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 Background Methods using cell line microarray and drug sensitivity data to predict patients’ chemotherapy response are 
appealing, but groups may be reluctant to release details to preserve intellectual property. Here we describe a 
case study to validate predictions while treating the methods as a “black box.”

 Methods Medical Prognosis Institute (MPI) constructed cell-line-derived sensitivity scores (SSs) and combined scores 
(CSs) that incorporate clinical variables. MD Anderson researchers evaluated their predictions. We searched the 
Gene Expression Omnibus (GEO) to identify validation datasets, and we performed statistical evaluation of the 
agreement between prediction and clinical observation.

 Results We identified 3 suitable datasets: GSE16446 (n = 120; binary outcome), GSE17920 (n = 130; binary outcome), 
and GSE10255 (n = 161; continuous and time-to-event outcomes). The SS was statistically significantly associ-
ated with primary treatment responses for all studies (GSE16446: P = .02; GSE17920: P = .02; GSE10255: P = .02). 
Dichotomized SSs performed no better than chance for GSE16446 and GSE17920, and categorized SSs did 
not predict disease-free survival (GSE10255). SSs sometimes improved on predictions using clinical variables 
(GSE16446: P = .05; GSE17920: P = .31; GSE10255: P = .045), but gains were limited (95% confidence intervals 
for GSE16446 and GSE17920 include 0). The CS did not predict treatment response for GSE16446 (P = .55), but 
it did for GSE17920 (P < .001). Coefficients of clinical variables provided by MPI for CSs agree with estimates for 
GSE17920 better than estimates for GSE16446.

 Conclusions Model predictions were better than chance in all three datasets. However, these scores added little to existing 
clinical predictors; statistically significant contributions were likely to be too small to change clinical practice. 
These findings suggest that discovering better predictors will require both cell line data and a clinical training 
dataset of patient samples.

  J Natl Cancer Inst;2013;105:1284–1291

A key step in realizing the promise of personalized medicine is to 
use patients’ genomic profiles and clinical characteristics to predict 
their response to possible treatments. The first person to develop a 
practical clinical assay to achieve this goal stands to reap substantial 
rewards, so there is some incentive to protect intellectual prop-
erty by presenting the resulting models as “black boxes.” Naturally, 
evaluating the performance of such black boxes presents consider-
able challenges.

One particularly appealing approach combines microarray 
and drug sensitivity data from cell lines to predict chemotherapy 
response. One high-profile attempt (1–4) had to be retracted (5,6). 
The Medical Prognosis Institute (MPI) has developed their own 
method to construct predictive models from cell line data (7). 
Our research groups agreed to evaluate this method, treating it 
as a black box. First, the M.D. Anderson authors independently 
chose datasets satisfying certain conditions (see Methods). The 
lists of drugs used to treat patients in the chosen datasets were sent 

to MPI. Second, MPI used their method to develop a predictive 
model for each drug and sent them back (coded in R). Third, the 
M.D. Anderson group independently applied the MPI model and 
compared the predictions to the actual patient outcomes to evalu-
ate the performance. The methods are described, both as an assess-
ment of the MPI models and as an example of how to evaluate 
black box predictors.

Methods
Dataset Selection
We used two sets of criteria to select datasets. The first set, 
provided by MPI to ensure the prediction model’s applicability, 
was as follows:

1. Gene expression profiles should be derived from an Affymetrix 
Human Genome U133A or U133 Plus 2.0 Array.
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2. Let Xmax  ( Xmin) denote the largest (smallest) log10 GI50 val-
ues for drug X (December 2010; http://dtp.nci.nih.gov/docs/
cancer/cancer_data.html). Define ∆GI50 to be X Xmax min ,− the 
range of GI50 values. Every drug should have ∆GI50  greater 
than 1 and at least 10 distinct GI50 values. If the National 
Cancer Institute (NCI) tested drugs using multiple dose 
ranges, we only used values from the dose range with the most 
trials.

The second set, determined by M.D. Anderson researchers for 
model evaluation, was as follows:

3. The dataset should contain at least 100 distinct patients with 
the same type of cancer.

4. All patients should have received the same treatment.
5. Clinical outcome information that defines treatment success 

should be available for all patients.

An ideal dataset would meet all criteria, with outcomes blinded to 
MPI (8). Because such datasets are not available, we chose valida-
tion datasets from the public domain. Note, however, that MPI 
did not use these datasets for model development. We searched 
GEO (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress) to find datasets satisfying the 
criteria. At GEO, we used the search string “100:10000[NSAM] 
AND CEL[SFIL] AND GSE[ETYP] AND (GPL96[ACCN] OR 
GPL570[ACCN] OR GPL571[ACCN] OR GPL1352[ACCN] OR 
GPL3921[ACCN]).” We manually checked whether the datasets 
contained at least 100 distinct patients (not arrays), what treatments 
the patients received, if all drugs met the criteria, and if clinical out-
comes were available.

Statistical Analysis
To make predictions, we sent the drug regimens to MPI. They 
applied methods described previously (7) to GI50 data and to 
Affymetrix HG-U133A microarray profiles (Genomics Institute 
of the Novartis Research Foundation, San Diego, CA) from the 
NCI-60 cell lines to develop predictive models. MPI sent the gene 
lists and R code specifying their “locked down” model to M.D. 
Anderson. We independently computed the continuous sensitiv-
ity score (SS) using the provided gene list, R code, and Affymetrix 
data. When clinical information was available, we combined it with 
the SS using MPI’s predefined coefficients to generate a continuous 
combined score (CS). Higher scores indicate higher probability of 
response to therapy.

In one dataset (Hodgkin’s lymphoma; GSE17920), patient sam-
ples from different centers exhibited a batch effect (9). We adjusted 
batch effects using COMBAT (10) and computed SS and CS using 
both original and batch-corrected gene expression values.

Evaluating Association Between Scores and Outcomes
We used the same procedure, depending on the type of treatment 
outcome, to evaluate SS and CS.

Binary outcomes. For binary outcomes, we used receiver oper-
ating characteristic (ROC) curves. We calculated areas under ROC 
curves (AUCs) and 95% confidence intervals (CIs). We used one-
sided Wilcoxon rank sum tests to see if the median score was higher 

in the success group. If the lower bound of the 95% confidence inter-
val of the AUC was less than 0.5, the evaluation ended, and we con-
cluded that the score-based predictions were not better than chance. 
Otherwise, we performed two further tests. First, to determine if the 
score added value after adjusting for clinical features, we fit multivari-
able logistic models. We calculated the scaled Brier score (11,12), and 
the integrated discrimination improvement (IDI) (13) to compare 
the clinical model with and without SS. (For CS, we compared the 
model with only CS to the clinical model.) Second, to assess potential 
improvement in a clinical setting where decisions are usually based on 
thresholds, we used cutoffs relevant to the specific disease to dichoto-
mize the continuous scores. We calculated point estimates and 95% 
confidence intervals for the paired false-positive rate (1 − specificity)  
and true-positive rate (sensitivity). We also computed point esti-
mates and 95% confidence intervals for the positive predictive value 
and negative predictive value for the dichotomized scores (14). (For 
detailed methods and R code, see the Supplementary Methods, avail-
able online.) Using the percentile of population treatment failure as 
the cutoff, we built a reclassification table to compare the predictive 
performance of SS to predictions made using only clinical features. 
We computed the corresponding 95% confidence interval for the net 
reclassification improvement (15). If a standard score [eg, the interna-
tional prognostic score for Hodgkin’s lymphoma (16)] was available 
to determine treatment outcome for a specific disease, we compared 
the performance of SS with this score.

Continuous Outcomes. For continuous outcomes, we calculated 
the Spearman rank correlation between SS and treatment outcome. 
We used the asymptotic t approximation to determine if the rank 
correlation differed from zero (17). If P was less than .05, the evalua-
tion was completed, and we concluded that the score did not predict 
patient outcome. Otherwise, we fit multivariable linear models to 
evaluate whether SS added value after adjusting for clinical features.

Right-Censored Treatment Outcomes. For time-to-event out-
comes, we fit Cox regression models using SS as the predictor. If P 
was less than .05, the evaluation was completed, and we concluded 
that SS did not predict survival. Otherwise, we fit multivariable 
Cox models to evaluate whether SS statistically significantly added 
value after adjusting for clinical features.

Evaluating the Combined Score
The CS from MPI incorporates age and stage with the same coef-
ficients for every type of cancer and thus assumes that these features 
contribute to every response in the same way. In contrast, we fit mul-
tivariable models to estimate effects of age and stage in each study.

We performed all analyses using the R statistical software 
environment, version 2.15.1 (R Foundation for Statistical Computing, 
Vienna, Austria). The gene lists, R code to generate sensitivity scores, 
and complete documentation underlying our results are available at 
http://bioinformatics.mdanderson.org/Supplements/MPI.

results
Dataset Searching
Using the search string (see Methods) in GEO in December 2010 
yielded 203 studies that contained at least 100 microarray “cel” 
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files from either Affymetrix Human Genome U133A or U133 Plus 
2.0 Arrays. A  list of all 203 studies is provided in Supplementary 
Table 1 (available online).

In GEO, one dataset is sometimes a subset of another; in this 
case, we only retained the larger dataset. Manually eliminating sub-
sets reduced the 203 datasets to 191. Of these, 102 (54%) contained 
gene expression profiles from patient tumor samples. The others 
included samples from healthy people or cell lines. Of the 102 tumor 
datasets, 74 (73%) contained data from at least 100 distinct patients. 
Only 39 of 74 (53%) contained clinical information giving the indi-
vidual treatment outcome for each patient, and only 24 of 74 (31%) 
specified the treatment that each individual patient received. In total, 
only 23 datasets in GEO meet criteria 3 through 5 for model valida-
tion purposes. A similar investigation in ArrayExpress yielded zero 
datasets satisfying these criteria. Detailed information about these 23 
datasets is given in Supplementary Table 2 (available online).

Next, we checked whether the ∆GI50  values for the drug regi-
mens used to treat patients in the 23 datasets satisfied criteria 1 and 
2 defined by MPI. The ∆GI50  values for drugs commonly used in 
cancer treatments are summarized in Supplementary Table 3 (avail-
able online). Many drugs commonly used in cancer therapy (eg, 
cyclophosphamide, tamoxifen) do not meet the criteria. In total, 
only three datasets (GSE16446, GSE17920, and GSE10255) sat-
isfied all five criteria. Moreover, when we contacted the authors 
of GSE10255 to obtain the clinical data, we learned that the ini-
tial publication (18) describing the GSE10255 dataset used an 
additional independent set of 92 patients that is not available in 
GEO. These 92 patients were treated the same as the patients in 
GSE10255, and disease-free survival (DFS) times were available. 
Hence, we obtained the DFS data, Affymetrix U133A data, and 

clinical covariables for these patients from the authors at St. Jude 
under a material transfer agreement and included these in our study.

Evaluation Results for GSE16446 (Breast Cancer)
The first dataset was GSE16446 (19,20) from a study of 120 breast 
cancer patients treated with epirubicin monotherapy, which satis-
fies the drug regimen criteria ( ∆GI50 1 33= . ). The primary endpoint 
was a binary outcome, pathological complete response. MPI pro-
vided both SS and CS; we present results for each.

The SS AUC was statistically significant; adding the SS to clini-
cal features gave limited improvement; the dichotomized SS was 
not better than chance. Figure  1A for study GSE16446 shows 
that the SS has an AUC statistically significantly greater than 0.5 
(AUC = 0.65, 95% CI = 0.52 to 0.79; P = .02). Multivariable logis-
tic regression suggests modest additional predictive ability of the 
SS after adjusting for clinical features (estimated coefficient = 0.03; 
P = .05). Comparing the overall performance of the clinical model 
with and without the SS, prediction accuracy improved when the 
SS was added; the scaled Brier score increased from 0.01 to 0.06 
(Table 1). However, the improvement was limited. The 95% con-
fidence intervals for the AUCs overlap for the models with the SS 
(0.53 to 0.82) and without SS (0.44 to 0.74). The IDI is not sub-
stantially greater than zero (IDI = 0.168, 95% CI = −0.12 to 0.46) 
(Table 1).

Because the SS was statistically significant in both univariable 
and multivariable analyses, we checked to see if it was likely to 
prove useful in a clinical setting where test results are often dichot-
omized. We used two reasonable cutoffs: 1)  the 86th percentile 
of all scores, which is the rate of pathological complete response 
for the patients in GSE16446; and 2)  the mean of all combined 

Figure  1. Receiver operating characteristic (ROC) curves of combined 
score and sensitivity score to predict pathological complete response 
and 95% confidence intervals of paired (false-positive rate [FPR], true-
positive rate [TPR]) and (positive predictive value [PPV], negative pre-
dictive value [NPV]) for sensitivity score with two different cutoff points 
for study GSE16446 (breast cancer). A) Ninety-five percent confidence 
intervals for (FPR, TPR) sensitivity score. The solid black line and orange 

line are the ROC curves for sensitivity score and combined score, 
respectively. B) Ninety-five percent confidence intervals for (PPV, NPV) 
sensitivity score. Cutoff points were 1) the 86th percentile (1 − the path-
ological complete response rate of GSE16446 study; red ellipses) and 
2) the mean (the standard cutoff point used by the Medical Prognosis 
Institute; blue ellipses). Gray area indicates the region for the prediction 
made by chance. AUC = area under the curve; CI = confidence interval.
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scores. We summarized the point estimates for true-positive rate, 
false-positive rate and (positive predictive value, negative predic-
tive value in Supplementary Table 4 (available online); we plotted 
their 95% confidence intervals in Figure 1. At the specified cut-
offs, the prediction models using the SS alone did not perform 
better than chance. In addition, using the 86th percentile as the 
cutoff, 16 patients (of 109 for whom clinical covariables were avail-
able) were reclassified, but the net reclassification improvement 
was not greater than zero (Table 2) (net reclassification improve-
ment = 0.17, 95% CI = −0.13 to 0.47).

The CS did not show statistically significant differences between 
pathological complete response and non–pathological complete 
response patients. The P value of the one-sided Wilcoxon test was 
.55, and the ROC curve is plotted in Figure 1A. The corresponding 
AUC is 0.51 (95% CI = 0.36 to 0.66).

Evaluation Results for GSE17920 (Hodgkin Lymphoma)
The second dataset, GSE17920 (9), included 130 patients with 
Hodgkin lymphoma who received a standard treatment called 
ABVD, which is a combination of four drugs: doxorubicin 
(adriamycin, ∆GI50 1 22= . ), bleomycin (∆GI50 2 29= . ), vinblastine  
(∆GI50 2 44= . ), and dacarbazine (∆GI50 1 004= . ). All drugs satisfy the 
criteria defined by MPI. The primary endpoint was a binary vari-
able indicating treatment success or failure.

The 130 tumor samples came from two sources: 100 from 
Vancouver and 30 from Nebraska. Treatment outcomes differ 
by source, with 82 of 100 successes in Vancouver and 10 of 30 in 

Nebraska (P < .0001) (Supplementary Table 6, available online). To 
measure the impact of batch effects on prediction, we computed 
the SS and CS using both the original gene expression values and 
the gene expression values adjusted for batch effects.

The SS AUC was statistically significant but equivalent to 
the International Prognostic Score (IPS) AUC; adding the SS to 
clinical features gave no improvement; the dichotomized SS was 
not better than chance. The ROC curves for both the original and 
adjusted SS are plotted in Supplementary Figure  1A (available 
online) (AUC = 0.62, 95% CI = 0.52 to 0.72 using the original gene 
expression values). The AUC was statistically significantly greater 
than 0.5 on the full data set (P = .02) and on the larger Vancouver 
subset (P = .02). It was not statistically significant on the Nebraska 
subset (Table 3). IPS is an existing clinical model, defined as the 
number of adverse prognostic factors present at diagnosis (16), 
which ranges from 0 to 7. Higher IPS indicates lower probability 
of a successful outcome. The ROC curve for IPS was plotted in 
Supplementary Figure 1A (available online); the AUC was also 0.62 
(95% CI = 0.52 to 0.72). Hence, the SS AUC was not statistically 
significantly different from the IPS AUC.

Multivariable logistic regression suggested no additional pre-
dictive ability of the SS after adjusting for patient clinical features 
(P  =  .31). Comparing the overall prediction performance of the 
clinical model with and without SS, the scaled Brier score stayed 
the same (Table 4). The improvement in prediction was not sta-
tistically significant. Neither the AUC changes nor the IDI were 
greater than zero (Table 4).

Table 1. Performance of the clinical features (age and stage) with or without sensitivity score, and combined score to predict treatment 
outcome for study GSE16446 (breast cancer)*

Model Brier scaled AUC (95% CI) IDI (95% CI)

Grade + size + age 0.01 0.59 (0.44 to 0.74) Baseline model
Grade + size + age + sensitivity score 0.06 0.67 (0.53 to 0.82) 0.168 (−0.12 to 0.46)

* AUC = area under the curve; CI = confidence interval; IDI = integrated discrimination improvement.

Table 3. P values of one-dided Wilcoxon rank sum test for different scores by treatment success and treatment failure group in study 
GSE17920 (Hodgkin’s lymphoma)*

Variable

Based on original GE Based on adjusted GE

All Vancouver Nebraska All Vancouver Nebraska

Combined score .0001 .0008 .59 .0004 .0008 .61
Sensitivity score .02 .02 .95 .06 .02 .95

* All indicates 130 patient samples from both Vancouver center and Nebraska center. Vancouver indicates 100 Vancouver patient samples only. Nebraska indicates 30 
Nebraska patient samples only. GE = gene expression.

Table 2. Reclassification table for the prediction performance without and with the sensitivity score for study GSE16446 (breast cancer)*

Grade + size + age

Grade + size + age + sensitivity score (NRI = 0.17; 95% CI = −0.13 to 0.47)

TotalNot pCR pCR

Not pCR 88 (10 pCR) 11 (4 pCR) 99 (14 pCR)
pCR 5 (1 pCR) 5 (0 pCR) 10 (1 pCR)
Total 93 (11 pCR) 16 (4 pCR) 109 (15 pCR)

* Cutoff point = 86th percentile (1 − pathologically complete response rate of GSE16446 study). CI = confidence interval; NRI = net reclassification improvement; 
pCR = pathologically complete response.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djt202/-/DC1
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The CS AUC was statistically significant but equivalent to 
the IPS AUC; the dichotomized CS predicted response; the 
dichotomized CS performed equivalently to the model with only 
clinical features and to the IPS. We performed one-sided Wilcoxon 
rank sum tests for the CS generated from the prediction models 
using both original and adjusted gene expression values. The CS 
based on the original gene expression values were statistically 
significantly higher in the treatment success than in the treatment 
failure group (P = .0001 for all samples; and P = .0008 for Vancouver 
samples) (Table 3). Similarly, CS based on adjusted gene expression 
values were statistically significantly higher in the treatment success 
than in the treatment failure group (P  =  .0004 all samples; and 
P = .0008 for Vancouver samples) (Table 3). The ROC curves for 
the CS are plotted in Supplementary Figure 1C (available online) 
(original score AUC = 0.70, 95% CI = 0.60 to 0.80; adjusted score 
AUC = 0.68, 95% CI = 0.58 to 0.79). This figure and the Wilcoxon 
test results above show that the AUC for the CS is statistically 
significantly greater than 0.5; however, the CS AUC was still not 
statistically significantly greater than the IPS AUC (AUC = 0.62, 
95% CI = 0.52 to 0.73).

The scaled Brier score for the logistic model with the CS alone 
was 0.11 for the original score and 0.10 for the adjusted score. 
These were less than (or equal to) the scaled Brier score for the 
logistic model with only clinical features (Table 4). Similarly, the 
AUC and IDI did not show any improvement for the model with 
the CS alone compared with the model using only clinical features.

Evaluation Results for GSE10255 (Acute Lymphoblastic 
Leukemia)
The last dataset that we evaluated came from a study of gene expres-
sion in primary acute lymphoblastic leukemia (ALL) associated 
with methotrexate (MTX) treatment response (18). The patients 
were randomized to receive one of three treatments: 1) high-dose 
MTX by infusion over 4 hours (n = 70); 2) high-dose MTX by infu-
sion over 24 hours (n = 74); or 3) high-dose MTX by infusion over 
24 hours plus mercaptopurine (MP) (n = 17). The primary endpoint 
was the difference, WBC Day∆ 3, between levels of circulating leuke-
mia cells measured before therapy (WBCPRE) and at day 3 after 
the start of a treatment (WBCDay3). WBC Day∆ 3  was determined by 
taking the residuals of a linear regression model of log(WBCDay3) 
versus log(WBCPRE ). WBC Day∆ 3  is an important predictor of sur-
vival for ALL; lower levels predict longer survival. Even though 
the patients were treated with three different protocols, because a 
single dose of intravenous MP has little antileukemic effect (21), 
and because WBCPRE and WBCDay3 are similar (P > .13) among 

the treatment groups (18), we ignored the treatment difference and 
viewed all patients as having received the same treatment.

GSE10255 contains Affymetrix gene expression data on 161 
patients. We obtained clinical data including sex, age at diagnosis, 
and ALL subtype from St. Jude Children’s Research Hospital. MPI 
provided the information to derive the SS (but not the CS) for each 
patient. To study DFS, we used an independent set of 92 patients 
obtained directly from St. Jude (see the details in the “Dataset 
Searching” subsection).

SS was a statistically significant predictor for WBCΔDay3 with 
and without adjusting for clinical features for the dataset with 161 
patients. The Spearman correlation between SS and WBCΔDay3 
was −0.18 (P = .02). A scatter plot for the two variables is presented 
in Figure 2A. Multivariable regression showed that after adjusting 
for sex, patient age, WBCPRE, and ALL subtypes, the SS remained a 
statistically significant predictor for WBCΔDay3 (P = .045) (Table 5), 
although the reclassification index did not show substantial 
improvement (Supplementary Table 7, available online).

Neither the continuous nor categorized SS predicted DFS with or 
without adjusting for clinical features for the dataset with 92 patients. 
A univariable Cox model showed that the continuous SS was not 
a statistically significant predictor for DFS (Supplementary Table 8, 
available online). Following the procedures used by Sorich et al. for 
their predictions (18), we trichotomized the continuous SS using the 
25th and 75th percentiles as cutoffs. Patients in the top quartile were 
defined as good responders, and patients in the bottom quartile were 
defined as poor responders. All other patients were defined as inter-
mediate responders. A Cox model showed that this categorized score 
was still not a statistically significant predictor of DFS.

Different Clinical Scores for Different Diseases
We used stepwise backward model selection to estimate linear coef-
ficients to combine the SS with clinical characteristics (Table 6). 
Compared with the “absolute” coefficients provided by MPI, the 
estimated coefficients were similar in study GSE17920 but differ-
ent in study GSE16446. This observation may explain why the CS 
for study GSE16446 had a poor predictive ability.

Discussion
We set out to clarify whether the SS and CS proposed by MPI 
could predict patient response. We conclude that the method pro-
posed by MPI to use cell lines to develop predictive models yields 
predictions in patient samples that are better than chance, but the 
predictions are not yet good enough to change clinical practice. 
The SS predictions were statistically significant (as measured by 

Table 4. Performance of the clinical features (age and stage) with or without sensitivity score, and combined score to predict treatment 
outcome for study GSE17920 (Hodgkin’s lymphoma)*

Model Brier scaled AUC (95% CI) IDI (95% CI)

Age + stage 0.11 0.68 (0.57 to 0.79) Baseline model
Age + stage + sensitivity score (original) 0.12 0.70 (0.60 to 0.81) −0.04 (−0.10 to 0.03)
Age + stage + sensitivity score (adjusted) 0.11 0.68 (0.58 to 0.80) −0.04 (−0.11 to 0.03)
Combined score (original) 0.11 0.70 (0.60 to 0.80) −0.04 (−0.19 to 0.12)
Combined score (adjusted) 0.10 0.68 (0.58 to 0.79) −0.04 (−0.15 to 0.08)

* AUC = area under the curve; CI = confidence interval.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djt202/-/DC1
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Wilcoxon test or AUC) in all three cases that we examined. In two 
of three cases, SS even added value beyond using clinical variables 
(GSE16446: P =  .05; GSE17920: P =  .31; GSE10255: P =  .045). 
However, when we tried to quantify the gain using the scaled 
Brier score, IDI, or reclassification tables, the improvement was 

negligible or nonexistent. The fact that there was a gain suggests 
that a refinement of the MPI procedure might be able to improve 
predictions of response.

However, trying to develop models from cell lines alone is likely 
to be only one step toward the goal of making better predictions. For 

Table 5. Multivariable linear regression of Medical Prognosis Institute sensitivity score related to change in the levels of circulating leukemia 
cells at day 3 after the start of treatment adjusting for the clinical prognostic factors for study GSE10255 (acute lymphoblastic leukemia).  
All subtypes are as defined by Sorich and colleagues (18).

Parameter Estimate Standard error P

Sensitivity score −0.003 0.001 .045
Sex: male vs female −0.044 0.042 .30
Age: ≥10 y vs <10 y −0.005 0.054 .93
log(WBCPRE) −0.013 0.035 .71
Subtype

BCR-ABL vs B other 0.277 0.135 .04
E2A-PBX1 vs B other −0.019 0.077 .80
Hyperdiploid vs B other 0.032 0.058 .59
MLL-AF4 vs B other −0.078 0.184 .67
T-lineage vs B other −0.012 0.072 .52
TEL-AML1 vs B other −0.019 0.064 .77

Figure 2. Association between the Medical Prognostic Institute (MPI) 
sensitifit score and outcome in study GSE10255 (acute lymphoblastic 
leukemia). A) Scatter plot of sensitivity score versus change in the 
levels of circulating leukemia cells at day 3 after the start of treatment 
(WBC Day∆ 3) and the fitted line by linear regression. B) Kaplan-Meier 

plots of disease-free survival (DFS) categorized by MPI sensitiv-
ity score. A good responder was a patient with top 25% sensitivity 
scores (n = 20). An intermediate responder was a atient with middle 
50% sensitivity scores (n = 53). A poor responder was a patient with 
bottom 25% sensitivity scores (n = 19).

Table 6. Comparison of coefficients of sensitivity score and clinical features from multivariable logistic model and coefficients provided by 
the Medical Prognostic Institute (MPI)*

Variable

GSE16446 (breast cancer) GSE17920 (Hodgkin’s lymphoma)

Multivariable model MPI model Multivariable model MPI model

Sensitivity score 0.03 (.05) 1 0.01 (.31) 1
Age, continuous — -— −0.02 (.11) −1
Aged ≥50 or not 0.52 (.37) −50 -— -—
Stage -— -— −0.59 (.01) -25
Grade 0.30 (.65) 30 -— -—
Size 0.28 (.38) −25 -— -—

* If the predictor is not in the final logistic model, the coefficient for that predictor is considered to be zero. The value in parentheses is the P value for the predictor.
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instance, we found that there was a large difference between MPI’s 
proposed clinical coefficients for the CS and the coefficients from the 
logistic model learned directly from dataset GSE16446, breast cancer 
treated neoadjuvantly with epirubicin. It was probably a mistake 
to include the clinical variable age in the combined score to begin 
with because there is no evidence that it is correlated to pathological 
complete response in neoadjuvant treatment of breast cancer (22). 
Prediction of response to treatment in metastatic breast cancer, 
a focus of much new drug development, may present a significant 
opportunity for the in vitro–based models presented here because no 
established clinical variables predict treatment response in this clinical 
setting except for biomarkers such as estrogen receptor, progesterone 
receptor, and human epidermal growth factor receptor 2. In either 
the primary tumor or metastatic setting, further development of 
predictive models is likely to require input from clinical oncologists 
about the clinical variables to include, along with a training dataset 
consisting of actual patient samples to calibrate the models.

The drug regimen criteria proposed by MPI provide some idea of 
when the approach of using cell line chemosensitivity to predict treat-
ment should be attempted. However, the criteria may be too strict in 
that some commonly used cancer drugs, such as cyclophosphamide 
and tamoxifen, do not meet the criteria. To solve the problem of 
predicting treatment response involving drugs that fail to meet the 
drug criteria, MPI is working on a prediction model based on the 
same underlying approach but using other sources with more cell line 
information [eg, Cancer Cell Line Encyclopedia (23)] for assessing 
relative sensitivity scores for treatments involving cyclophospha-
mide. Moreover, because the Cancer Cell Line Encyclopedia con-
tains measurements of multiple genomics features (gene expression, 
chromosomal copy number, and massively parallel sequencing data) 
on the same cell lines (23), one might be able to develop integrated 
models with greater power to predict drug sensitivity.

The idea of using cell line chemosensitivity to predict patient 
response to cancer therapeutics is appealing. However, poor docu-
mentation and erroneous results in the initial reports led to the 
approach being greatly oversold. Here, we tried to make a more 
realistic assessment by evaluating a modeling approach proposed 
by MPI. Our evaluation method represents a compromise between 
the need for complete specification of an analysis and the need to 
protect intellectual property. [In previous recommendations (24, 
25), we anticipated the need to compromise between complete 
disclosure of methods and the requirement to protect intellectual 
property.] The M.D. Anderson team did not know the full details 
of how the models were constructed. However, we chose the data-
sets used for validation, and we insisted that the final models be 
supplied in “locked down” form with rules specifying exactly what 
gene values should be combined and how to produce a score.

In this article, we also discussed the basic steps we took to eval-
uate the prediction model. These steps can easily be generalized 
to evaluate any black box models that apply microarray or other 
studies to enhance personalized medicine and patient care. In the 
future, we expect more studies will be performed to propose or 
validate such models. However, there are some limitations for 
researchers using publicly available datasets to perform these kinds 
of studies.

Expression profiles of patients are relatively easy to access 
today because of widespread acceptance of the Minimum 

Information About a Microarray Experiment (MIAME) standard 
(26). Clinical information, however, especially patient treatment 
and response information vital to these kinds of studies, is still 
difficult to obtain. We initially expected that far more than three 
datasets would meet our criteria. Because publishing clinical data 
or relevant metadata along with the expression profiles is not 
mandatory, many researchers publish part or none of their clinical 
data. Sometimes, the clinical data are available as supplementary 
material, but most of the time, there are no detailed clinical data 
publicly available beyond summary tables of patient character-
istics. We encourage researchers to submit the relevant clinical 
information along with the microarray datasets to the online data 
archives. Elsewhere, we have suggested extensions to the XML 
format used by GEO to store microarray data to make it easier 
to accommodate structured clinical data (25), In the meantime, 
the automatic filters at the online data archives also need to be 
modified to accommodate these clinical characteristics for easier 
searching purposes.
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