted from the smallest to the
largest value. Then cases with the highest scores are assigned to the second class such that
the proportion of cases in the second class equals the estimate of the base rate for the second
class (Ruscio, 2007; Ruscio et al., 2006).

After assigning subjects to classes, within-class means and correlations can be computed to
assess model fit with the CCFI (Ruscio & Marcus, 2007; Ruscio et al., 2007). More
specifically, determining model fit is accomplished by computing the CCFI. Bootstrapping
is used to generate one- and two-class data sets that reproduce distributions of the indicators.
For both the two-class and the one-class simulated data sets, the root mean square residual
(RMSR) is calculated. The CCFI is the ratio of the one-class RMSR and the sum of the one-
class and two-class RMSRs. It ranges from 0 to 1, where 0 indicates best fit of the data with
the one-class model, 1 indicates the best fit of the data with the two-class model, and .5
indicates the same evidence of (mis)fit for both the one- and two-class models. Although the
CCFI is not the only means of assessing whether the one-class or two-class model fits better,

2Older references to latent classes typically construe a class as a set of degenerate distributions (e.g., a two-class model has two
degenerate or zero variance distributions). We advocate generalizing the definition of class to be the number of component
distributions in any mixture model, whether degenerate or not. Hence, a one-class model refers to any traditional analysis that assumes
population homogeneity such as CFA or multiple regression.
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the CCFI has recently been shown to perform better than previously used indexes or
judgment-based graphical inspection procedures (Ruscio & Marcus, 2007; Ruscio et al.,
2007).

An advantage of taxometric procedures is that their application does not necessitate complex
model specifications or distributional assumptions. The procedures have several limitations.
First, the procedures are primarily designed and used to detect only two types within a
population at one time. Grath (2008) showed that when there are three classes in the data,
standard implementation of taxometric procedures will lead to incorrect or inconclusive
results. A second limitation is that measurement error in the observed variables is not taken
into account. Third, the procedures depend on low correlations of observed variables within
class. Taxometric procedures are reported to perform ideally for within-class correlations up
to .3 (Meehl, 1995); however, they have been shown to perform well for within-class
correlations up to .6 for a certain implementation of MAXCOV (Beauchaine & Beauchaine,
2002). It is unknown whether this generalizes to other taxometric procedures and
correlations up to .6 are included in the following simulation study to investigate this issue.
Fourth, detection of latent classes is most commonly not a research goal per se. Using
taxometric procedures, further investigation of the latent lasses such as the model fit
comparison of one- and two-class models with the CCFI, or the comparison of within-class
factor structures, latent class means, or the relation of latent classes to covariates, can only
be accomplished post-hoc after assigning subjects to classes (Bernstein et al., 2007). One of
the two goals of this study is to quantify the quality of class assignment. The effects of
incorrect assignment on post-hoc testing are investigated in ongoing research (Lubke, Carey,
Lessem, & Hewitt, 2008).

Factor Mixture Modeling
FMM combines latent class and latent factor models, and permits researchers to compare the
fit of different within-class structures such as factor models versus local independence
(Lubke & Neale, 2006, 2008). Different forms of the general model have been described by
Heinen (1996), Yung (1997), Jedidi et al. (1997), Dolan and Van der Maas (1998), B.
Muthén and Shedden (1999), and Arminger et al. (1999). Within each class, a standard
common factor model for a single homogeneous population is specified. Assuming
normality for the factors and residual variances of observed variables, linearity of the
regression of manifest variables on the factors, uncorrelatedness of factors, and errors, the
manifest variables within-class are multivariate normal. The joint distribution of observed
variables is consequently a mixture of these multivariate normals.

(1)

where y is a vector of p observed continuous variables, K is the number of classes, πk are the

class proportions with , and ϕk are multivariate normal probability density
functions (PDFs) with class-specific mean vectors μk and class-specific covariance matrices
Σk.

A factor model is imposed on each of the component distributions:

(2)

(3)

Lubke and Tueller Page 5

Struct Equ Modeling. Author manuscript; available in PMC 2014 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where νk is a p × 1 vector of equation intercepts in class k, p is the number of observed
variables, Λk is a p × mk matrix of factor loadings in class k, mk is the number of factors in
class k, αk is an mk × 1 vector of factor means in class k, Ψk is the mk × mk covariance matrix
for the factors in class k, and Θk is a p × p covariance matrix of the measurement errors with
error variances on the diagonal.

Note that local independence can be specified as a factor model with zero loadings or zero
factor variance(s). The general model therefore offers great flexibility with respect to the
within-class structure and the number of classes.

In practice, using the FMM usually involves fitting models with different numbers of classes
and sometimes different within-class factor structures. The best fitting model or models are
selected using information criteria such as the Bayesian Information Criterion (BIC;
Schwarz, 1978) or bootstrapped or adjusted versions of the likelihood ratio test (Lo,
Mendell, & Rubin, 2001; Vuong, 1989). Nylund, Asparouhov, and Muthén (2007) showed
that the BIC performs well under a variety of conditions, and is only sometimes slightly
outperformed by the bootstrapped LRT. The adjusted LRT (aLRT) only performs well for
simple models, and under those conditions can outperform the BIC. We will base our
comparison mainly on the BIC. Due to computation times the bootstrapped LRT is not
feasible in this simulation. We also report the aLRT. In the context of FMM, subjects can be
assigned to their most likely class using the highest posterior probability of belonging to a
class. This is commonly called modal assignment.

The FMM has a set of strengths and limitations that is very different from those of
taxometric procedures. FMM has the advantages of easily accommodating more than two
latent classes, of explicitly accounting for measurement error in the observed variables, and
of explicitly modeling within-class covariance structures. Generalizations, for instance, to
include structural equations between factors have been described (Henson, Reise, & Kim,
2007; Jedidi et al., 1997; Tueller & Lubke, 2010), and the model enjoys great popularity.

Limitations include the requirement of the specification of a factor model for the within-
class covariance matrices and mean vectors. A model is generally a simplification of the true
data-generating process, and can also contain more or less severe misspecifications. In
addition to misspecifications of the within-class factor structure, factors or errors in a given
cluster of subjects might not be normally distributed, or observed variables might not be
linearly related to the factors. Furthermore, each cluster of subjects in the population is
thought to correspond to one of the K component distributions, and, consequently, estimates
of the parameters πk are interpreted as the relative class size. When fitting FMMs to
empirical data, this one-to-one correspondence of clusters of subjects and mixture
components is not necessarily given (see, e.g., Bauer & Curran, 2003). On the positive side,
Lubke and Neale (2006, 2008) showed that comparisons of alternative models lead to
correct model choice in a wide variety of scenarios.

Class Separation and Within-Class Covariance
Class separation is a crucial determinant of the success of any clustering approach. The
taxometric and FMM literature use different measures to indicate the minimal separation
needed for an adequate analysis. To connect the taxometric and FMM literatures, their
respective definitions for class separation are compared here. In the taxometric literature,
class separation is defined as the standardized mean difference (Cohen’s distance) between
classes for each indicator. The taxometric literature generally recommends that each
indicator has a minimum Cohen’s distance of 1.25 (Meehl, 1995; Ruscio et al., 2006).
Cohen’s distance is defined by
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(4)

where the subscript p corresponds to the pth observed variable, μp1 and μp2 are the first- and
second-class means for the pth observed variable, and σp is the pooled variance for the pth
observed variable.

In the FMM literature the multivariate Mahalanobis distance (MD) is often used to measure
class separation. Different authors show that MD = 1.5 seems to suffice when classes have
equal size (Lubke & Neale, 2006, 2008; Yung, 1997), but larger distances are necessary for
unbalanced class sizes (Tueller & Lubke, 2010). The MD is a multivariate extension of
Cohen’s distance and is given as

(5)

where μ1 is the p-dimensional vector of item means in the first class, μ2 is the p-dimensional
vector of item means in the second class, and σ is the p × p pooled covariance matrix. The
MD takes into account the covariances between variables. For example, all else being equal,
two classes with large within-class correlations have a smaller MD compared to two classes
with low within-class correlations.3 In addition, the MD increases with the number of
variables. The relation between MD and Cohen’s distance is shown in Table 1. As can be
seen, the MD increases substantially with increasing numbers of indicators when item
correlations are zero. This effect tapers off with increasing correlations. Table 1 also shows
that the prior recommendations for taxometric procedures (e.g., zero correlations within
class, d = 1:25) correspond to MD > 2:0, which is a rather unproblematic setting for FMM
models if class sizes are equal. In our simulation we choose a sufficiently large range of
settings such that a deterioration of performance can be detected for both methods. First, we
illustrate the methods using empirical data.

DEPRESSION DATA ILLUSTRATION
The depression data illustration demonstrates how taxometric procedures and the FMM can
be used for a given data set. The taxometric literature provides much advice on exploratory
steps that should be taken prior to taxometric analyses. If data do not meet certain standards,
the advice is to obtain other data. In practice it is often difficult to obtain additional data, or
to construct measures that meet taxometric requirements. Also, taxometric procedures are
limited to testing a two-class hypothesis against a one-class hypothesis. The illustration
demonstrates how alternative ideas can be translated into different FMMs that can be
compared using, for example, the BIC. We use standard questionnaire items that are
common in psychiatric and psychopathological research focusing on the investigation of
subtypes, which is the main area of application of taxometric procedures.

The data for the empirical illustration are 10 binary items that are matched to symptoms of
Major Depressive Disorder (MDD) as defined in the Diagnostic and Statistical Manual of
Mental Disorders (3rd ed., rev.; DSM–III–R; American Psychiatric Association, 1987), and
come from a subset of the Virginia Twin Registry (Kendler & Prescott, 1999). The Virginia

3Anderson and Bahadur (1962) provided a generalization of the MD that is more accurate for imbalanced class covariance matrices.
The simulations in this work examine balanced class covariance matrices, and the authors are currently examining imbalanced class
covariance matrices. Note that Maraun and Slaney (2005) showed analytically that MAXCOV is not guaranteed to produce a single-
peaked plot in the presence of two classes under imbalanced class covariance matrices, and by extension, MAXEIG will have the
same problem.
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Twin Registry is a population-based register formed from a systematic review of all birth
certificates in the Commonwealth of Virginia from 1918 onward. Twins were eligible for
participation in each of the studies if one or both twins were successfully matched to birth
records and were born between 1940 and 1974. To address dependence of twin pair data,
and to avoid the potential confounding of a latent class structure with known gender
differences of MDD prevalence, in this example we only use data from one male twin from
each male–male or male–female twin pair. A factor mixture analysis of female twins has
been reported by Lubke and Neale (2008) to illustrate the effect of power when comparing
models with and without class-specific model parameters. Here, the emphasis is on
demonstrating how factor mixture models can be used to model psychiatric data from a
general population sample, and how results can inform a researcher about the disorder. The
taxometric analysis of the depression items is presented first.

Taxometric Analyses
A strong recommendation found in the taxometric literature is to rely on converging sources
of evidence from multiple taxometric procedures. In addition to MAXEIG, the taxometric
procedures MAXCOV, L-Mode (Waller & Meehl, 1998), and Mean Above and Mean
Below a Cut (MAMBAC; Meehl & Yonce, 1994) were used for the depression data. We use
the CCFI to assess latent structure detection for the depression data.

The L-Mode procedure fits a unidimensional factor model to a set of indicators and
examines the distribution of Bartlett factor scores (Bartlett, 1937). A bimodal distribution is
taken as evidence that data come from two latent classes (Ruscio et al., 2006; Waller &
Meehl, 1998). Note, however, that only large mean differences lead to bimodality (for
examples, see McLachlan & Peel, 2000). L-Mode has not been systematically studied, but
initial evidence indicates that it performs well under several conditions (Meehl & Yonce,
1994).

The MAMBAC procedure searches for an optimal cutting score. One output indicator is
sorted on an input indicator, and the input indicator is used to make a series of cutting
scores. For each cutting score, the mean of the output indicator below and the mean of the
output indicator above the cut is computed. The mean differences are then plotted. If data
come from two classes, the plot should be single peaked at the point where the data can be
optimally cut into two groups with the largest class separation. If data come from a single
class, MAMBAC typically produces a U-shaped plot (Meehl & Yonce, 1994; Ruscio et al.,
2006). In general, MAMBAC does not perform as well as MAXCOV or MAXEIG (Ruscio
et al., 2006).

Because the depression items are binary, composite input indicators are formed using the
sum of all variables not being used as output indicators for MAXEIG, MAXCOV, and
MAMBAC analyses. Composite input indicators ensure there is sufficient variation for
reliable sorting of the data when categorical indicators are used (Ruscio, Haslam, & Ruscio,
2006). MAXEIG, MAXCOV, and MAMBAC analyses all used 50 windows, and MAXEIG
and MAXCOV analyses set window overlap to be 90%.

Taxometric results—Results of the taxometric analyses of the depression data are
summarized in Table 2. In the current application, the four taxometric methods yielded
diverging conclusions about the data. L-Mode and MAMBAC did not support either one-
class or two-class conclusions (CCFI = .52 and CCFI = .50, respectively), whereas the
MAXCOV and MAXEIG analyses supported a one-class conclusion (CCFI = .34 and CCFI
= .33, respectively). The estimates of the correlations between indicators within class are
somewhat higher in the complement for MAXCOV and MAXEIG, equal for MAMBAC,
and higher in the taxon for L-Mode.
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FMM Analyses
We fit the following initial set of models to the data: latent class models (i.e., local
independence within class) with two to five classes, a single-factor, single-class model
(analogous to the dimensional model in taxometric procedures), single-factor models that
constrain loadings and item thresholds to be class-invariant (e.g., measurement invariant
models) with two to four classes, and single-factor models that relax the measurement
invariance (MI) constraints and permit differences in loadings and thresholds with two to
four classes. The results are presented in Table 3.

Consistent with previous findings, the Akaike’s Information Criterion (AIC) favors more
complex models, whereas the BIC penalizes the increase in parameters more heavily.
Adding classes with many class-specific parameters such as in the case of the measurement
noninvariant models can therefore result in a larger BIC, which, in turn, can lead to a
potentially erroneous conclusion that MI holds across classes (Lubke & Neale, 2008).
Especially in this example, where symptom endorsements of MDD are observed in a
population sample, it is questionable that items (e.g., “thoughts of suicide”) discriminate
equally well within the unaffected part of the population and within the affected part. In fact,
the data contain a large group of subjects with zero scores on (almost) all items. This means
that when fitting single-factor, two-class models, there is little or no information to estimate
factor loadings and thresholds for subjects with low scores on the depression factor. Fitting
MI models simply equates the loading and threshold estimates obtained from subjects with
varying levels on the depression factor to those of the unaffected class. More realistic is a
model that imposes a structure reflecting mainly zero scores in the unaffected class, and a
single-factor model in the class that contains subjects with severity differences in
depression.

A preponderance of zeros can be modeled with two-part models, and also with a model that
fixes thresholds to large values in the unaffected class while estimating class-specific factor
loadings and factor variances. We fitted such a model, and obtained a fit with LL =
−5427.77 with 32 estimated parameters. The BIC was comparable to the more parsimonious
MI models (see Table 3), and equaled 11094.52. Both AIC and saBIC were clearly better
than any of the MI models, namely 10919.54 and 10992.86, respectively. Evidence
supporting MI seems weak given the observed data pattern of a large zero-scoring group of
subjects and previous simulation results showing that the BIC penalty on model complexity
might be too high to reject MI. Importantly, MI can only be investigated adequately if the
set of items covers the range of the trait in both groups or classes. The data in this analysis
are best described by a model that acknowledges the fact that the items have high item
difficulties and do not adequately measure the trait in the unaffected group. For comparison,
this pattern of results was less pronounced in the analysis of the females described in Lubke
and Neale (2008), which is likely due to a higher prevalence of depression in females.

FMM provides the possibility of investigating differences between classes with respect to
variables of interest in a single analysis. Taxometric procedures require that the investigator
first assign subjects classes such that post-hoc comparisons can be carried out in a second
step. In FMMs, effects can be investigated by estimating different types of covariate effects.
The effect of a covariate on depression might, for instance, be completely mediated by class
membership, or might essentially consist of a direct effect of the covariate on the depression
factor within class. We fitted a model where (a) class membership and (b) depression within
class in the more severe class is regressed on age. The results show that that both effects are
small but significant given the sample size. Although the age in the unaffected class is
somewhat higher in our sample (the log odds of being in the affected class predicted by age
are .975), depression within the affected class is positively related to age. This is a well-
known effect.

Lubke and Tueller Page 9

Struct Equ Modeling. Author manuscript; available in PMC 2014 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using taxometric procedures, a more fine-grained analysis of within-class structures as
described in this section can only be accomplished post-hoc after assigning subjects to
classes, and hinges on low error rates in the assignment. The evaluation of correct class
assignment is one of the two goals of the simulation study.

SIMULATION STUDY
The following sections outline the design of the main simulation study, the data generation
procedures, and the analyses carried out on the generated data.

Simulation Study Design and Data Generation
The conditions for the simulation study were selected to compare MAXEIG and FMM
performance under conditions that have been reported to be ideal for either method, and
conditions that were expected to be problematic but that are quite common in empirical data:
balanced versus imbalanced class proportions, locally independent data versus data having
within-class variability, and large versus moderate class separations.

Data were generated with either balanced class proportions or with a .95/.05 split reflecting
the presence of a majority and a minority class. With N = 400 subjects in each data set, the
balanced class proportion conditions will have on average 200 subjects in each class, and the
imbalanced class proportion conditions will have on average 380 subjects in the first class
and 20 in the second class. Prior studies have shown poor FMM performance with severely
imbalanced class proportion data (Tueller & Lubke, 2010), whereas the taxometric literature
has been more optimistic on detecting small classes (Ruscio & Marcus, 2007). Thus,
taxometric procedures are expected to outperform the FMM for locally independent data
with large class separations and unbalanced class sizes.

Multivariate normal data were generated under five different two-class models. Models 1
and 2 are LCA models that differ by the number of indicators (i.e., 5 and 10 indicators),
Model 3 is a single-factor FMM, and Models 4 and 5 are two two-factor FMMs that differ
with respect to the presences or absence of cross-loadings. The five models are denoted as
LCA5, LCA10, 1F, and 2Fcl, and 2Fss, respectively, where cl indicates cross-loadings and
ss indicates simple structure. We focus on two-class models because taxometric procedures
have not yet been extended to three or more classes and can lead to incorrect conclusions
when there are three classes (Grath, 2008). Within-class variances were balanced in all five
models.

The LCA data are locally independent given class membership and have zero within-class
correlations. LCA conditions are favorable for taxometric procedures and FMM alike. The
one- and two-factor data illustrate within-class individual differences, which are common in
empirical data (e.g., Lubke et al., 2009; Lubke et al., 2007). The FMM has the advantage of
being able to model these individual differences using within-class confirmatory factor
analysis (CFA) models. The within-class item correlations in our simulated data range from .
3 to .6. Correlations of .3 fall at the high end of favorable conditions of taxometrics (e.g.,
Ruscio et al., 2006) but lead to only moderate within-class item reliabilities, which could be
problematic for within-class CFAs in the FMM, whereas correlations of .6 have been shown
to be tolerable for taxometric procedures in prior research (Bernstein et al., 2007) and lead to
reasonable within-class item reliabilities for the FMM.

As noted in the section on class separation, both methods require sufficient separation to
correctly detect latent classes. In the simulation study, class separations of MD = 1.5 and
MD = 3.0 were examined. MD was controlled by manipulating the factor mean difference
between the two classes. For the LCA models, the manipulation was carried out at the level
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of the observed variables. As noted earlier, FMM research suggests MD = 1.5 is a minimal
condition needed for the FMM. MD = 3.0 is a very large effect. As can be seen in Table 4,
the corresponding Cohen’s d values range from moderately below to well above the
recommended minimum of d = 1:25. Table 4 suggests that the FMM is likely to perform
better for smaller class separations.

In sum, the simulation design is a 5 (models) × 2 (MD distances) × 2 (class proportion
settings) design. For each cell of the design, we generated 100 data sets. Population
parameter values are given in the Appendix.

Analyses
The following sections provide implementation details for taxometric and FMM analyses,
followed by the methods used to assess the performance regarding class detection and
assignment.

Taxometric analyses—As described earlier, MAXEIG, the base rate classification
technique, and the CCFI were used for the taxometric analyses in this study. Computation
times for the CCFI restricted this study to one taxometric procedure, and MAXEIG was
selected because of its multivariate treatment of data, and because its bivariate special case,
MAXCOV, is the most widely applied taxometric procedure. The MAXEIG analyses were
performed using 50 windows with 90% overlap, and each variable was used as the input
indicator once with the remaining nine indicators acting as output indicators. In computing
the CCFI, 30 two-class and 30 one-class comparison data sets were generated. Following
Ruscio and Marcus (2007), if the CCFI for a given data set was greater than .5, the analysis
was recorded as favoring the two-class taxonic rather than the dimensional structure. The
taxometric analyses were carried out using R (R Development Core Team, 2008) code
written and maintained by John Ruscio, available at http://www.taxometricmethod.com/.

FMM analyses—Because in practice FMM analyses are subject to potential
misspecifications of the number of classes, the number of factors, and the within-class factor
structure, class enumeration is obtained by comparing the fit of a set of alternative models.
For the LCA data, two models were fit to each data set: (a) a single-factor, one-class model,
and (b) a two-class LCA model. These two models represent the competing hypotheses of a
single underlying continuum versus latent clustering in the form of two subtypes. For the
one- and two-factor two-class FMM data, four alternative models were fit to each data set:
(a) a single-class, one-factor model, (b) a two-class, one-factor model, (c) a two-class, two-
factor model with simple structure, and (d) a two-class, two-factor model with cross-loaded
indicators. We determined that FMM correctly concluded that two classes exist in a data set
if (a) the correct model has converged, and (b) the BIC selected the correct FMM from
among the four models. Class assignment is implemented using modal assignment; that is,
subjects are assigned to the class with the highest posterior class probability.

The FMM models are fit to the data using the software program Mplus version 5.0 (L. K.
Muthén & Muthén, 2007) on 20 dual-processor PC workstations managed by the Condor
High-Throughput Computing System (Thain, Tannenbaum, & Livny, 2005).

Assessment of class detection and assignment—The goal of the analyses in this
study is to investigate to what extent taxometrics and FMM are able to (a) detect the correct
number of classes, and (b) accurately assign subjects to classes. Because all data sets were
generated under a two-class model, the first goal is assessed by computing the proportion of
data sets in which two classes were detected. To assess the accuracy of the assignment of
subjects to classes in the second goal, sensitivity, specificity, and the Hubert–Arabie

Lubke and Tueller Page 11

Struct Equ Modeling. Author manuscript; available in PMC 2014 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.taxometricmethod.com/


Adjusted Rand Index (ARIHA) are computed. Because in the imbalanced class proportion
conditions the second class is the (affected) minority class, we define sensitivity as the
proportion of Class 2 subjects correctly assigned to Class 2. Specificity is defined as the
proportion of Class 1 subjects correctly classified as being in Class 1.

The ARIHA is an overall proportion correct assignment measure adjusted for chance. The
index was poposed by Hubert and Arabie (1985). In a large simulation study, Steinley
(2004, p. 392) developed a heuristic for interpreting ARIHA values where “(a) values greater
than 0.90 can be viewed as excellent recovery, (b) values greater than 0.80 can be
considered good recovery, (c) values greater than 0.65 can be considered moderate recovery,
and (d) values less than 0.65 reflect poor recovery.” This heuristic is used in interpreting the
ARIHA. The ARIHA values in this study were computed using the adjustedRandIndex()
function in the R package MCLUST version 3 (Banfield & Raftery, 1993; Fraley & Raftery,
1999, 2002, 2003, 2006; R Development Core Team, 2008).

RESULTS
The results are presented first for the first goal, correct detection of two classes, followed by
results for the second goal, the accuracy of class assignment. Tables are structured according
to the simulation design described previously.

Latent Class Detection
Class detection and assignment in FMM analyses is contingent on model convergence.
Convergence rates are given in Table 5, and the proportion of data sets for which taxometric
and FMM analyses correctly concluded that there were two classes are given in Table 6.
Comparing the two tables shows that conditional on convergence, FMM almost always
detected the two classes. Convergence rates were good except for the more complex two-
factor models in the imbalanced class proportion conditions. Parameter estimates including
the class proportions can diverge from the population values substantially if class separation
is small. Because each subject’s contribution to the likelihood is weighted by the posterior
class probability, this can have the effect that only very few subjects contribute substantial
information to the estimation of the within-class model, which, in turn, will affect
convergence. The two-factor models require the estimation of more parameters than the one-
factor models, which increases the chance of empirical underidentification for the minority
class. A similar result has been reported by Tueller and Lubke (2010). Note that increased
class separation alleviates much of the problem due to imbalanced class proportions. Larger
sample sizes are needed, especially when small classes are expected.

In general, the FMM outperformed taxometric procedures in detecting the two classes. For
the LCA data, the taxometric procedures performed better for the 5-indicator data than for
the 10-indicator data. Even though the MD is constant for the 5- and 10-indicator conditions,
the univariate class separation is smaller for the 10-indicator data (see Table 1). Although
MAXEIG is a multivariate technique, final MAXEIG results are averaged over runs where
each indicator acts as the univariate input indicator once. Hence, MAXEIG results are
expected to be affected by univariate class separation.

As expected, the larger class separation conditions (MD = 3.0) resulted in more accurate
class detection for both methods than the smaller class separation conditions (MD = 1.5).
Taxometric procedures rarely detected the two classes in small class separation conditions,
as can be seen in the first column of Table 6. The FMM results concerning class detection in
Table 6 are based on the BIC. The one-factor FMM models also had poor detection for the
smaller class separation conditions when using the BIC as a criterion. This result is
consistent with Nylund, Asparouhov, and Muthén (2007). The aLRT provided much better
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detection rates for the single-factor model, namely 99%. However, the aLRT is not
consistent across different model types and clearly underperforms the BIC when considering
more complex models (see also Nylund, Asparouhov, & Muthén, 2007). Using the BIC, the
FMM accurately detected the two classes of the more complex models for balanced class
proportion conditions. This is shown in the upper half of Table 6. For the imbalanced class
proportion conditions, the FMM performed well for the LCA data but deteriorated for the
one- and two-factor data when MD = 1.5. For imbalanced class proportions and MD = 3.0,
both FMM and taxometric class detection were moderate to good, as can be seen in the
lower right of Table 6.

Class Assignment
Class assignment is evaluated conditional on class detection (see Table 5), and is therefore
based on different numbers of data sets for the different cells of the simulation design. In the
small class separation conditions, class detection for taxometrics was between .1 and .5 for
all generated data types except the LCA with 5 indicators, hence results regarding sensitivity
and specificity are not generalizable.

Sensitivity and specificity—The sensitivity and specificity for taxometric and FMM
class assignment are summarized for each condition in Table 7 and Table 8. Results that are
based on fewer than six data sets are marked in italics. The definition of sensitivity as the
number of true positives given diseased status is translated here as the number of true
minority class members being assigned to the minority class (i.e., Class 2). Similarly,
specificity is computed as correct assignment to Class 1.

Taxometric procedures and the FMM have comparable sensitivity and specificity in the
ideal conditions with large class separation and balanced class proportions, as shown in the
upper right blocks of Tables 7 and 8. The FMM performed slightly better for data generated
under the LCA models. Taxometrics had better sensitivity (i.e., correctly assigning minority
class subjects) for the large-separation imbalanced-class proportion conditions, namely .74–.
95 versus .69–.70 for the FMM (see lower right block of Table 7).

For the small class separation, MD = 1.5, the FMM only performed well in the balanced
class proportions. In the unbalanced condition, FMM had a sensitivity around .3 for all data
types (i.e., about 70% of truly minority class members are incorrectly assigned). Specificity
was acceptable (i.e., around .95); however, in practice the main interest is usually in the
smaller classes. Taxometrics only detected two classes in 1 to 5 out of 100 generated data
sets. The results for the successfully detected two-class data, given in italics in Table 7 and
Table 8, should not be generalized as they might reflect advantageous sampling fluctuation.

Hubert–Arabie Adjusted Rand Index—In general, overall class assignment was poor
in the small separation conditions as seen in the left half of Table 9. Both methods had
moderate class membership recovery in the balanced-class proportion and large separation
conditions as seen in the upper right of Table 9. The FMM also had moderate class recovery
for the large separation imbalanced-class proportion conditions as seen in the lower right of
Table 9, whereas taxometric procedures had poor recovery for these conditions.

CONCLUSIONS
The empirical example shows that taxometric procedures were inconclusive whether a
taxonic or dimensional structure was supported. The FMM approach indicated two classes, a
majority class with a preponderance of zero scores, and a single-factor model in the minority
class containing subjects with positive item endorsements. The analysis illustrated the
flexibility of the FMM to test more specific hypotheses than taxometric procedures. We also
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showed that inclusion of covariate effects is useful to investigate differences between classes
without the need of assigning subjects to their most likely class.

The simulation study shows that FMMs and MAXEIG provide similar results for class
detection and assignment under ideal conditions of balanced class proportions and large
class separation. Under more realistic conditions of small class separation or imbalanced
class proportions, the FMM outperforms taxometrics in the detection of the two latent
classes. The study also underlines the limitations of FMMs. In conditions of small class
separation and imbalanced class proportions, FMM does not detect the second class with the
sample sizes used in this simulation. FMM class detection is likely to improve with larger
sample sizes as class detection is a matter of power (Lubke & Neale, 2008).
Nonconvergence in this simulation is likely due to empirical underidentification of the
minority class, which is a threat that should not be overlooked in empirical studies involving
small minority classes.

Similar to class detection, the results concerning correct class assignment are comparable for
the two methods under ideal conditions of large class separation. When class sizes are
unequal, using the highest posterior probability to assign subjects to classes resulted in
somewhat lower sensitivity for FMM compared to taxometrics. Correct assignment to a
majority class (specificity) using FMM is better than correct assignment to a minority class
(sensitivity), which is expected given the prior probability of correct assignment. Keeping
the distance between classes and within-class variances equal, then decreasing the class size
of the minority class will result in an increasing proportion of minority subjects with
pmajority > pminority, where p is the probability under the normal weighted by the prior class
probability, and where majority and minority refer to the component distributions of the
larger and the smaller class. In our study, sensitivity is poor for the FMM when class
separation is small and class size is unequal. Sensitivity and specificity for taxometrics
under these conditions could not be evaluated because taxometrics did not detect the second
class in a sufficient proportion of the data sets.

In general, our results show that MAXEIG requires greater class separation than the FMM,
and that within-class correlations do not seem to have a systematic negative effect on
MAXEIG performance when the MD is held constant (e.g., compare the LCA10 results to
the FMM results in Tables 6–9). In addition, our results show that error rates in class
assignment accuracy can be substantial. The impact of assignment error on post-hoc testing
needs is currently under investigation.

Limitations of this study include the following. The simulation study was limited to a small
set of conditions that are, however, quite common in practice. Other interesting conditions
would include within-class nonnormality and imbalanced class variances. Imbalanced class
variances are investigated in Tueller and Lubke (2010) for generalizations of the FMM and
are currently being investigated in the context of comparing the FMM and MAXEIG.
Second, mixture distributions can approximate nonnormal distributions. When fitting
mixture models to data that have within-class nonnormality, the additional classes needed to
approximate the distribution might not necessarily reflect true subgroups. Third, our study
limited the data generation to two classes. Assignment error might have different patterns in
cases with more than two classes, and will likely depend on factors such as ordering of the
classes along a common dimension versus qualitatively different classes, and the resulting
mutual class separation. Taxometrics, however, are most commonly used to assess whether
data come from a single homogenous population versus a population consisting of two
classes. The weaker class detection compared to FMM, combined with potentially high error
rates when class separation is small, limits the utility of taxometric procedures, especially
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given the fact that evidence of a taxonic structure by itself is usually only the first step rather
than the final goal of a study.
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APPENDIX PARAMETER VALUES

Latent Class Models
residual variances [.5 .5 .5 .5 .5 .5 .5 .5 .5 .5]’

Intercepts in the second class (first class intercepts set to zero): MD = 1.5

5 item [.4744 .4744 .4744 .4744 .4744 .4744 .4744 .4744 .4744 .4744]

10 item [.3355 .3355 .3355 .3355 .3355 .3355 .3355 .3355 .3355 .3355]

MD = 3.0

5 item [.675 .675 .675 .675 .675 .675 .675 .675 .675 .675]

10 item [.95 .95 .95 .95 .95 .95 .95 .95 .95 .95]

One-Factor Model
Class-invariant parameters:

factor loadings [1 .8 .8 .8 .8 .8 .8 .8 .8 .8]’

factor variance 1

residual variances [.5 .5 .5 .5 .5 .5 .5 .5 .5 .5]’

Class-specific parameters:

factor mean in the second class MD = 1.5 [1.57]

factor mean in the second class MD = 3.0 [2.1]

Two-Factor Models
Class-invariant parameters:

factor loadings, simple structure 

factor loadings, cross-loadings 

factor covariance matrix, positive factor correlation 
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residual variances [.5 .5 .5 .5 .5 .5 .5 .5 .5 .5]’

Class-specific parameters:

factor means in the second class

MD = 1.5 [1.399 1.399]

MD = 3.0 [2.799 2.799]
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TABLE 1

Mahalanobis Distances

No. of
Indicators r = 0 r = .2 r = .4 r = .6 r = .8

d = 0.6

4 1.20 0.95 0.81 0.72 0.65

6 1.47 1.04 0.85 0.73 0.66

8 1.70 1.10 0.87 0.74 0.66

10 1.90 1.13 0.88 0.75 0.66

12 2.08 1.16 0.89 0.75 0.66

d = 1.2

4 2.40 1.90 1.62 1.43 1.30

6 2.94 2.08 1.70 1.47 1.31

8 3.39 2.19 1.74 1.49 1.32

10 3.79 2.27 1.77 1.50 1.33

12 4.16 2.32 1.79 1.51 1.33

d = 1.8

4 3.60 2.85 2.43 2.15 1.95

6 4.41 3.12 2.55 2.20 1.97

8 5.09 3.29 2.61 2.23 1.98

10 5.69 3.40 2.65 2.25 1.99

12 6.24 3.49 2.68 2.26 1.99

Note. Mahalanobis distances (MD) at various levels of Cohen’s distance d between groups for all individual indicators. Note that the univariate d is
constant across indicators but the MD increases as the number of indicators increases. When the number of indicators is 1, MD = d. As the
correlation among all indicators approaches 1, MD approaches d.
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TABLE 2

Taxometric Analysis of the Depression Data

Procedure CCFI Base Rate r
‒

tax r
‒

comp

MAXCOV 0.34 0.16 0.022 0.124

MAXEIG 0.33 0.15 0.022 0.136

MAMBAC 0.52 0.25 0.080 0.064

L-Mode 0.50 0.41 0.163 0.007

Note. Results of the taxometric analyses of the depression data. The base rate estimate is the mean base rate across all curves for MAXCOV,

MAXEIG, and MAMBAC. The base rate estimate for L-Mode was computed using assigned taxon/complement class membership.  and

 are the mean within-taxon and within-complement class correlations, respectively. CCFI = Comparison Curve Fit Index.
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TABLE 3

Fit Indexes for Depression Data Factor Mixture Models

Model LL Par AIC BIC saBIC

F1C1 −5,565.02 20 11,170.04 11,279.40 11,215.86

F0C2 −5,748.18 21 11,538.35 11,653.18 11,586.46

F0C3 −5,461.69 32 10,987.38 11,162.36 11,060.69

F0C4 −5,427.51 43 10,941.02 11,176.14 11,039.53

F0C5 −5,410.08 54 10,928.16 11,223.43 11,051.88

F0C6 −5,390.50 65 10,911.00 11,266.42 11,059.92

F1C2MI −5,453.19 23 10,952.39 11,078.15 11,005.08

F1C3MI −5,447.76 26 10,947.52 11,089.69 11,007.09

F1C4MI −5,447.29 29 10,952.57 11,111.14 11,019.01

F1C2MnIτ −5,417.81 32 10,899.61 11,074.59 10,972.93

F1C3MnIτ −5,391.02 44 10,870.03 11,110.62 10,970.84

F1C4MnIτ −5,377.63 56 10,867.26 11,173.47 10,995.56

F1C2MnIτλ −5,415.97 41 10,913.94 11,138.13 11,007.87

F1C3MnIτλ −5,374.70 62 10,873.40 11,212.41 11,015.44

F1C4MnIτλ −5,352.00 83 10,870.00 11,323.83 11,060.15

F1C2fixτ −5,427.77 32 10,919.54 11,094.52 10,992.86

Note. LL = log-likelihood; AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion, saBIC = sample size adjusted Bayesian
Information Criterion. Models are denoted as FiCj where i indicates the number of factors and j the number of classes (e.g., F0C2 indicates a two-
class latent class model). MI = measurement invariant; MnI = measurement noninvariant with noninvariance in the thresholds τ or thresholds and
factor loadings λ. The F1C2fixτ is a model with thresholds fixed to large values in one class to model high probabilities of zero responses in that
class. Values in bold indicate the best fitting model according the corresponding index. The F1C2fixτ model is bold for comparison.
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TABLE 4

Population Cohen’s d Values for Each Simulation Condition

MD = 1.5 MD = 3.0

LCA5 0.67 1.34

LCA10 0.47 0.95

1F 1.18 2.35

2Fcl 1.09 2.18

2Fss 1.07 2.13

Note. d does not change between balanced and imbalanced class proportion conditions. Table entries are averages across all items within condition.
MD = Mahalanobis distance; LCA5 = latent class analysis model with 5 indicators; LCA10 = latent class analysis model with 10 indicators; 1F =
one-factor factor mixture model; 2Fcl = two-factor factor mixture model with cross-loadings; 2Fss = two-factor factor mixture model with simple
structure.
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TABLE 5

Convergence Rates for Latent Class Analysis and Factor Mixture Modeling Data

MD = 1.5 MD = 3.0

π1 = .5

 LCA5 1.00 1.00

 LCA10 0.99 1.00

 1F 1.00 1.00

 2Fcl 0.99 1.00

 2Fss 0.99 1.00

π1 = .95

 LCA5 1.00 1.00

 LCA10 0.94 1.00

 1F 0.99 1.00

 2Fcl 0.40 0.84

 2Fss 0.39 0.85

Note. Convergence rates for the latent class analysis and factor mixture modeling data generating models. MD = Mahalanobis distance; LCA5 =
latent class data with 5 indicators; LCA10 = latent class data with 10 indicators; 1F = one-factor data with 10 indicators; 2Fcl = two-factor data
with cross-loadings with 10 indicators; 2Fss = two-factor data with simple structure with 10 indicators; π1 = proportion of subjects in the first class

where π2 = 1 — π1. In each condition, 100 data sets are generated.
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TABLE 6

Proportions of Data Sets Correctly Detecting Two Latent Classes

MD =1.5 MD= 3.0

TAX FMM TAX FMM

π1= .5

 LCA5 0.34 1.00 0.96 1.00

 LCA10 0.03 1.00 1.00 1.00

 1F 0.04 0.09 0.91 1.00

 2Fcl 0.03 0.99 0.98 1.00

 2Fss 0.05 0.99 1.00 1.00

π1 = .95

 LCA5 0.32 1.00 0.89 1.00

 LCA10 0.01 1.00 0.67 1.00

 1F 0.01 0.16 0.74 0.99

 2Fcl 0.04 0.20 0.75 1.00

 2Fss 0.03 0.39 0.97 0.85

Note. Proportions of data sets for which taxometric procedures (TAX) and the factor mixture model (FMM) correctly detected two classes. For the
FMM, table entries are conditional on (a) convergence of the data generating model and (b) selection of the data generating model using the
Bayesian Information Criterion. MD = Mahalanobis distance; LCA5 = latent class data with 5 indicators; LCA10 = latent class data with 10
indicators; 1F = one-factor data with 10 indicators; 2Fcl = two-factor data with cross-loadings with 10 indicators; 2Fss = two-factor data with
simple structure with 10 indicators; π1 = proportion of subjects in the first class where π2 = 1 — π1.
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TABLE 7

Sensitivity

MD = 1.5 MD = 3.0

TAX FMM TAX FMM

π1 = .5

 LCA5 0.69 0.74 0.75 0.93

 LCA10 0.75 0.75 0.89 0.94

 1F 0.71 0.74 0.93 0.94

 2Fcl 0.74 0.79 0.93 0.93

 2Fss 0.75 0.79 0.93 0.93

π1 = .95

 LCA5 0.56 0.28 0.74 0.69

 LCA10 0.86 0.21 0.84 0.68

 1F 0.63 0.32 0.92 0.69

 2Fcl 0.65 0.20 0.93 0.69

 2Fss 0.69 0.30 0.95 0.70

Note. Average sensitivity of taxometric procedures (TAX) and the factor mixture model (FMM). Sensitivity is defined as the proportion of subjects
in the second (minority) class correctly assigned to the second class. Table entries are conditional on the detection rates of the two-class structure as
summarized in Table 6, which are close to zero for taxometric procedures for some conditions. Results based on fewer than six data sets are
presented in italics. MD = Mahalanobis distance; LCA5 = latent class data with 5 indicators; LCA10 = latent class data with 10 indicators; 1F =
one-factor data with 10 indicators; 2Fcl = two-factor data with cross-loadings with 10 indicators; 2Fss = two-factor data with simple structure with
10 indicators; π1 = proportion of subjects in the first class where π2 = 1 — π1.
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TABLE 8

Specificity

MD = 1.5 MD = 3.0

TAX FMM TAX FMM

π1 = .5

 LCA5 0.72 0.71 0.74 0.93

 LCA10 0.69 0.69 0.86 0.92

 1F 0.73 0.77 0.93 0.93

 2Fcl 0.74 0.68 0.93 0.93

 2Fss 0.75 0.70 0.93 0.93

π1 = .95

 LCA5 0.60 0.85 0.75 0.99

 LCA10 0.48 0.89 0.86 0.99

 1F 0.78 0.97 0.94 0.99

 2Fcl 0.76 0.95 0.93 0.99

 2Fss 0.75 0.92 0.91 0.99

Note. Average specificity of taxometric procedures (TAX) and the factor mixture model (FMM). Specificity is defined as the proportion of subjects
in the first (majority) class correctly assigned to the first class. Table entries are conditional on the detection rates of the two-class structure as
summarized in Table 6, which are close to zero for taxometric procedures for some conditions. Results based on fewer than six data sets are
presented in italics. MD = Mahalanobis distance; LCA5 = latent class data with 5 indicators; LCA10 = latent class data with 10 indicators; 1F =
one-factor data with 10 indicators; 2Fcl = two-factor data with cross-loadings with 10 indicators; 2Fss = two-factor data with simple structure with
10 indicators; π1 = proportion of subjects in the first class where π2 = 1 — π1.
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TABLE 9

Hubert-Arabie Adjusted Rand Index

MD = 1.5 MD = 3.0

TAX FMM TAX FMM

π1 = .5

 LCA5 0.17 0.22 0.24 0.74

 LCA10 0.19 0.20 0.56 0.74

 1F 0.19 0.24 0.74 0.75

 2Fcl 0.24 0.25 0.74 0.74

 2Fss 0.25 0.25 0.74 0.74

π1 = .05

 LCA5 0.02 0.09 0.10 0.70

 LCA10 0.00 0.05 0.09 0.57

 1F 0.11 0.17 0.55 0.71

 2Fcl 0.10 0.16 0.51 0.71

 2Fss 0.09 0.19 0.45 0.71

Note. Table entries are the Hubert–Arabie Adjusted Rand Index, a chance-corrected measure of correct class assignment. Table entries are
conditional on the detection rates of the two-class structure as summarized in Table 6, which are close to zero for taxometric procedures for some
conditions. Results based on fewer than six data sets are presented in italics. MD = Mahalanobis distance; TAX = taxometric procedures; FMM =
factor mixture model; LCA5 = latent class data with 5 indicators; LCA10 = latent class data with 10 indicators; 1F = one-factor data with 10
indicators; 2Fcl = two-factor data with cross-loadings with 10 indicators; 2Fss = two-factor data with simple structure with 10 indicators; π1 =

proportion of subjects in the first class where π2 = 1 — π1.
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