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Abstract
In high-prevalence populations, the HIV epidemic undermines the validity of past empirical
models and related demographic techniques. A parsimonious model of HIV and population
dynamics is presented here and fit to 46,000 observations, gathered from 11 East African
populations. The fitted model simulates HIV and population dynamics with standard demographic
inputs and only two additional parameters for the onset and scale of the epidemic. The
underestimation of the general prevalence of HIV in samples of pregnant women and the fertility
impact of HIV are examples of the dynamic interactions that demographic models must reproduce
and are shown here to increase over time even with constant prevalence levels. As a result, the
impact of HIV on population growth appears to have been underestimated by current population
projections that ignore this dynamic.

National population forecasts are essential instruments of development planning. Since the
mid-1950s, nearly all national and international agencies producing such forecasts have
relied on a population-dynamics model known to demographers as the cohort-component
model of population projection (hereafter, CCMPP). For a number of African countries, the
main challenge to demographic forecasting has been to meet even the relatively modest data
requirements of this model. Toward this end, international donors sponsored the first
censuses and fertility surveys in a number of countries. Concurrently, demographers
developed a series of ingenious “indirect” techniques (e.g., Brass 1975; United Nations
(UN) 1967, 1983) and empirical models (e.g., model life tables; Coale and Demeny 1983;
UN 1982) which allowed them to extract, correct, and supplement the required information
from incomplete or inaccurate data.

HIV has quickly rendered obsolete these contributions to demographic estimation and
forecasting in the populations that have been the hardest hit by the epidemic. The new
challenge to population forecasting for these countries is not merely the uncertainty about
the future level of mortality. Because the age pattern of AIDS-related mortality is so
different from the existing J-shaped model age patterns of mortality, no existing model
accurately represents the age structure of mortality when AIDS accounts for a significant
proportion of all deaths. The epidemic also invalidates many indirect techniques that rely on

p-heuveline@uchicago.edu.
*Early versions of this article were presented at the 2001 annual meeting of the Population Association of America (March 29–31,
Washington, DC) and the 24th General Population Conference of the International Union for the Scientific Study of Population
(August 18–24, 2001, Salvador, Brazil). I am particularly indebted to Douglas Ewbank for his advice on various aspects of maximum-
likelihood estimation. I also thank Ross Stolzenberg for his comments and insights on empirical Bayesian methods; Samuel Clark for
his advice on implementing the maximizing likelihood function; Thomas Buettner, David Bradley, Rob Dorrington, Kenneth Hill, Ed
Laumann, Ian Timaeus, Basia Zaba, and Hania Zlotnik for their comments and suggestions on early drafts; and Ira Elliott for his
careful and insightful editing of the final manuscript.

NIH Public Access
Author Manuscript
Demography. Author manuscript; available in PMC 2014 March 17.

Published in final edited form as:
Demography. 2003 May ; 40(2): 217–245.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



now-untenable assumptions, such as the independence of the mother’s and the child’s
survival.

There is no shortage of HIV/AIDS models, but these models either exceed the availability of
data in African nations or lack the basic age structure that demographic models and methods
require. Because HIV and population dynamics are intertwined, the lack of demographics in
these models does not merely hinder their import in the field of population studies. Just as
the estimates inferred from traditional demographic techniques may be biased by the HIV
epidemic, the values of epidemiological estimates are influenced by the underlying
population dynamics. This mutual dependence is perhaps clearest in the relationship
between fertility rates and HIV infection. On the one hand, HIV infection reduces
fecundability (Carpenter et al. 1997; Fylkesnes et al. 1998; Gray et al. 1998; Kigadye et al.
1993; Kilian et al. 1998); on the other hand, the proportion of sexually active individuals is
expected to be lower in the HIV-negative population. Population-based data have confirmed
that age-specific fertility rates are higher among HIV-positive women at early reproductive
ages, whereas the reverse occurs at older ages, when the selection effect begins to fade out.
The age structure of reproductive-age women therefore contributes to the all-age prevalence
level estimated from data from antenatal clinics, the backbone of many surveillance systems
that are designed to monitor HIV trends over time.

Therefore, to conduct national population projections and even to estimate basic
demographic indicators in countries in which the prevalence of HIV exceeds a few
percentage points, demographers require models that allow for the different age-specific
rates of mortality and childbearing of HIV-positive individuals. In turn, a demographically
sound model may well contribute to a better monitoring of the epidemic’s dynamics. This
article presents one such model that takes into account the specific scarcity of data in East
African countries, which, given their adult seroprevalence levels of 20% nationally, are
among the worst hit (Piot et al. 2001). The model can be described as a “minimalist”
multistate extension of the CCMPP.

Taking stock of the extant epidemiological literature, this article also provides default values
for all but two of the parameters added to the single-state CCMPP. The literature review led
to a classification of these additional parameters into three categories. The first consists of
parameters that appear similar across all populations. HIV epidemics share, for instance, a
similar progression, from an early “explosive” phase to a subexponential growth and an
eventual saturation, a pattern typical of individual-to-individual transmission in a risk-
heterogeneous population (Chin and Lwanga 1991; Stoneburner et al. 1996). The average
duration from HIV to AIDS or from AIDS to death is also similar across populations
(Alcabes et al. 1993; Moss and Bacchetti 1989; Schwartländer et al. 1999). Values for the
corresponding parameters, if they are not available for the population of interest, can be
taken directly from the literature.

The second category, however, consists of the parameters that are entirely population
specific. Even though the diffusion of the epidemic often seems to follow a similar trend
over time across populations, HIV epidemics have begun in different years and appear likely
to stabilize at different levels (Caraël and Holmes 2001). Hence, there appears no alternative
to the selection of a specific starting date of the HIV epidemic and of at least one indicator
of the specific “scale” of the epidemic for each population.

The third category consists of “intermediate” parameters that are not readily available in the
literature, but if they are not available for the population of interest, can be borrowed from
other East African populations with reliable data. In the past two decades, a number of
population-based research projects have been conducted in the region. The data generated by
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these projects and published in the epidemiological literature are extensive and reliable, but
they do not directly provide values of the parameters required by the multistate extension of
the CCMPP.

At the core of this article is the maximum-likelihood (ML) estimation of default values for
these parameters, based on model predictions for the over 46,000 sex- and age-specific
“HIV-related observations” that were collected through a comprehensive review of the data
reported from the region. Examples of such observations include the pregnancy or survival
of an individual of a given sex, age group, and HIV-infection status during a follow-up
period and the outcome of the HIV testing of an individual of a given sex and age group.
The parameters for which default values are hence selected include a sex- and age-specific
pattern of HIV incidence and a duration-specific pattern of fertility reduction because of
HIV infection. It is certainly a bold assumption to maintain that these patterns are constant
across the region, but demographers will recognize here the classical approach of
constructing a model pattern from satisfactory data and using it when original data are
unavailable or unreliable.

HIV AND POPULATION MODELS FOR AFRICA: A CRITICAL REVIEW
Adding HIV/AIDS to a Demographic Model: The “External” Approach

In the years following the identification of HIV in 1983–1984, HIV epidemics of an
unprecedented scale were gradually recognized in areas of central, eastern, and southern
Africa, where HIV began spreading extensively, perhaps as early as the late 1970s (Piot et
al. 1988). Under increasing criticism for failing to account explicitly for the demographic
impact of the epidemic in its projections, the UN convened a meeting in 1989 to survey the
available AIDS models (Palloni and Glicklich 1991). The models that were most appealing
from a modeling perspective explicitly represented the different modes of HIV infection and
made specific assumptions regarding the individual behaviors that condition the risk of
infection. Because of the complexity involved in representing individual-to-individual
heterogeneity with respect to these behaviors, these models make demands on data that have
been impossible to meet for most, if not all, African populations (Palloni and Glicklich
1991; Stoto 1993).1

Next, in decreasing order of both appeal and complexity were models that did not attempt to
represent the determinants of the HIV infection, but did account for separate modes of
transmission and postulated incubation periods for each mode. Meanwhile, the HIV trends
were derived by simple extrapolation, using a mathematical function whose parameter
values were selected by fitting past HIV trends to the model. The UN chose to use one such
model, Epimodel (Chin 1994; Chin and Lwanga 1991), to project future mortality from
HIV. In Epimodel, a gamma curve serves as the parametric function representing the trend
in adult infection over time. The second mode of transmission is perinatal, from mother to
child.

With a virtually endless number of HIV/AIDS models now available, Epimodel continues to
provide an attractive option for many African countries because it requires more easily
obtainable data than biobehavioral models and presents a more satisfactory modeling
alternative to other simple models. As more data accumulate, the accuracy of the gamma

1The U.S. Census Bureau uses one of these biobehavioral models, the iwgAIDS model of the interagency working group on AIDS
models and methods (Stanley et al. 1991), for its population projections in selected countries. The model is not used to make separate
projections for each of these countries, however. Instead, three seroprevalence scenarios (high, medium, and low) are prepared, and
each national epidemic is interpolated among the three scenarios using a constant scaling factor. Moreover, the demographic
projections are prepared with the standard CCMPP, into which modified age-specific mortality rates are imported to account for
AIDS-related deaths (for details, see U.S. Census Bureau 1999: appendix B).
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curve appears to be mixed (Salomon and Murray 2001). On the one hand, the curve proved
to have anticipated rather well the trend of new infections from their onset to their peak. On
the other hand, it clearly projected too fast a decline after the peak. In particular, the
possibility that new infections would decline and then remain at an endemic level for some
time now appears more likely than the foretold disappearance of new infections within two
decades of the peak (UN 1999).

A more persistent difficulty, however, is that Epimodel, like other models with affordable
data requirements, does not provide a demographic component that is acceptable for
population forecasting. The population forecaster must therefore continue to rely on a
standard CCMPP, but only after preparing external HIV/AIDS projections to adjust original
mortality rates before reimporting them into the CCMPP. (See Heuveline et al. 1992;
UNAIDS 2002; UN 1999 for details on the UN procedure over time and the U.S. Census
Bureau 1999 on the bureau’s.) The adjustment procedure can best be conceived as the
reverse of the standard derivation of an associated single-decrement life table from a
multidecrement life table (e.g., Preston, Heuveline, and Guillot 2001).

Such external adjustments to the CCMPP have become increasingly unsavory over time for
at least three reasons. The first relates to the necessary assumptions about population
dynamics that are used in the external HIV/AIDS model or in the adjustment procedure, as
well as to the lack of feedback to ensure the compatibility of those assumptions with the
population dynamics that are ultimately projected. These concerns about internal
consistency become more serious over time as both the epidemic and population dynamics
increasingly influence each other. For example, an AIDS model may project only a total
number of AIDS-related deaths in a given period and use a fixed age-pattern to break down
those deaths by age. As is confirmed later, one can expect the age pattern of AIDS-related
deaths to change over time as the epidemic alters the age-structural dynamics of the
population.

Second, the addition of AIDS-related deaths of HIV-infected individuals accounts for only
the most visible demographic consequences of AIDS. A number of other downstream effects
of the epidemic are now becoming manifest: the lower fertility of HIV-infected women, the
increased mortality risks of “AIDS orphans,” and the synergistic relationship between HIV
and tuberculosis, to name only a few (Heuveline 1997). Additional external procedures can
certainly be derived to adjust the parameters of a standard CCMPP further. Estimates of the
population impact of HIV on fertility (Zaba and Gregson 1998), for instance, can be used to
correct age-specific fertility rates. But it becomes less and less clear that the long-term needs
of forecasting high-prevalence populations will be best served by continued ad hoc
“patching” of the single-state CCMPP approach.

The third reason that argues against the external approach relates to the necessity that
population projections in the absence of AIDS must first be undertaken before the results of
HIV/AIDS projections are added. Although this initial, counterfactual projection was
relatively easy to prepare in the early years of the epidemic, it has become increasingly
difficult and untenable to estimate demographic trends without AIDS. With the current
approach, what should be seen as an empirical opportunity—the increasing availability of
data on the intertwined epidemic and population dynamics—becomes an inconvenience.

Modeling HIV and Population Dynamics: Challenges to an Integrated Approach
Palloni (1996) clearly exposed the challenges of jointly modeling the dynamics of HIV and
its host population. Compartmentalizing the population aged a at time t into three states with
respect to HIV and AIDS—uninfected individuals H(a,t), infected individuals yet to develop
AIDS I(a,t), and those who have AIDS A(a,t)—Palloni (1996:626) extended to these three
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states the differential equations of population dynamics known to demographers as variable-
r equations:

(1)

where μ1(a,t), μ2(a,t), and μ3(a,t) are the mortality rates corresponding to each of the three
states; λ(a,t) is the rate of new infection or incidence rate; δ and (a,t) is the rate at which
HIV-infected individuals develop AIDS.

Just as the standard CCMPP is a macro-level, time-discrete Markovian model built on the
single-state variable-r equation, the model developed in this article builds on Palloni’s set of
differential equations in Eq. (1). An important difficulty noted by Palloni is that the
incidence rate should be endogenous to the system because the rate at which susceptible
individuals become infected depends on the number and characteristics of infected
individuals. Attending to this difficulty requires modeling the individual behaviors that lead
to infection and the population heterogeneity with respect to that risk. The associated data
requirements hindered the use of the first demographic models that incorporated an
epidemiological submodel into a traditional CCMPP (e.g., Bongaarts 1989; Bulatao 1991).

Moreover, in macromodels, the grouping of individuals into behavioral groups that are
assumed to be homogeneous with respect to the risk of infection fails to represent fully
individual-to-individual heterogeneity. As a result, these models underestimate the
“saturation” that typically occurs, even in the absence of any behavioral change, with
individual-to-individual transmission. A well-known related issue is the assumption
regarding sexual mixing patterns (Anderson et al. 1991; Garnett and Anderson 1993).
Simulations demonstrate that the more individuals tend to choose partners similar to
themselves—that is, the less “random” the mixing pattern—the more quickly the epidemic
growth rate tapers off (Brookmeyer and Gail 1994). The importance of the sexual mixing
patterns was also illustrated at great costs by international surveys on sexual behavior that
found that, unless several other key characteristics of the network of sexual partners are
accounted for, the prevalence of extramarital sex or the average number of partners in a
population correlates poorly with the prevalence of HIV (e.g., Caraël, Cleland, and Ingham
1994; Morris 1997). The dimensions of endogamy in sexual choices are numerous and
difficult to encompass fully with a reasonably sized model.

Palloni (1996:629) argued, then, that “to see the forest,” one must reduce this complexity
and use the best possible approximation of the set of equations in Eq. (1). One of Palloni’s
(1996) suggestions is to assume a constant incidence rate, which would lead to a stable state.
This approach can contribute to our understanding of the impact of the epidemic in the long
run (e.g., Zaba 1994), but just as in the single-state case, stable-population theory provides
little insight into the transitional dynamics that matter in population forecasting. The
alternative proposed later borrows the trend in new infections over time from the UN model,
that is, incidence is assumed, after a period of growth from the onset of the epidemic to its
saturation, to decline and level off at an endemic level. The difference with the UN approach
is that instead of importing AIDS mortality into the projections, with the aforementioned
problems, the proposed model simply imports the all-age adult incidence trend over time; all
other quantities are then derived internally.

A few issues must still be addressed before I turn the set of equations in Eq. (1) into an
operational macro-level, time-discrete Markovian model for population forecasts. First, it is
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problematic that in Palloni’s equations the survival of HIV-infected individuals depends on
their age, whereas the time since their infection (duration) is probably more important.
Representing this dependence in Palloni’s model, however, would violate the Markovian
assumption itself. The model presented here overcomes the obstacle by creating four
duration states (0–4, 5–9, 10–14, and 15+) instead of two (asymptomatic HIV and full-
blown AIDS), which thereby allows vital rates some duration dependence.2 The second
problem is that the parametric incidence trend is an all-age adult trend, whereas the model
requires sex- and age-specific incidence rates. This problem is addressed by applying a
model sex and age pattern of incidence that can be derived from available data by ML
estimation. Finally, reproduction, absent from equations in Eq. (1), must be added to account
for both the lower fertility of HIV-infected women and the possibility of vertical
transmission. Values for the corresponding parameters are also derived from available data
by ML estimation.

DATA AND METHODS
The Model

The model is a multistate extension of the CCMPP, building on Palloni’s (1996) assessment
of the dynamics of HIV and its host population, along with the adjustments described
earlier. The structure of the closed-population version of the model is represented in Figure
1. (Although this model excludes migration for purposes of simplicity, this factor can readily
be added.) As in the single-state CCMPP, the population at the beginning of a projection
interval is first divided into sex and age groups; here, however, each sex- and five-year age
group is further divided into five states: the HIV-negative and the four HIV-positive
duration states. Following Palloni (1996), the HIV negatives are subjected to two age-
specific decrements, mortality and incidence, with the individuals “escaping” both
decrements constituting the HIV negatives of the next age group at the beginning of the next
projection interval. HIV positives are subjected to an age- and duration-specific mortality
force, with the survivors constituting the HIV positives of the next duration state (the “open
duration” state excepted), in the next age group at the beginning of the next interval. As in
the single-state CCMPP, births are derived from age-specific fertility rates and the number
of women of reproductive ages at the beginning and end of the projection interval. Here,
different fertility rates are used for each of the five states. A vertical transmission rate is also
used to separate HIV positives and HIV negatives among the babies born to HIV-positive
mothers.

The passage from continuous mathematical representations of individual chances of survival
and reproduction to a discrete model involves a few approximations, generally acceptable
for short projection intervals and small age groups. For instance, the single-state CCMPP
represents the k-year survival of a k-year age group as follows:

(2)

where W(a,k,t) is the number of women aged a to a + k at time t. As discussed in the
Appendix, there is no approximation involved in Eq. (2) because S(a,t,k) can be defined as
the quantity that satisfies Eq. (2). An approximation is introduced in the single state of the
CCMPP by ignoring that S(a,t,k) should depend on the exact age distribution between age x

2As opposed to mover-stayer models, this model does not explicitly represent the proportion of individuals who may never develop
AIDS and whose mortality is thus identical to HIV-negative individuals, but applies instead an average survival ratio to all HIV-
positive individuals in a given sex, age, and duration group. With an open-ended duration interval starting at 15 years, however,
additional AIDS-related mortality does not increase further after 20 years of survival of HIV infection.
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− k and x at time t – k, whereas its value is often estimated as the survivorship ratio from age
group [a − k,a[ to age group [a,a + k[ in a life table that is believed to represent the mortality
of the period t − k to t. This approximation, in effect, removes the dependence on the exact
age distribution at time t – k; it would be exact if the age distribution of the population were
that of the stationary population associated with the life table, but it is also acceptable,
numerically speaking, when the age groups are small enough. Five-year age groups are often
used in population projections because (1) mortality does not change rapidly with age except
at the youngest and oldest ages and (2) within five-year age groups, age distributions vary
little across most populations.

As is described in the Appendix, the decision, based on similar logic, to ignore within-group
heterogeneity guided the derivation of the model’s equations from the underlying fertility,
mortality, and incidence processes represented as continuous functions of age, time, and
duration since infection. For instance, assuming that within-age-group heterogeneity is
unimportant in respect to incidence, which is typically done in regard to mortality alone, the
decline in the size of noninfected cohorts can be represented by two similar ratios:

(3)

where W 0(a,5,t) is the number of HIV-negative women aged a to a + 5 at time t, S 0(a,t,5) is
the survivorship ratio representing the survival to time t of HIV-negative women aged a – 5
to a at time t – 5, and I(a,t,5) represents the ratio of women aged a – 5 to a at time t – 5 who
would be HIV positive at time t if they were to survive the risk of death between time t – 5
and time t.

Conversely, the survival of individuals who are HIV positive at the beginning of the
projection period is represented as a function of the underlying duration-independent age-
specific mortality risk, summarized by the same survival ratio as before, and an additional
risk captured by a second age- and duration-dependent ratio. Denoted W 1(a,d,5,t), the
number of women aged a to a + 5 and infected for d to d + 5 years at time t is

(4)

where S 1(a,d,t,5) is now the survivorship ratio that corresponds to additional mortality
between time t – 5 and t of women aged a to a + 5 and infected for d to d + 5 years (at time
t). These ratios can also be used to represent the infection and subsequent survival of
individuals who become infected during the projection interval:

(5)

The number of births between time t – 5 and t from HIV-negative mothers and mothers who
have been HIV positive for d to d + 5 years at the time of birth, respectively, B0(t – 5,5) and
B1(d,t – 5,5), are also estimated as in the single-state CCMPP, that is, by applying their
respective period age-specific fertility rates to the average number of women in a given age
group and state at the beginning and end of the projection interval. But births from HIV-
positive women require further distribution between HIV-negative and HIV-positive births,
which is accomplished here through the application of a duration-specific vertical
transmission rate, V(d,t – 5,5) to B1(d,t – 5,5). Finally, the proportion of births that survive
to time t is estimated separately for each sex, using, as in the single-state CCMPP, a fixed
sex ratio at birth s and a survivorship ratio from birth to age group [0,5[, though with
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different ratios for the two categories of HIV status at birth. For women, the size of the first
age group of those who are HIV negative is therefore represented as

(6)

whereas the size of the first age group in the first HIV-duration state is represented by

(7)

Empirical Regularities and Model Reduction
The foregoing multistate model improves on the single-state CCMPP’s representation of
population dynamics in high HIV-prevalence populations, and entirely specified by Eqs. (3)
to (7), the model is the least expansion of the CCMPP that provides for sex-, age-, and HIV-
duration variations in survival and fertility. Such an improvement obviously comes at the
expense of additional parameters to be estimated, and a model is more attractive for practical
applications only insofar as reliable estimates of these parameters are available. In addition
to the single-state model parameters, this model requires estimates of age-specific incidence
ratios, I(a,t,5); age- and duration-specific survival ratios, S1(a,d,t,5); age- and duration-
specific female fertility rates, F1(a,d,t,5); and duration-specific vertical transmission rates,
V(d,t,5). Even these limited data requirements are not easily met for many of the world’s
highest-prevalence populations, which are located in sub-Saharan Africa.

One of the classic demographic approaches to such data limitations has been to derive from
the empirical regularities observed in populations with reliable data a model representation
that could be substituted for missing, incomplete, or inaccurate data in other populations.
This time-honored tradition is followed here to provide guidance in the choice of the
parameters of the foregoing model when some parameters cannot be estimated reliably from
available data. An examination of the epidemiological literature suggests that a few features
of the HIV epidemic should apply to most populations. Survival from HIV infection has, for
example, been studied across many populations, and the distributions of the progression
time from HIV infection to AIDS and from AIDS to death appeared roughly similar until the
introduction of highly active antiretroviral therapies (HAART). The median time from HIV
infection to AIDS was consistently estimated at slightly under 10 years, and the median
survival time to AIDS, at about 1 year (Alcabes et al. 1993; Anzala et al. 1995; Morgan et
al. 2002; Moss and Bacchetti 1989; Schwartländer et al. 1999). Several studies have
reported shorter survival times to HIV infection in African populations (Nunn et al. 1997;
Sewankambo et al. 1994), but unless higher mortality from other causes is properly
accounted for, these shorter survival times cannot be clearly attributed to a faster
progression of the infection. There do not appear to be gender differences in survival to
infection once age at the time of infection, the demographic factor best shown to affect
survival, is adjusted for (Gregson and Garnett 2000).

The values of the age- and duration-specific survival ratios, S1(a,d,t,5), can be calculated
from the distribution of survival time after infection as the ratio of the person-years expected
to be lived between duration d and d + 5 to the person-years expected to be lived between
duration d – 5 and d according to that distribution (see the Appendix for more details).
Default values, identical for both sexes, were so estimated from distributions with median
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survival times ranging from 8 to 12 years for adults, depending on the age at infection
(combined with other causes of death, the median survival time after HIV infection is
shorter). For HIV-positive births, the default survival ratios to age groups 0–4 and 5–9
correspond to a median survival time of just over 3 years (Chin 1994).

The choice of sex- and age-specific incidence ratios is more complex, foremost because
incidence rates, rarely measured directly, are most often estimated from routinely collected
prevalence data and “back calculation” methods (Brookmeyer and Gail 1994). The sex and
age patterns of the prevalence of HIV display much regularity, at least across sub-Saharan
African populations, typically peaking in the late 20s for females and late 30s for males.
Insofar as the survival time following infection is relatively invariant, it is reasonable to
assume that sex and age patterns of HIV incidence also share similarities across these
populations. The level of incidence, however, can vary abruptly from one population to the
next, even within short distances. Variations are due, in part, to differences in timing. As I
discussed earlier, the early trends in the incidence of HIV appear to follow a reasonably
similar pace over time when heterosexual intercourse is the dominant mode of HIV
transmission (Stoneburner et al. 1996). In neighboring populations, too, incidence levels can
be different when the epidemic is still at its onset in a given population, while it has already
“matured” in another. But differences in timing do not tell the whole story. For reasons that
are not yet fully understood, the epidemic appears to approach saturation at widely different
prevalence levels across populations (Caraël and Holmes 2001).

To account for these interpopulation differences and similarities, the age- and time
dependence of sex-specific incidence ratios can be separated as follows:

(8)

where Γ(t – t0,5) is the trend in the HIV epidemic as a function of time since the onset of the
epidemic (time t0, hence, Γ(t – t0,5) = 0 when t ≤ t0), H is a scale factor of the HIV epidemic
in this particular population, and J(a,5) is the sex- and age-specific scaling factor of
incidence for women aged a to a + 5 relative to women aged 25 to 29 at time t (thereafter
female age-specific relative incidence ratio). Male incidence ratios can be similarly
decomposed with the same values of Γ(t − t0,5) and H, but with different values of J(a,5).
To avoid overdetermination, J(25,5) for women must be a given constant value, thereafter
equal to 1.

This decomposition of the incidence ratio brings forth three different types of parameters.
First, when data on incidence trends over time are unavailable from the population of
interest, a population-invariant timing function can be used as a default, Γ(t − t0,5), which
requires only an estimate of t0. Past experience suggests that from the onset of the epidemic
to its peak, the gamma curve is an appealingly simple possibility. Second, no such default
values are available from the literature for the sex and age patterns of incidence. A few
studies have produced estimates of incidence by age (e.g., Boerma et al. 1999; Kamali et al.
2000; Kengeya-Kayondo et al. 1996; Wawer et al. 1994), but these estimates are derived
from a small number of seroconversions. A more robust pattern is estimated next by pooling
a large number of observations from different East African populations that are related to
age-specific incidence. When specific data are unavailable for the population of interest,
using the pattern estimated from these pooled observations appears preferable to
“borrowing” the data from a single one of the aforementioned studies. Third, the estimates
of t0 and of H must also be estimated, but here specific estimates are needed for each
population.
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Turning to perinatal infections, vertical transmission rates have been found to vary across
regions (European Collaborative Study 1999; Gibb and Tess 1999; Leroy et al. 2001), which
probably reflects differences in birth delivery environments. As for fertility rates, the
crossover of age-specific fertility rates for HIV-positive and HIV-negative women
(discussed earlier) can be accounted for with the following decomposition:

(9)

where F1(a,d,t – 5,5) is the period fertility rate of women aged a to a + 5 and HIV-positive
for d to d + 5 years; F 0(a,t – 5,5) is the fertility rate of the HIV-negative women of the same
age, both between time t – 5 and t; G(d,5) is an age-independent, duration-specific fertility
impairment coefficient; and E(a,5) is an early-selection fertility coefficient accounting for
the sexual activity and related higher fertility of the 15- to 19-year-old HIV positives (equal
to 1 except when a is equal to 15, fertility being assumed to be null below age 15). Even if
we assume that the effects of HIV infection on fecundability, like its effect on survival, are
likely to be similar across populations, the same does not hold for the impact of HIV on
fertility rates in that fecundability is only one of the determinants of fertility. The effects on
fertility can be expected to be similar only across populations that are comparable with
respect to the other determinants of fertility, foremost, marriage and contraception.
Likewise, significant differences in the onset patterns of reproductive behavior across
populations would likely invalidate the assumption that the selection effect for women under
age 20 is similar across these populations.

ML Estimation
From the foregoing review, standard patterns for the J(a,5), V(d,5), E(a,5), and G(d,5)
parameters appear plausible for sub-Saharan African populations that are not too
heterogeneous with respect to marriage, contraception, and the onset of reproductive
behavior. The corresponding values are not directly available in the literature, however. The
derivation of these standards builds on the approach developed by Ewbank’s (2002) study of
Alzheimer’s disease. Central to this modeling approach is the representation of the dynamics
of disease and host populations, which allows the model to predict population-based values
reported in the literature, with the predicted values related to the parameters of interest. The
most common data, for instance, are the number of HIV-positive and HIV-negative persons
in a tested population. Starting with a given set of parameter values, the model predicts these
numbers in the population and estimates the likelihood of finding the observed number of
HIV-positive persons among those tested. If π(a,5,t) is the proportion of HIV-positive
among the age group a to a + 5 at time t, the likelihood of finding P(a,5,t) positives among
N(a,5,t) those aged a to a + 5 tested at time t is estimated with a binomial distribution:

(10)

Other usable proportions reported in the literature include HIV-positive babies among all
babies tested after birth to HIV-positive mothers, HIV-positive women among pregnant
women tested, seroconversion during a follow-up of HIV-negative people, and deaths during
a follow-up of HIV-positive people.

The empirical database was constituted through a review of the available data from East
Africa. To sustain the assumption of a common “standard,” the geographic scope of the
review was limited to countries stretching eastward and southward from Uganda and Kenya
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to Zimbabwe. Although South Africa, Botswana, and Namibia now exhibit some of the
highest prevalence rates in the world, these countries were not included because their levels
and age patterns of fertility differ substantially from those of East Africa, suggesting a
different onset of reproductive behavior that would lead to a different age pattern of HIV
incidence. Also implicit in the derivation of standard patterns is an assumption of relatively
stable reproductive behaviors over time, which seems acceptable, to date, for most
populations in the region (e.g., Kamali et al. 2000). Rwanda and Mozambique were
excluded, however, because periods of war in these two countries do not appear compatible
with the foregoing assumption.

The best empirical data are typically provided by relatively small, not necessarily nationally
representative, population-based studies. Eleven such populations were identified within the
aforementioned geographic restrictions (Table 1), together providing over 46,000 outcomes:
HIV-test result, seroconversion, and death. From any initial set of parameter values, all the
π(a,5,t) proportions corresponding to these 46,000 outcomes can be estimated; the
logarithms of the likelihood from all the different population/age group/quantity can then be
added to compute the total log-likelihood corresponding to the initial values. In each of the
11 populations, the vital rates of the HIV-negative individuals and the onset year of the
epidemic are estimated from ancillary data (UN 1998, 1999) and treated as fixed. The
varying parameters are the J(a,5), V(d,5), E(a,5), and G(d,5) patterns and one specific value
of H per population. Their values are modified by iteration to select the set that maximizes
the all-population likelihood.

Tests of significance were conducted to check whether all parameters contributed to
improve the model’s fitness. The model failed to be significantly improved by, for instance,
the distinction of differential fertility impairment for 10 to 15 years’ duration and for the
duration of 15 years and over, and the number of G(d,5) factors was reduced from four to
three. The model with four duration-dependent vertical transmission rates, V(d,5), did not
significantly outperform a model with a single vertical transmission rate. Although duration-
dependence is likely, this effect is difficult to isolate from data reported to date. Finally, too
few data from these populations are available to estimate age-specific relative incidence
ratios beyond age 60. Ultimately, ML estimation yields one value of the HIV-scale
parameter H for each of the eight populations, and one standard value for each of 22
epidemiological parameters, including 17 sex- and age-specific relative incidence ratios, J(a,
5), for five-year male and female age groups 15–19 to 55–59. The ratios for the 60- to 64
year olds are assumed to be half the ratios for the 55- to 59 year olds, and no incidence is
modeled after age 65. The other five standard values so selected are those of the three
duration-specific fertility impairment coefficients, G(d,5); the early-selection fertility co-
efficient, E(15,5); and a single vertical transmission rate, V.

RESULTS
ML Estimates

The ML estimation of the 22-parameter values that optimize the fitness of the model are
shown in Table 2, with their respective confidence intervals (CI). The ML estimates of the
female age-specific relative incidence ratio display the expected single-peak pattern of HIV
infection (see Figure 2). The confidence intervals around the estimates of J(a,5) are
relatively narrow at young ages but become broader at older ages because fewer people are
tested at these ages. The female age-specific relative incidence ratio peaks among the 20- to
24 year olds at the end of the five-year interval during which infection occurs, suggesting
that HIV incidence peaks early, around age 20 for women, in these populations. The male
age pattern peaks 5 to 10 years later than the female age pattern and does not taper off as
quickly as the female pattern. As a result, from age 25 to age 50, male age-specific relative
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incidence ratios are higher or equal to same-age female ratios, while female ratios are higher
at younger ages.3

The vertical transmission rate is estimated from only a small number of observations from
these populations. The CI is thus large (29.7% to 47.8%), but the ML estimate (38.5%) is
within the 25%–40% range typically reported in African populations (Working Group on
Mother-To-Child Transmission 1995). The ML estimates also confirm the higher fertility of
HIV-positive females before age 20. Among the 15- the to 19 year olds, the fertility rate of
the HIV positives would be 67.2% higher than that of the HIV negatives if HIV infection
had no impact on fertility (CI: 49.2% to 86.5%). Because the fertility impairment for
females who are infected for fewer than five years is estimated as 15.2% (CI: 9.1% to
20.2%), the overall fertility estimate is 41.8% higher for the 15- to 19-year-old HIV
positives than for same-age HIV negatives. Fertility impairment increases significantly 5–9
years after infection (64.3%, CI: 55.0% to 72.4%) and appears to increase further 10 years or
more after infection (79.7%, CI: 39.3% to 92.2%), but the difference between the last two
parameters is statistically insignificant. The drastic impairment 5 or more years after
infection is likely a result of more than the biological impact of infection on fecundability
and reflects the increasing morbidity of HIV-positive women and the increasing proportions
of widows among them inasmuch as many were infected by their husbands.

Sensitivity Analyses
The confidence intervals reported in Table 2 underestimate the actual uncertainty sur-
rounding the ML estimates. The reason is that some parameters of the model are obtained
from ancillary data and treated as fixed, that is, estimated without uncertainty, whereas no
underlying value can be known exactly. Treating all parameters as unknown and to be
determined by ML estimation is an unattractive alternative, however, because some of the
information regarding the estimates cannot be entirely incorporated into the empirical
database of ML procedure (e.g., the typical J-pattern of age-specific mortality among HIV-
negative individuals). To the extent that some estimation power would then be diverted to
estimate parameters that are better known that we can specify empirically, this alternative
approach would yield unnecessarily large CIs for the parameters of interest.

Assigning values from ancillary data to the parameters for which the relevant information
cannot be comprehensively specified and holding them constant in the ML procedure is
perhaps most problematic with regard to incidence trends over time. Clearly, these trends are
not known exactly in all populations (for an ML approach to estimate these trends, see
Salomon and Murray 2001). Although one might want to treat these trends as part of the
unknown features of the model, the functional space within which to maximize the
likelihood of the curve can hardly be specified.4 For the purposes of this population-
dynamics model, however, the incidence trends per se are not needed; rather what needs to
be estimated is the duration distribution of HIV infection within sex and age groups. The
faster the epidemic is growing, the “younger” the duration distribution, and because the
impacts of both mortality and fertility increase with the duration of infection, the lesser the
mortality and fertility differences between the HIV-negative and HIV-positive populations.
Although the exact shape of the incidence trends over time in all the populations considered
here may be unknown, what is known is that incidence was growing from the onset of the
epidemic to at least the early 1990s, but at a subexponential rate. Up to a few years past the

3Subsequent to the analyses reported here, a similar gender difference in HIV age patterns in Zimbabwe was reported by Gregson et
al. (2002).
4An attempt to treat the curve as a generalized gamma distribution with variable parameters—which allow for a variety of shapes
from the standard gamma to a Weibull, an exponential, or a log-normal distribution—did not prove successful, probably because of
the too-limited analytical power provided by the empirical record from these 11 populations.
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incidence peak, the duration distribution can hence be described as intermediate between the
distributions that would be yielded by two extreme cases: constant incidence rates (uniform
distribution) and exponentially growing incidence rates.

Table 3 compares the ML estimates obtained when the incidence curve is assumed to follow
a time-invariant, a gamma, or an exponential curve (values outside the CIs obtained with the
gamma curve are shaded.) As expected, the duration-specific fertility impairment
coefficients are strongly dependent on the assumed shape of the incidence curve, whereas
the ML estimate of the vertical transmission rate, assumed to be duration independent, is
unchanged. Under the assumption of an exponential growth in incidence, the model yields
lower estimates for the fertility impairment coefficients, that is, a stronger effect of infection
on fertility. Because the exponential curve implies a shorter duration, on average, than does
the gamma curve and because fertility impairment increases with duration, the model
estimates stronger effects of infection on fertility to match the reduced fertility observed
among the HIV-positive population.

Similarly, because point prevalence in the 15–19 age group depends only on incidence in the
previous five years, but depends on incidence trends stretching 10 more years backward in
the 25–29 age group, the ML estimates of age-specific relative incidence ratios decrease for
the youngest age groups when incidence is assumed to grow exponentially. Point prevalence
estimates at older ages being composites of past incidence over a longer period, the
estimates of the relative incidence ratios become less affected by the assumed shape of the
incidence curve with age. Perhaps less intuitive is the increase of the estimated early-
selection fertility coefficient with the exponential, rather than gamma, curve. This increase
can likely be related to the lower estimates of the relative incidence ratios for the 15- to 19-
year-old females, suggesting the later onset of sexual activity, on average, and hence a
stronger difference in sexual behavior between HIV-positive and HIV-negative women in
that age group. Although the CIs corresponding to the uniform and exponential distribution
can be estimated, they are not useful in quantifying the total variance of the model (i.e.,
including the uncertainty about the exact shape of the incidence curve) because they
correspond to two extreme cases that do not actually represent incidence trends in any actual
population. Without being more specific, one can simply conclude from these simulations
that the CIs reported in Table 2 are too narrow mostly for the fertility coefficients and the
relative incidence ratios of the youngest age groups.

Another aspect of the model variance not incorporated into the CIs of Table 2 relates to the
assumed homogeneity of the selected populations with respect to the behaviors that affect
the model parameters, foremost, sexual behavior. To study the model’s sensitivity to this
restriction, the ML estimates derived from the 11 populations selected here were compared
with those derived after excluding the data from Zimbabwe (where the prevalence of
contraceptive use is higher) and three more urban populations (Bujumbura, Fort Portal, and
Lusaka), hence leaving a smaller, presumably more homogeneous, set of 7 populations (full
results not shown). The only ML estimates from the reduced set that are not within the
confidence interval of the ML estimates from the full set are the relative incidence ratio of
the 15- to 19-year-old females (.690 in the smaller sample vs. CI: .545 to .650 in the full
sample) and the early-selection fertility coefficient (1.263 in the smaller sample vs. CI:
1.492 to 1.865 in the full sample). (The estimate for 15- to 19-year-old males is also reduced
but not significantly so.) The direction of the change suggests that, on average, early sexual
behavior would be less common—or prophylactics more commonly used— in Zimbabwe
and the three urban centers, and again, the early-selection effect varies in the opposite
direction. Differences in the ML estimates derived from the two sets of populations confirm
that some population heterogeneity remains in spite of the geographic restriction imposed to
select the 11 populations. The size of those differences suggests, however, that this
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heterogeneity constitutes a relatively small, if unaccounted for, component of the model’s
overall variance.

Simulations of Epidemic and Population Dynamics
With the ML estimates from Table 2 taken as default parameter values, model simulations of
the interactions of the epidemic and population dynamics require only the standard
demographic input of single-state CCMPP and two-point estimates of adult prevalence (or
an estimated onset date of the epidemic and a single-point prevalence estimate).5 A
simulation for a typical East African population (demographic data taken from the East
Africa totals in UN 1999) reaching exactly 20% adult seroprevalence 15 years after the
onset of the epidemic illustrates the dynamic nature of the relationship between HIV and the
host population.6

First, the simulation shows the changing age pattern of mortality as AIDS-related deaths
account for gradually increasing proportions of all deaths. Although the HIV epidemic
clearly reduces life expectancy at birth, the mortality impact remains concentrated in
selected age groups. For males (see Figure 3a), age-specific mortality rates begin to increase
substantially 10 years into the epidemic, mostly for ages 30 to 60. The changes are even
more spectacular for females (see Figure 3b), for 10 or more years into the epidemic, they
produce an unusual pattern of mortality between ages 20 and 50. The impact of the epidemic
on females is more visible than it is on males because female mortality from other causes is
lower than it is for males. First, the incidence of HIV for females peaks at younger ages than
it does for males when other-cause mortality is lower; moreover, past this peak, the
incidence for females declines more rapidly with age than it does for males. None of the
existing model age patterns of mortality can capture the changes illustrated in Figure 3,
especially for females. These results are consistent with earlier estimates of changes in
mortality during the 1980s derived from national-level data by Timæus (1998).7 Timæus
reported a two- to threefold increase in adult mortality rates, similar to what can be found by
comparing the periods 5–10 years after onset and 15–20 years after onset in Figure 3. The
changes in the age patterns and the gender differences that Timæus (1998:S22, figure 2)
estimated for Zambia are also qualitatively similar to those reported here.

This simulation also illustrates the epidemic’s impact on fertility because of the reduced
fertility of HIV-infected individuals. The ML estimations reported earlier reveal the strong
duration-dependence of the fertility impact of infection, suggesting that the population-
attributable change (PAC) in fertility should accentuate as the epidemic ages, even with
stable prevalence levels. The results of the simulation, shown in Table 4, confirm this
expectation. The estimated PAC 20 years after the onset of the epidemic (–0.408) is
extremely close to Zaba and Gregson’s (1998) earlier estimate of –0.4 times HIV prevalence
among adults, which they derived from data from the early 1990s. The simulation shows,
however, that the PAC keeps increasing to –0.459 times prevalence five years later.

5As in Epimodel, the onset date is defined here as the year in which widespread transmission began, which is believed to be the mid-
to late-1970s in most of the East African nations. A more sophisticated method of obtaining HIV prevalence over time is presented in
UNAIDS (2002).
6This simulation uses the ML values of the parameters to provide a deterministic projection. Stochastic projections can also be derived
from the parameters’ CIs, assuming the parameter values to be normally distributed within the 95% CIs. The distribution of outcome
values can be derived from repeating projections, each of which provides the outcomes corresponding to parameter values randomly
selected within their respective normal distribution.
7These results also replicate some earlier findings reported by Boerma, Nunn, and Whitworth (1998), but this replication provides
little external validation to the extent that the community-studies data used by Boerma et al. overlap extensively with the data used
here.
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The dynamics of HIV and its host population also have consequences for monitoring
prevalence trends in the general population from the most common convenience sample
used for this purpose: pregnant women attending antenatal care clinics (ANC). Existing
adjustments of ANC-based data rest on static or stable population models (e.g., Nicoll et al.
1998; Zaba et al. 2000), but the results of the simulation illustrate how the bias can be
expected to change over time (see Table 5). ANC-based data slightly underestimate the
prevalence of HIV in the adult female population during the first 15 years. ANC-based
estimates are initially close to the both-sexes adult prevalence, however, because male adult
prevalence is lower than female adult prevalence in this simulation. As is shown in Figure 2,
male and female age patterns of incidence cross over in the mid-20s, and the all-adult age-
sex ratio depends on the exact population dynamics. For the first 25 years of the epidemic,
this simulation yields sex ratios that decline to about 1.3 females per male among 15- to 50-
year-old HIV positives, values close to the median of those reported in populations across
the region (Gregson and Garnett 2000).

Beyond the first 15 years, the prevalence from ANC data becomes seriously biased
downward and even lower than the prevalence among adult males. After 25 years, the
prevalence among ANC patients is 30% lower than among women aged 15 to 50. The
increasing bias over time has less to do with changes in seroprevalence, which remains here
at similar levels 15 to 25 years after the onset, than with the increasing average duration of
the infected population and the increase in fertility impairment with duration. The simulation
demonstrates the dynamic interactions of HIV and its host population, underscoring the need
to take into account the timing of the epidemic to estimate demographic or epidemiological
measures correctly.

CONCLUSIONS
Taking into account the special needs and data limitations in many of the populations that
are the most affected by the HIV epidemic, the model developed here provides a
parsimonious representation of HIV and population dynamics that focuses on the sex, age,
and HIV-duration variations in survival and fertility. The representation of HIV and
population dynamics constitutes a clear improvement over existing models that incorporate
the demographic impact of HIV/AIDS by adjusting externally the vital rates required in
standard demographic projections. The “internalization” of HIV infection in a demographic
model solves a number of extant limitations with external procedures, but also provides
tools to make the best use of the data that are becoming available from some
nonrepresentative samples, such as ANC patients. This advantage was illustrated here by an
ML procedure that fit the model to over 46,000 observations reported from various samples
of general populations in East Africa.

One immediate benefit of the ML estimation is to provide default values for all but two of
the parameters that this model adds to the input requirements of a standard, single-state
CCMPP. In some populations, estimates of the parameter values may be available to replace
the ML standards as default values. In any population that is demographically comparable to
the populations used in the ML estimation, a preferable approach would be to combine the
available data and the ML estimates, using the latter as a prior set in empirical Bayes
methods (Stolzenberg and Melles 1989). For instance, if test results were available by age
and sex for a random sample of the population, the model could be used to predict the age
and sex pattern of prevalence, given the overall prevalence among adults. Although the
exact age pattern obtained from that population is subjected to sample variability, empirical
Bayes methods with the model prediction as a prior yields improved estimates (greatly
reducing standard errors, though at the possible cost of introducing a small bias) under the
simple condition of exchangeability (Greenland 2000).
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For populations in the region that fall into the least-favorable data situations, full
demographic projections by sex, age group, and duration of HIV can be prepared using the
ML estimates as the default, the standard demographic inputs of the CCMPP, an estimated
onset date of the epidemic, and a later prevalence point estimate (or two point estimates).8

This parsimony is clearly achieved by a high model aggregation. Although the model could
readily be expanded, the added complexity would provide no benefit as long as the empirical
record does not allow for estimation of the additional parameters. One example provided
here is that a certain number of parameters (e.g., the duration-specific vertical transmission
rate) had to be lumped together for lack of statistical power to distinguish among them from
the available data. Another example is the desirability of breaking age, time, and duration
intervals into single years, which is not possible at the moment with study results typically
reported in five-or, more rarely, three-year intervals.

Even given the limited input demands of the present model of HIV and population
dynamics, using this model for demographic forecasting has several difficulties. The first
concerns the uncertainty about the temporal trends of the epidemic, G(t,5). Although the
gamma curve fits past data reasonably well, given its simple parametric form, much less is
known about the future pattern of the epidemic (see UNAIDS 2002, for a more recent
approach to forecasting HIV trends). A second uncertainty concerns the future availability to
these populations of therapies that would affect other parameters in the mid- to long term,
such as the vertical transmission rate, V(d); the impact of infection on fertility, G(d,5); and
most important, survival to HIV infection, S1(a,d,t,5).

Another important uncertainty concerns age- or sex-specific changes in sexual behavior that
may, in turn, modify the age-and-sex pattern of incidence and the possible heterogeneity of
behavior across populations that may limit the estimates’ relevance to other populations. The
assumption of relative stability appears reasonable in respect to the past couple of decades
(Kamali et al. 2000), but becomes problematic when it is extended into the future (Fylkesnes
et al. 2001). Reports that the epidemic induced faster behavioral changes among the
youngest cohorts and delayed the onset of sexual activity would imply, as shown in the
Sensitivity Analysis section, that the risk of incidence of those under age 20 may decline
relative to the 20- to 24 year olds and that the early-selection effect on fertility may increase
over time.

In high-fertility populations, fertility levels constitute the main determinant of future
population dynamics, and the main uncertainty here is the independent impact that the
epidemic may have on future fertility levels. If fertility levels were unchanged by the HIV
epidemic, these populations would have continued to grow even under different mortality
and prevalence conditions (Bongaarts 1996). But fertility is clearly affected by the HIV
epidemic, given that HIV-positive women have significantly lower fertility rates than do
their HIV-negative counterparts. The simulation presented here suggests that 25 years into
the epidemic, a 21% adult female prevalence can reduce total fertility by nearly 10%
through the reduced fertility of HIV-positive women alone. This seemingly small impact on
fertility has been shown to outweigh the mortality impact of the epidemic on future growth
(Heuveline 1997). Moreover, the impact of the epidemic on the majority of people of
reproductive ages who remain HIV negative is still largely unknown. As yet, there are few
data, although there is reason enough to suspect that the strains imposed on the noninfected
population in high-prevalence areas (care of sick family members, fostering of orphaned
relatives) may depress their own fertility (Ainsworth, Filmer, and Semali 1997; Gregson
1994; Grieser et al. 2001; Heuveline 1997). If this is so, the empirical model provided here

8Available on request, a population projection after the onset of HIV can readily be implemented on a spreadsheet, using the model
equations and modifiable default values of the parameters.
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confirms that contrary to current official projections that account only for the mortality
impact of the epidemic, population decline within a couple of decades is a real possibility.

APPENDIX
If mortality is represented as depending only on exact age, the size of an age group at time t
is simply a function of the size and exact age distribution of a younger age group at time t −
k (for all ages above age k at time t − k):

(1a)

where W(a,k,t) is the number of women aged a to a + k at time t, w(x − k,t − k) is the number
of women of exact age x − k at time t − k, and μ(x + y – k,t + y – k) is the instantaneous
female mortality rate at age x + y – k and time t + y – k.

The single-state formulation of CCMPP simulates survival during a k-year projection
interval [t − k,t[ separately for each sex and each k-year age group by applying survival
ratios, S(a,t,k), to the number of women aged [a – k,a[ at time t − k:

(2)

Estimating W(a,k,t) as the simple product in Eq. (2), rather than the integral sum of products
in (1a), in effect ignores the within-age-group distribution.

In its usual “female-dominant” form, the CCMPP then derives the number of births in each
projection interval [t − k,t[ from female period fertility rates specific to each age group [a,a
+ k[, F(a,t − k,k). The size of the youngest male and female age groups (under age k at time
t) is estimated by applying to the number of births since time t − k, a maternal-age- and time-
invariant sex ratio at birth s and another survival ratio from birth to time t, S(0,t,k):

(2a)

where B(t − k,k) is the number of births between time t − k and time t. Estimating W(0,k,t) as
the simple product in Eq. (2a) now ignores the actual distribution of births over time. The
size of the age group would again be more accurately described as an integral sum of
products because it should depend on the exact birth distribution:

(2b)

where b(u) is the number of births at time u. The number of births B(t − k,k) is generally
obtained by adding the number of births produced by each maternal age group in the period.
It requires estimating the size of each female age group throughout the period, which can be
approximated from the size of the age group at time t − k and at time t (survivors from the k-
year-younger age group at time t − k):
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(2c)

where F(a,t − k,k) is the fertility rate of women aged a to a + k in the period t − k to t, and
B(a,t − k,k) is the number of their births between time t − k and time t. The approximation
would be exact only if the size of each age group changed linearly within the time interval
and is numerically acceptable in most typical patterns of population change. Migration can
readily be added to the closed-population formulation.

To derive the basic equations of the five-state model, it is again useful to start from the
continuous representation of HIV incidence as a function of exact age, and mortality and
fertility as two functions of exact age and duration since infection. In this representation, the
number of HIV-negative women aged a to a + 5 at time t, W 0(a,5,t), depends on both
survival and HIV incidence:

(2d)

where w0(x – 5,t – 5) is the number of HIV-negative women aged x – 5 at time t – 5, and
μ0(x + y – 5,t + y – 5) is the mortality rate and i(x + y – 5,t + y – 5) is the incidence rate that
these women face at age x + y – 5 and time t + y – 5. Eq. (2d) is similar to Eq. (1a) except
that the distribution of women at time t – 5 is now modified by another exponential function.
Because the CCMPP assumes that the exact within-age-group distribution is negligible
numerically, the survival of each five-year cohort of HIV negatives can still be summarized
by a simple survivorship ratio, S 0(a,t,5):

(2e)

Moreover, if the within-age-group heterogeneity can be assumed to be unimportant with
respect to incidence, as well as to mortality, the decline in the cohort size that is due to HIV
incidence can be represented by a similar ratio:

(3)

where I(a,t,5) represents the ratio of women aged a – 5 to a at time t – 5 who would be HIV
positive at time t if they were to survive the risk of death between time t – 5 and time t.

The additional mortality rate of HIV negatives is simulated here as a function of exact
duration z, but also as a stepwise function of age x (a ::: x < a + 5) at time t, denoted μ1(a,
5,z,t). The number of women aged a to a + 5 and who are infected for d to d + 5 years at
time t, W1(a,d,5,t), thus depends on the number of women who are infected at time t – 5 and
on their survival in spite of both risks of mortality:
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(3a)

where w1(x – 5,z – 5,t – 5) is the number of women aged exactly x – 5 and infected for z – 5
years at time t – 5. (In Eqs. (9)–(11), d can take the values 5, 10, and 15 with the convention
that when it is equal to 15, the group is open-ended with respect to duration.)

Because μ0 does not depend on duration, the impact of mortality unrelated to infection can
be isolated and with the CCMPP assumption that the exact within-age-group distribution is
negligible numerically, summarized by the same survival ratio as before:

(3b)

Similarly, because the additional risk does not vary with age within the cohort, its impact
can be represented by another multiplier:

(4)

where S1(a,d,t,5) is now the survivorship ratio corresponding to additional mortality
between time t – 5 and t of women aged a to a + 5 and infected for d to d + 5 years (at time
t). While the ratio should depend on the actual duration distribution of women aged a – 5 to
a at time t – 5, the within-duration-state distribution is again assumed to be numerically
unimportant and, therefore, the ratio can be estimated from the age- and duration-specific
mortality rates alone.

The size of an age group in the first duration state (infected in the past five years) at time t
depends on the number of infections between time t – 5 and time t and on their survival to
time t:

(4a)

As with Eq. (3b), Eq. (4a) can be simplified because of the stepwise formulation of the age
dependence of the additional mortality:
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(4b)

where w*(x,t – u,t) is the number of women who would be aged x and infected for t – u years
at time t had they faced the same mortality as the HIV-negative population. Eq. (4b) is
similar to Eq. (2b), which represents the survival of births in the single-state model, and can
be simplified by a similar relationship:

(4c)

where W*(a,0,5,t) is the number of women aged a to a + 5 and infected for 0 to 5 years who
would be alive at time t had they faced the same mortality rates as HIV-negative women
during the past five years. Again, S1(a,0,5,t) should depend on the exact distribution over
time of new infections (adjusted for survival to non-HIV-related mortality), but when those
are uniformly distributed over time, it depends only on the duration-specific survival ratios
of that age group. W*(a,0,5,t) is readily obtained by comparing Eqs. (2) and (3):

(4d)

The size of an age group in the first duration HIV-positive state can thus also be estimated as
a simple product of ratios:

(5)

The number of births between time t – 5 and t, B0(t – 5,5) and B1(d,t – 5,5) from,
respectively, HIV-negative mothers and HIV-positive mothers for d to d + 5 years, are
estimated, as in the single-state model, by applying their respective period age-specific
fertility rates to the average number of women in a given age group and infection status at
the beginning and end of the projection interval. Births from HIV-positive women must be
distributed between HIV-negative and HIV-positive births by applying a duration-specific
vertical transmission rate, V(d,t – 5,5) to B1(d,t – 5,5). Finally, the proportion of births
surviving to time t is estimated separately for each sex, as in the single-state model, but also
for each HIV status at birth. For females, the size of the first age group of HIV negatives is:

(6)

whereas the size of the first age group in the first HIV-duration state is

(7)
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Figure 1.
Model Structure: Illustration for 30- to 34-Year-Old Women at the Beginning of the
Projection Interval
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Figure 2.
HIV-Incidence Ratio Relative to 25- to 29-Year-Old Women, by Sex and Age Group
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Figure 3.
Male and Female Age Patterns of Mortality With HIV Diffusion
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Table 2

Initial and Final Sets of Maximum-Likelihood Estimates for 22 Epidemiological Parameters, With 95%
Confidence Interval

Parameters Starting Values Ending Values Confidence Interval

Vertical Transmission Rate (%) 38.5 38.5 29.7 47.8

Early-Selection Fertility
 Coefficient 1.226 1.672 1.492 1.865

Duration-Specific Fertility
 Impairment Coefficients

 0–4 0.646 0.848 0.798 0.909

 5–9 0.646 0.357 0.276 0.450

 10 and above 0.646 0.293 0.078 0.607

Female Age-Specific Relative
 Incidence Ratio

 15–19 0.393 0.594 0.545 0.650

 20–24 0.864 1.325 1.239 1.412

 25–29 1.000 1.000 — —

 30–34 0.795 0.752 0.647 0.886

 35–39 0.580 0.635 0.482 0.762

 40–44 0.365 0.551 0.409 0.795

 45–49 0.317 0.356 0.159 0.544

 50–54 0.269 0.295 0.095 0.679

 55–59 0.134 0.246 0.087 0.627

Male Age-Specific Relative
 Incidence Ratio

 15–19 0.126 0.059 0.024 0.109

 20–24 0.498 0.583 0.483 0.684

 25–29 0.914 1.149 0.986 1.285

 30–34 1.000 0.963 0.773 1.130

 35–39 0.965 0.759 0.573 0.944

 40–44 0.929 0.769 0.554 1.007

 45–49 0.754 0.622 0.409 0.879

 50–54 0.578 0.417 0.120 0.773

 55–59 0.289 0.168 0.001 0.445

Notes: Starting values are set by finding the prediction a given parameter affects most and maximizing the likelihood function on the single
population that, among the 11 populations, provides most of the data on the corresponding prediction. When a prediction depends on one parameter
only and all corresponding data originate from a single population, the initial value does not change in the all-population maximization of the
likelihood function.
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Table 3

Sets of Maximum-Likelihood (ML) Estimates for 22 Epidemiological Parameters, With a Time-Invariant, a
Gamma, or an Exponential Incidence Curve

Parameters Time Invariant Gamma Exponential

Vertical Transmission Rate (%) 38.5 38.5 38.5

Early-Selection Fertility
 Coefficient 1.431 1.672 1.707

Duration-Specific Fertility
 Impairment Coefficients

 0–4 1.000 0.848 0.758

 5–9 0.478 0.357 0.303

 10 and above 0.332 0.293 0.238

Female Age-Specific Relative
 Incidence Ratio

 15–19 0.789 0.594 0.480

 20–24 1.486 1.325 1.114

 25–29 1.000 1.000 1.000

 30–34 0.744 0.752 0.718

 35–39 0.617 0.635 0.534

 40–44 0.684 0.551 0.549

 45–49 0.272 0.356 0.266

 50–54 0.323 0.295 0.375

 55–59 0.275 0.246 0.314

Male Age-Specific Relative
 Incidence Ratio

 15–19 0.075 0.059 0.054

 20–24 0.735 0.583 0.499

 25–29 1.318 1.149 0.975

 30–34 1.077 0.963 0.983

 35–39 0.731 0.759 0.682

 40–44 0.678 0.769 0.619

 45–49 0.733 0.622 0.558

 50–54 0.437 0.417 0.468

 55–59 0.152 0.168 0.168

Number of Observations 46,387 46,387 46,387

Log-Likelihood ‒587.2 ‒566.8 ‒675.8

Degrees of Freedom 33 33 33

Note: Figures that are shaded are those outside the confidence interval for the ML estimates when the gamma curve is used. In addition to the 22
parameters shown in the table, the degrees of freedom include 11 parameters for the scale of the epidemic in each of the 11 populations.
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Table 4

HIV Population-Attributable Change in Fertility

Fertility Indicators Year 10 Year 15 Year 20 Year 25

Total Fertility Rate, HIV Negatives 6.86 6.68 6.21 5.79

Total Fertility Rate, All Women 6.78 6.35 5.60 5.23

Fertility Reduction (%) 1.2 5.0 9.8 9.6

Adult Female Prevalence, 15–50 (%) 12.5 22.6 24.0 21.0

Ratio of Total Fertility Change to Adult
 Female Prevalence 0.096 0.220 0.408 0.459

Notes: These values result from a simulation of HIV and population dynamics in which the epidemic is assumed to have started in 1975 (year 0).
Average values for East Africa (1) from 1975 to 2000 were selected for all demographic variables. The scale of the epidemic were adjusted so that
with the maximum-likelihood values of all parameters shown in Table 2, seroprevalence reached exactly 20% of the adult population (aged 15–50,
both sexes) in 1990.
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Table 5

Prevalence of HIV Over Time Among Different Groups

Prevalence Year 10 Year 15 Year 20 Year 25

Adult Male Prevalence, 15–50 (%) 9.8 17.4 17.9 15.3

Adult Female Prevalence, 15–50 (%) 12.5 22.6 24.0 21.0

Sex Ratio Among HIV Positives 0.79 0.77 0.75 0.73

Prevalence Among ANC Patients (%) 12.7 20.3 18.4 14.4

ANC/Adult Female Ratio 1.02 0.90 0.77 0.69

Note: These values are the result of the same simulation of HIV and population dynamics as in Table 3.
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