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Abstract
We compared the performance of template-free (docking) and template-based methods for the prediction of
protein^protein complex structures.We found similar performance for a template-based method based on thread-
ing (COTH) and another template-basedmethod based on structural alignment (PRISM).The template-based meth-
ods showed similar performance to a docking method (ZDOCK) when the latter was allowed one prediction for
each complex, but when the same number of predictions was allowed for each method, the docking approach out-
performed template-based approaches. We identified strengths and weaknesses in each method. Template-based
approaches were better able to handle complexes that involved conformational changes upon binding.
Furthermore, the threading-based and docking methods were better than the structural-alignment-based method
for enzyme^inhibitor complex prediction. Finally, we show that the near-native (correct) predictions were generally
not shared by the various approaches, suggesting that integrating their results could be the superior strategy.
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INTRODUCTION
The interaction between pairs of proteins is critical in

many biological processes, including enzyme inhib-

ition, signaling pathways and the immune response.

Although experiments have shown that most pro-

teins interact with at least one other protein, the

determination of atomic resolution structures of

protein–protein complexes is laborious and not

always successful. As an alternative to experimental

approaches, computational algorithms have been

developed to predict the bound structures of pro-

tein–protein complexes. These computational

approaches can be divided into two main classes of

algorithms—template-free or docking [1–12] and tem-
plate-based [13–28]. The various approaches for pre-

dicting protein–protein complex structures were

recently reviewed by Tuncbag et al. [29]. The dock-

ing approaches start with the unbound structures of

the component proteins, which are typically

obtained using x-ray crystallography or nuclear mag-

netic resonance (NMR), but can also be built using

homology modeling. The translational and rotational

space is then searched for favorable binding orienta-

tions. Searching the 6-dimensional space is compu-

tationally expensive, and often carried out with

rapidly computable scoring functions and efficient
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grid-based search algorithms such as fast Fourier

transform (FFT) [1, 4–6] or geometric hashing [3].

In contrast with docking approaches, which are

based on the physical properties of the component

proteins for the prediction, template-based algo-

rithms use similarities with known complex struc-

tures for generating the prediction. A wide

spectrum of template-based methods has been intro-

duced in recent years, often with components

adopted from monomer protein structure prediction

approaches. The methods differ in the way similarity

is defined, which can be based predominantly on

sequence identity [19, 20], sequence-structure

‘threading’ [13, 26] or structural alignments, the last

often for the interfacial regions only [22, 25, 27, 28].

Each approach has its strengths and weaknesses,

with template-based approaches critically depending

on template availability, and docking approaches

being sensitive to conformational changes upon bind-

ing. In this work, we examined the strengths and

weaknesses of the respective approaches, and identify

aspects that affect the likelihood of success. Specifically,

we compared the ZDOCK [7, 9, 30] algorithm for

protein–protein docking that was developed in our

lab with two template-based algorithms: COTH by

Mukherjee and Zhang [26] and PRISM by Gursoy,

Keskin and co-workers [25, 27]. COTH and PRISM

represent two main approaches in template-based

complex structure prediction, with COTH requiring

sequences only and using threading to build the pre-

dictions, and PRISM relying on structural alignments

of the interface regions to select the templates.

Finally, we assess the availability of templates in

the Protein Data Bank (PDB) [31] for protein–pro-

tein complexes. The relationship between sequence

identity and binding modes was addressed earlier by

Aloy et al. [32]. Similar work on template availabil-

ity, but with a focus on the structural space of the

PDB, has recently been published by others [33, 34].

We developed a protocol (ZTEM) that uses se-

quence alignment and structural alignment to deter-

mine templates that match native complexes. ZTEM

and COTH have in common that the binding part-

ners are aligned (or threaded) globally, whereas

PRISM performed local alignments.

METHODS
Dataset
For testing the algorithms, we used the complexes

from a protein–protein docking benchmark

developed earlier by our lab [35]. The latest version

of the benchmark contains the bound and unbound

structures of 176 protein–protein complexes, and is

nonredundant at the SCOP family level [36]. We

classify the complexes based on biochemical function

and docking difficulty. According to biochemical

function, we have 52 enzyme–inhibitor complexes,

25 antibody–antigen complexes and 99 other com-

plexes (referred to as the ‘others’ category). Judged

by docking difficulty, 121 are rigid-body, 30 are of

medium difficulty and 25 are difficult.

Template-based methods are not suitable for anti-

body–antigen complexes. Multiple antibodies,

which differ only in their complementarity-deter-

mining loops, can recognize a variety of epitopes

on an antigen; thus, template-based approaches

would result in false positives. Therefore, we

excluded the antibody–antigen complexes from the

analyses in this work.

COTH
COTH takes sequences as input and generates pre-

dictions for the complex structures based on thread-

ing a sequence onto a template structure [26].

COTH follows a two-stage procedure. In the first

step, the sequences of both component proteins are

threaded using a library of nonredundant complex

templates. This yields a selection, typically 10, of

templates that describe potential binding modes. In

the second step, the sequences of the monomers are

threaded separately, using a library of monomer tem-

plates. This yields a prediction for each monomer,

which is then superposed onto the complex tem-

plates. To generate the COTH predictions, we

used the Web server described in [26].

PRISM
PRISM takes structures of the unbound component

proteins as input, and performs structural alignments

of the surfaces of the monomers with a library of

binding-interface templates. The library is con-

structed from the PDB complex structures and

nonredundant. To improve predictive accuracy, the

alignment results are subjected to various filters, such

as a threshold for the alignment root mean square

deviation (RMSD), a minimum number of matching

residues and residue pairs between the template and

the predicted structures, clashing thresholds and a

matching template hotspot residue in the prediction.

After the alignment and filtering, the predictions are

refined and scored using FiberDock [37]. To
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generate the PRISM results, we used the collection

of scripts provided by the authors [25], in combin-

ation with the required external programs [15,

37–39]. We used the larger of the two available

template libraries, which contains 7922 interfaces.

ZDOCK
For the docking algorithm, we used ZDOCK3.0

[30], which was developed in our lab and includes

the IFACE statistical pair potential [30]. ZDOCK is a

grid-based rigid-body approach that uses FFT, and

samples the three Euler angles with 6� or 15� spacing

and the three translational degrees of freedom with

an 1.2 Å spacing. For each set of rotational angles,

only the best scoring translation is retained, which

results in 3600 or 54 000 predictions for 15� or 6�

rotational sampling, respectively. The predictions are

subsequently ranked according to the ZDOCK scor-

ing function. In the current work, we used 6�

sampling, and we varied the total number of predic-

tions considered per test case to match those of tem-

plate-based methods, as described in the text below.

ZTEM
We developed the ZTEM (ZlabTEMplates) protocol

to investigate the availability of templates in the PDB

for protein–protein complexes. We applied ZTEM

to the 151 enzyme–inhibitor and ‘other’ cases from

the Benchmark. A BLAST [40] sequence alignment

was used to search for matches to the sequences of

protein structures in the PDB (downloaded Oct 4,

2012). Complex templates from the PDB were retained

if they showed a sequence alignment within the

BLAST significance threshold (E-value� 10.0) for

each chain of the query. Finally, the FAST structural

alignment program [41] was used for superposing the

query proteins onto the complex templates. Note

that ZTEM only performs sequence alignments to

find candidate templates. Recently, it was shown that

complexes can possess structural similarity without

sequence similarity [32, 33], and a structural align-

ment approach would result in more candidate tem-

plates. However, because the purpose of ZTEM is to

provide a baseline using the simplest way of finding

templates, we only considered sequence alignments

in this work.

Scoring
We note that each of the methods that were com-

pared uses its own scoring function, and the quality

of the function can affect the performance of the

method. Unfortunately, it is not straightforward to

remove the scoring component of the method, or to

use a single scoring function for all approaches.

However, because the scoring functions presumably

optimize the performance of the respective methods,

we have assumed that the scoring function is an

integral part of each method and that we could com-

pare the overall performance of the methods.

RESULTSANDDISCUSSION
COTH
We could not test COTH using all the cases from

our Benchmark for two reasons. First, COTH can

only predict complexes formed by single-chain

monomers. Second, we wanted to exclude predic-

tions with both monomers having sequence identi-

ties >95% with the complex template (a template

was allowed only if at least one of the monomers

has <95% sequence identity to the target). The latter

poses a problem, as the COTH Web server makes a

fixed set of 10 predictions for each case, and does not

allow sequence identity cutoffs between the input

monomers and the templates to be specified. As a

result, most cases yielded <10 COTH predictions

that were considered valid (<95% sequence identity

for at least one monomer) in our analysis. To avoid

bias against cases that have few valid predictions, we

only retained the Benchmark cases that had eight or

more valid predictions, and for each of these cases

included only the top eight valid predictions, ensur-

ing that all retained Benchmark cases had the same

number of predictions. Applying these filters, we re-

tained 111 test cases (Table 1), of which 42 and 69

were of the enzyme–inhibitor and ‘other’ complex

types, respectively. Seventy cases were rigid-body,

and 23 and 18 cases were of the medium and difficult

categories, respectively. Although this filter excluded

a relative large number of rigid cases and complexes

of the ‘other’ type, the remaining numbers are large

enough to consider the test set well balanced.

We define a hit as a prediction with interface root

mean square deviation (IRMSD) of �5 Å. When

assessing docking approaches, we typically use a

2.5 Å cutoff, but template-based prediction has no

or limited sampling in the conformational space

and a looser cutoff is appropriate (for a discussion

of complex prediction metrics see [42]). Further-

more, COTH predictions may not contain all the

residues specified in the input, and therefore we re-

quire a hit to have at least 50% of the native interface
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residues present in the structure of each binding part-

ner. Of the 111 test cases, 19 cases had at least

one hit. Thirteen were enzyme–inhibitor, and six

of the ‘other’ type. Thus, COTH has a much

higher success rate (percentage of cases with hits;

31%) for enzyme–inhibitor complexes than for the

‘other’ category (9%), suggesting this a particular

strength of COTH.

When we consider the highest ranked hit for each

case, we see for 13 cases a hit was within the top 3

(out of 8) ranked predictions, and that for nearly half

(9 out of 19) of the test cases one of the monomers

had a >95% sequence identity with the complex

template that was used for the prediction. These re-

sults show that, despite the COTH approach being

based on threading, sequence identity is an important

factor in the prediction of near-native complex

structure, and that COTH’s ranking is able to distin-

guish true positives from false positives. Based on

these findings, it seems that considering more pre-

dictions per test case would only moderately

improve COTH’s performance.

Comparison of COTHwith ZDOCK
For comparing COTH with ZDOCK, we used the

111 Benchmark cases retained in the COTH ana-

lysis. The top ranked ZDOCK prediction was a hit

for 18 cases (again using 5 Å IRMSD cutoff for hit

definition); thus, the overall performance of COTH

with eight predictions per test case (19 cases with

hits) is similar to ZDOCK performance with one

prediction per case. Of the Benchmark cases for

which ZDOCK found hits, 15 are of the rigid

category, and 3 of the medium difficulty category

(for COTH, we found 14 rigid, 3 medium and 2

difficult). Furthermore, 13 of the ZDOCK hits are

enzyme–inhibitor cases, and 5 are of the ‘other’ type

(for COTH, we found hits for 13 enzyme–inhibitor

cases and 6 of the ‘other’ type). Thus, COTH with

eight predictions per test case has similar performance

to ZDOCK with the top ranked prediction con-

sidered; moreover, the two methods show similar

patterns regarding the complex type and expected

docking difficulty. The most notable difference is

that ZDOCK produced no hits for cases of the dif-

ficult category while COTH predicted hits for two

difficult cases. This agrees with the observation that

rigid-body docking algorithms generally do not per-

form well when there are large conformational

changes on forming the complex, whereas conform-

ational changes should have a smaller impact on tem-

plate-based approaches. Of the 19 COTH and 18

ZDOCK cases with hits, only 4 are shared. This

suggests that ‘pooling’ the predictions of COTH

and ZDOCK could yield a higher hit-to-prediction

ratio than either of the approaches alone. When we

allowed ZDOCK to make the same number of pre-

dictions as COTH for each test case, we obtained 32

cases with hits, representing a success rate >50%

higher than that of COTH. The number of cases

with hits shared between COTH and ZDOCK is

still small compared with the total number of cases

where COTH has hits (increases from 4 to 7), indi-

cating that pooling approaches can still be beneficial

when larger numbers of ZDOCK predictions are

considered.

PRISM
In contrast with COTH, PRISM is based on struc-

tural alignment and is not limited to single-chain

monomers. Therefore, we used all enzyme–inhibitor

and ‘other’ test cases that contain single and multi-

chain component proteins for the analysis. As sug-

gested in [27], we relaxed some of the filters used in

PRISM to increase the number of hits. First, we

lifted the requirement that at least one predicted hot-

spot from the template has an equivalent residue in

the prediction. Second, we reduced the number of

residues that are required to match between the tem-

plate and prediction to 12 (default is 15). Note that

these changes are similar but not identical to those

suggested in [27] (despite discussion with the authors

of PRISM, we were not able to determine the

Table 1: Summary of the number of hits found for
COTH and ZDOCK (using 5 — IRMSD cutoff for hits)

Complex type All
cases

COTH
cases
with hits

ZDOCK(1)a

cases
with hits

ZDOCK(8)a

cases
with hits

Enzyme^inhibitor 42 13 13 18
‘Other’ 69 6 5 14
Rigid-body 70 14 15 25
Medium difficulty 23 3 3 6
Difficult 18 2 0 1
Total cases 111 19 18 32
Cases with hits
shared with
COTH hits

4 7

aNumber of ZDOCK predictions considered for each case in
parentheses.
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relaxed filter settings to achieve the reported

performance).

After removing the predictions for which both

monomers have a sequence identity >95% with

the complex template, we retained an average of

33 predictions for each case. There is, however, a

large variation; e.g. PRISM produced 600 predic-

tions for 1N2C. Using the 5 Å IRMSD cutoff,

PRISM yielded hits for 26 cases, with 11 enzyme–

inhibitor, and 15 of the ‘other’ type (Table 2).

Separated by expected docking difficulty there

were 21 rigid-body cases and 5 with medium or

high difficulty. Of the Benchmark cases with hits,

nearly half (11 out of 26) only had hits with a

sequence identity >95% for one of the monomers.

This shows that, despite PRISM being based on

structural alignment, the sequence identity often is

a determining factor for the identification of near-

native complex structures.

We note that the template library used in PRISM

is designed based on the structure space of binding

interfaces. When we excluded predictions based on

sequence identity (both monomers having a

sequence identity >95% with the complex template),

we may effectively reduce the structure space of the

template library that is relevant for the solution. This

is illustrated by the following findings. Based on the

95% sequence identity cutoff, we exclude at least one

prediction for 63 Benchmark cases. PRISM identi-

fied hits for 10% of these 63 cases. For the remaining

88 cases for which we did not need to exclude any

predictions, PRISM reported hits for 23% of the

cases. This is the result of the structure space of the

template library constructed to be nonredundant.

Comparison of PRISMwith ZDOCK
and COTH
Among the set of Benchmark cases used for PRISM,

the top ranked ZDOCK prediction was a hit for 25

cases, compared with 26 cases with hits obtained by

PRISM. The difference in success rates for the

enzyme–inhibitor and ‘other’ complex types is smal-

ler for PRISM (21%�15%¼ 6%) than for ZDOCK

(27%�11%¼ 16%). Thus, the performance of

PRISM depends less on the type of complex than

ZDOCK. Because ZDOCK and COTH showed

similar success rates for the different complex types,

PRISM’s performance also depends less on the com-

plex type than COTH. Of the PRISM and ZDOCK

cases with hits, only eight are shared, which again

suggests that pooling the predictions from the two

methods may be a successful way to obtain the

optimum hit-to-predictions ratio. When we allow

ZDOCK to make the same number of 33 predic-

tions to make for each case as PRISM does on aver-

age, the number of cases with hits more than

doubles. However, the PRISM program returns

many predictions that are identical, and 33 predic-

tions is an upper limit we used for this comparison.

The number of hits that are shared by PRISM and

ZDOCK with 33 predictions is still moderate, and a

pooling approach still promising.

PRISM and COTH showed similar overall per-

formance, and both found hits for cases in the ‘dif-

ficult’ docking category, whereas ZDOCK does not.

This is as expected, as template-based methods are

less sensitive to conformational changes than rigid-

body docking approaches.

ZTEM for determining template
availability
To provide a baseline of template-based prediction

methods using sequence alignment, we investigated

the availability of templates in the PDB. As with the

other template-based methods, we excluded tem-

plates that had >95% sequence identity with both

monomers from the Benchmark case (here we cal-

culated the identity for the chains separately, and

used the largest value when a monomer had multiple

chains).

The results obtained with ZTEM are summarized

in Table 3. For 53 cases, we found at least one tem-

plate onto which the monomers could be superim-

posed to produce a near-native complex structure.

This represents 35% of the Benchmark cases con-

sidered, which is considerably higher than the

Table 2: Summary of the number of hits found for
PRISM and ZDOCK (using 5— IRMSD cutoff for hits)

Complex type All
cases

PRISM
cases
with hits

ZDOCK(1)a

cases
with hits

ZDOCK(33)a

cases
with hits

Enzyme^inhibitor 52 11 14 25
‘Other’ 99 15 11 32
Rigid-body 99 21 22 44
Medium difficulty 29 3 3 9
Difficult 23 2 0 4
Total 151 26 25 57
Cases with hits
shared with
PRISM hits

8 15

aNumber of ZDOCK predictions considered for each case in
parentheses.
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roughly 20% found with PRISM and COTH. This

suggests that template-based methods may be im-

proved further. Because the template search is

entirely based on sequence identity, it again shows

that sequence identity is a determining factor for the

chance of a template resulting in a hit. Such infor-

mation can be used to develop a confidence measure

for template-based docking.

When we considered the complex types, we

observed a large difference in potential to predict

enzyme–inhibitor complexes and complexes of the

‘other’ type (46%�29%¼ 17%). This is comparable

with COTH and ZDOCK. Thus, only PRISM’s

performance depends less on the complex type, pos-

sibly because of the approaches we considered, that is

the one that relies the most on structural alignment.

As with COTH and PRISM, the ZTEM results sug-

gest that medium and difficult Benchmark cases may

be better suited for template-based approaches than

rigid-body docking. Eventually protein flexibility

analysis may be incorporated to assess the confidence

level of the various approaches [43].

CONCLUSIONS
The performance we obtained for template-based

methods based on threading and based on structural

alignment are comparable. In addition, the template-

based methods showed a similar performance as the

docking method that was allowed a single prediction

for each complex, but when the same number of

predictions was allowed for each method, the

docking approach outperformed template-based

approaches. With the test cases separated by expected

docking difficulty, template-based approaches were

better able to handle complexes that involved con-

formational changes upon binding. When we

separated the test cases by complex type, we

observed that threading and docking approaches

were somewhat better for enzyme–inhibitor struc-

ture prediction than structural alignment template-

based prediction and the reverse for other test cases.

Most importantly, the set of correct predictions

from one method only moderately overlapped

with the set of correct predictions of another

method. This suggests that integrating their results

could be the superior strategy for obtaining useful

predictions in practical situations. For such an

approach to be successful, it would be essential to

develop scoring or other confidence metrics that

can compare complex structure predictions from dif-

ferent sources.

Finally, we want to stress that in the current work,

we used the methods in their standard form, even

though performance improvements could possibly

be gained by additional computation. For example,

rigid-body docking results are often re-ranked or

refined using more accurate but slower to compute

algorithms. In previous work, we developed the

ZRANK and IRAD functions for re-ranking ini-

tial-stage docking predictions, and increased the

chance to find a near-native structure [44, 45].

Structural refinement generally leads to more accur-

ate predictions [37, 46], and improving the perform-

ance of docking approaches is a continuing effort in

our lab [43, 47]. For template based methods, im-

provements can be achieved via algorithmic devel-

opment or by extending the library of templates. For

example, the PRISM interface dataset was con-

structed in 2006, and since then the number of

entries in the PDB has more than doubled.

Although the increase of the template dataset is

likely <2-fold owing to structural redundancy, the

addition of any templates should improve the

performance.

Key points

� Success rates of template-based and template-free methods for
protein^protein complex structure prediction are similar.

� Correct predictions are often not shared between the two
types of approaches; thus, their results are complementary.

� Eachmethod has its strengths andweaknesses.
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