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Abstract

Asymmetric diadenosine 5,5””-P!, P4-tetraphosphate (ApsA) hydrolases are members of the
Nudix superfamily that asymmetrically cleave the metabolite ApsA into ATP and AMP while
facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis
possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication
and dissemination typically have one or zero Nudix family proteins, this suggests that CT771
could be critical for chlamydial biology and pathogenesis. We identified orthologs to CT771
within environmental Chlamydiales that share active site residues suggesting a common function.
Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 A and 1.9 A
resolution, respectively. The structure of CT771 shows a afa-sandwich motif with many
conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound
CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from
Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme
member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases
might be more similar than previously thought. The aforementioned structural similarities, in
tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these
studies provide the molecular details for substrate binding and specificity, supporting the analysis
that CT771 is an ApsA hydrolase (nudH).

Found throughout all kingdoms of life, Nudix hydrolases are a superfamily of metal-
dependent (typically Mg?*) enzymes that catalyze the cleavage of nucleoside diphosphates
linked to any other moiety X (Nudix) 1. These proteins serve to maintain physiological
homeostasis by modulating levels of signaling molecules and potentially toxic metabolic
intermediates 2. Enzymes of this family are characterized by a structurally conserved metal-
and-substrate binding catalytic loop-helix-loop ‘Nudix’ motif (comprising 23 amino acids,
GXsEX7REUXEEXGU where U is preferably a hydrophobic residue), which forms one edge
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The atomic coordinates and structure factors (codes 4ILQ and 4MPO) have been deposited in the Protein Data Bank, Research
Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).
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of the putative active site 1. Despite a diverse range of substrates, a conserved afa-sandwich
scaffold is present within all structurally studied Nudix hydrolases. Substrate specificity is
thus determined by side chains outside the Nudix motif, which further subdivides this
superfamily, and includes dinucleotide polyphosphatases (e.g. diadenosine tetraphosphate
(Ap4A) hydrolases), nucleotide sugar pyrophosphatases, ribo- and deoxyribonucleotide
triphosphatases, among others 2.

Ap4A hydrolase subfamily members are found throughout all kingdoms of life with previous
phylogenetic analyses suggesting the subdivision of plant/bacterial and mammalian/archeal
enzymes into two distinct classes 2 3. Studies detailing structural insights of substrate
binding and enzyme mechanics have been revealed within plant 4 5, bacterial & 7 and
mammalian & enzymes. Asymmetric cleavage of the substrate, Ap4A, results in the
generation of ATP and AMP (EC 3.6.1.17). While the biological role of ApsA is not
completely understood, it is found at micromolar intracellular concentrations in both
eukaryotes and eubacteria 2 and typically accumulates as a result of protein synthesis when
aminoacyl-tRNA synthetases are charged with their cognate amino acid 19, Ap,A levels
have also been implicated in a variety of signaling pathways including apoptosis 11, DNA
repair 12, pathogenesis 12 and as a link between transcription and protein synthesis 19,
among others.

Chlamydia trachomatis is an obligate intracellular bacterium that replicates within a
parasitophorus vacuole, termed the inclusion. A distinguishing feature of Chlamydia is its
virulence-defining developmental cycle that involves an infectious, metabolically inactive
form (elementary body or EB) and noninfectious, replicative form (reticulate body or

RB) 14. After host cell entry and formation of the inclusion by an EB, a burst of nascent
bacterial metabolism is initiated that coincides with the EB-to-RB morphological transition.
As Chlamydia have coevolved with their human host, reductive evolution has resulted in the
loss of numerous genes involved in substrate and oxidative phosphorylation, resulting in a
limited ability to manufacture ATP and an energetically parasite-like existence 1° 16, Thus,
the ability to salvage and utilize nucleotide intermediates (such as ApsA) within the
inclusion, whether chlamydial-generated or imported from the host cell, is likely crucial to
basic bacterial biology as well as pathogenesis. BLAST analysis of the Chlamydia
trachomatis genome reveals the presence of a single ORF containing a Nudix motif, CT771
(Chlamydia trachomatis ORF 771), which is annotated as a 17.4 kDa MutT/Nudix family
protein and is conserved across all sequenced Chlamydiaceae members. Typically,
pathogens that rely on a host for replication and dissemination (e.g. Rickettsia, Borrelia,
mycoplasmas, etc.) lack or have a single Nudix family enzyme 1, suggesting the singular
presence of a Nudix protein could be of critical importance to Chlamydia. In order to further
characterize CT771 as a Nudix subfamily member, a crystal structure of CT771 was
determined to 2.60 A. Structural homology with ApsA hydrolase members as well as
examination of the putative active site through molecular docking guided the subsequent
enzymatic characterization of CT771. Finally, a co-crystal structure of CT771 bound to
products of ApsA hydrolysis was determined to 1.9 A, which ultimately provided the
mechanistic details of substrate binding and specificity for CT771, as well as confirmed its
functional role as an ApsA hydrolase (nudH).

MATERIALS AND METHODS

Cloning, Overexpression, and Purification of Recombinant CT771

A gene fragment encoding the entire open reading frame (residues 1-150) of CT771 was
amplified from C. trachomatis (serovar 434/Bu) genomic DNA via PCR and subcloned into
BamHI-digested expression plasmid pTBSG through ligation independent cloning 17. Upon
DNA sequence confirmation, the vector was transformed into BL21 (DE3) E. coli cells. This
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strain was grown to an ODggg of 0.8 at 37°C in Terrific Broth supplemented with Ampicillin
(100 pg/ml), and protein expression was induced overnight at 17 °C by the addition of
isopropyl 1-thio-p-D-galactopyranoside (IPTG) to a 1 mM final concentration. Bacterial
cells were harvested by centrifugation, resuspended in lysis buffer (20 mM Tris-HCI (pH
8.0), 500 mM NaCl, and 10 mM imidazole), and then lysed by microfluidization. The
soluble tagged protein was collected in the supernatant following centrifugation of the cell
homogenate and purified on a Ni2*-NTA-Sepharose column according to published
protocols 18. Recombinant tobacco etch virus (TEV) protease was used to digest the fusion
affinity tag from the target protein. After desalting into 20 mM Tris-HCI (pH 8.0), final
purification was achieved by ResourceQ anion-exchange and gel filtration chromatography
(GE Healthcare). The purified protein was concentrated to 10 mg/ml and buffer exchanged
by ultrafiltration into 10 mM Tris-HCI (pH 7.5), 50 mM NaCl, and stored at 4 °C for further
use.

Crystallization

Recombinant C. trachomatis CT771 was crystallized by vapor diffusion in Compact Jr.
(Emerald Biosystems) sitting drop plates at 20 °C. Specifically, 0.5 pl of protein solution (10
mg/ml in 10 mM Tris-HCI (pH 7.5), 50 mM NaCl) was mixed with 0.5 pl of reservoir
solution containing 100 mM Tris-HCI (pH 8.5) and 1.5 M ammonium sulfate, from the Salt
Rx HT screen condition F3 (Hampton Research), and equilibrated against 75 pl of the
reservoir solution. Single bipyramidal-shaped crystals appeared after 1 day and continued to
grow for ~3 days. Crystals were flash-cooled through serial dilution in a cryoprotectant
solution consisting of 2.0 M ammonium sulfate with an increasing concentration of glycerol
(5%, 10%, 20% (v/v) final).

Prior to cocrystallization, CT771 (10 mg/ml in 10 mM Tris-HCI (pH 7.5), 50 mM NacCl)
was incubated on ice with 10 mM Ap4A (Sigma, reconstituted in 10 mM MgCl,) for 15
minutes. Upon mixing 0.5 pL of the protein/Ap4A solution with 0.5 uL reservoir solution
containing 200 mM MgCl,, 100 mM Tris-HCI (pH 8.5) and 25% (w/v) PEG 3350, from the
Index HT screen condition H1 (Hampton Research), single block shaped crystals appeared
after 1 day and continued to grow in size for up to 5 days. Crystals were harvested by flash-
cooling in a cryoprotectant solution consisting of 80% mother liquor and 20% (v/v) glycerol
and prepared for X-ray diffraction.

Diffraction Data Collection, Structure Determination, Refinement and Analysis

Monochromatic X-ray diffraction data were collected at 100K using a Dectris Pilatus 6M
pixel array detector at beamline 171D at the APS IMCA-CAT (Table I). Individual
reflections were integrated with XDS 19 and scaled with Aimless 20, which suggested the
Laue class was 6/mmmwith a likely space group of P6122 or P6522 for the apo-CT771
crystals and C2 for the CT771/AMP-PQ,4 cocrystals.

Initial phase information was obtained for the apo-CT771 structure by maximum-likelihood
molecular replacement using BALBES 21, Both of the likely space groups were analyzed,
with only P6522 producing a potential solution. Specifically, 134 residues of chain B from
PDB entry 317V (Aquifex aeolicus Ap,4A hydrolase) were altered to reflect the sequence of
CT771 (residues 13 — 148), and the resulting hypothetical structure was used as a search
model. The top solution contained a single copy of CT771 in the asymmetric unit, which
corresponded to a Matthew’s coefficient 22 of 4.66 A3/Da and a solvent content of 73.6%.
The final refined CT771 structure was used as a search model for the CT771/AMP-PQOy4
dataset, and the top solution contained eight copies of CT771 in the asymmetric unit with a
Matthew’s coefficient of 2.35 A3/Da and a solvent content of 47.7%.
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Structure refinement for the apo-CT771 structure was carried out using Phenix 23 24, One
round of individual coordinates and isotropic atomic displacement factor refinement was
conducted, and the refined model was used to calculate both 2F4-F¢ and F-F difference
maps. These maps were used to iteratively improve the model by manual building with
Coot 25 26 followed by subsequent refinement cycles. TLS refinement 27 was incorporated
in the final stages to model anisotropic atomic displacement parameters. Hydrogen atoms
were included during all rounds of refinement. Ordered solvent molecules were added
according to the default criteria of Phenix and inspected manually using 2F,-F¢ weighted
feature enhanced (FEM) electron density maps (contoured at 1.0 o) within Coot prior to
model completion. Residues 1-3 were not modeled as a result of poor map quality.

The CT771/AMP-PQy, cocrystal structure was refined in a similar manner as described
above. Regions of poor map quality with the CT771/AMP-PQ,4 cocrystal structure prevented
modeling of residues 1-4 and 149-150 in all chains (with the exception of chain B, where
residues 1-4 were modeled and chain C, where residue 4 was modeled). The following
residues were not modeled: chain F, 147-148; chain G, 18-21, 84-88. Disordered side chains
were truncated to the point where electron density could be observed. Additional
information and refinement statistics are presented in Table 1.

Kinetic Characterization of CT771

A luciferase-based bioluminescence assay was used to characterize the Kinetic constants of
wild-type CT771 enzyme via the detection of liberated ATP. Each 100 pL assay mixture
was comprised of 100 mM Tris-HCI (pH 7.5), 1.5 - 5.0 mM MgCl, or MnCly, 10 pL of
reconstituted rL/L Reagent (Promega), 10 uL of Ap4A at varying concentrations (Sigma)
and 10 ng of purified CT771, and was incubated at room temperature for 5 minutes before
measurements were taken. Light output was measured on a Biotek Synergy 2 luminometer
and converted into units of enzyme activity (uM/min) using an ATP standard calibration
curve. All reactions were measured in triplicate and data interpretation was carried out using
GraphPad (GraphPad Software). Additional information is presented in Table 4.

Ligand Docking

A model for diadenosine tetraphosphate (Ap4A), 8-deoxy-dGTP, adenosine diphosphate
ribose and GDP-mannose were generated using the PRODRG server 28. Polar hydrogens
were added to ligands prior to docking. Docking calculations were carried out with the
refined crystal structure of CT771 using AutoDock Vina, a comprehensive program for
molecular docking and virtual screening 2°. As grid maps are calculated automatically in
AutoDock Vina, only the size and location of search space is required. The grid box was set
to 60 x 60 x 60 A with grid points spaced every 0.375 A and centered within the putative
Nudix family active site cleft. Docking simulations were performed at physiological
conditions (37° C). Theoretical dissociation constants were calculated for the lowest energy
site using the following equation: AG = RT*In(Kq). Only ligands docked within the putative
active site cleft were analyzed. Additional information is presented in Table 3.

Multiple Sequence Alignments and Figure Modeling

Multiple sequence alignments were carried out using ClustalW 30 and aligned with
secondary structure elements using ESPRIPT 31, The Ap,4A hydrolase sequences used in
alignments, along with their respective GenBank™ accession numbers, are as follows: C
trachomatis serovar 434/Bu (166154113); Parachlamydia acanthamoebae (282890520);
Candidatus Protochlamydia (46446871); Smkania negevensis (338733601); Waddlia
chondrophila (297621593); Homo sapiens (4502125); Caenorhabditis elegans (17509897);
Aquifex aeolicus (15605731). Three-dimensional structures were superimposed using the
Local-Global Alignment method (LGA) 32. The Ap4A hydrolase structures obtained from
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the PDB 33 are as follows: Homo sapiens (3U53); Caenorhabditis elegans (1IKTG); Aquifex
aeolicus (317V). Representations of all structures were generated using PyMol 34,
Calculations of electrostatic potentials at the molecular surface were carried out using
DELPHI 35,

CT771 Crystal Structure

The structure of CT771 was solved by molecular replacement and refined to 2.60 A (Table
1). CT771 is characterized by an apa-sandwich fold (Fig. 1) with dimensions approximately
50 x 25 x 30 A, typical of Nudix family proteins, with 3 a-helices (residues Pro52-Thré4,
Phel120-Arg125 and Arg133-Tyr146, respectively) surrounding 7 -sheets (residues Lys5-
Phel8, Ser24-His33, Lys37-Gly40, Gly67-Phe71, Phe76-Asn83, Phe89-Lys102 and
Cys113-Leulls, respectively)*. The overall topology of CT771 is f1-p2-p3-p4-al-p5-6-
B7-a2-a3 (Fig. 1). The conserved Nudix motif (GXsEX7RELXEEXGL, residues 44-66) is
found within al and the loop regions surrounding this helix (represented as ball-and-sticks
and colored magenta in Fig. 1, right panel). The protein interfaces and assemblies (PISA) 35
server was used to assess potential modes of oligomerization. This analysis failed to identify
any interfaces that were judged to be thermodynamically favorable, consistent with the
monomeric elution profile of CT771 in analytical gel filtration experiments (data not
shown).

Structural Comparison with Ap4A Hydrolases

In order to better understand the function of CT771, the refined crystal structure was used to
search for structurally-related enzymes within the PDB via the DALI server 36, with the top
5 hits listed in Table 2. Not surprisingly, over 100 of the highest scoring matches are
enzymes from the Nudix family. Structures displaying the highest homology to CT771 are
diadenosine tetraphosphate (adenosine-P1-P2-P3-P4-adenosine or ApsA) hydrolases.
Furthermore, both mammalian and eubacterial enzymes are found within the top 5 hits,
suggesting that they are structurally more alike than previously thought? 3. Indeed,
structural alignment of CT771 and the top 3 DALLI hits, ApsA hydrolases from H. sapiens 8,
C. elegans 37 and A. aeolicus 7, (Fig. 2A) further underscores the conserved nature of the
aPa-sandwich fold found within this class of enzymes. All 4 structures align with RMSD
values better than 2.2 A, with large-scale variations limited to the loops connecting p1-B2
and B5-f6. Neither of these regions are expected to contribute to substrate binding or
catalysis and likely reflect crystallographic differences stabilized by packing.

Kinetic Characterization of Ap4A Hydrolase Activity of CT771

In order to better understand the function of CT771 and provide support for the structural
similarities to ApsA hydrolases revealed by both the DALI search 36 and molecular docking
(described in Supporting Information) 2, purified protein was enzymatically characterized
using a Luciferase assay as described in the Materials and Methods section. This assay
allows the continuous monitoring of cleaved Ap4A via released ATP upon substrate
hydrolysis, and has been extensively used to characterize this specific Nudix enzyme

class 338, The results of this analysis support the conclusion that CT771 is a bona fide
Ap4A hydrolase (Table 4). Intriguingly, the largest observed kinetic activity was in the
presence of 5 mM Mg2* with ke = 3.2 + 0.1 (s71), while the lowest observed binding
affinity was in the presence of 5 mM Mn2* with a K, = 5.0 + 0.5 uM (Fig. 3). K1y
measurements assumed that the rate of product formation was slower than enzyme-substrate

*Numbering of all residues in this work reflects their position in the C. trachomatis CT771 sequence.
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dissociation. Despite its ability to increase substrate affinity and enzyme efficiency (Keat/
Km), increasing concentrations of Mn?* had an adverse affect on the catalytic rate of CT771
in the presence of Ap4A. These values are in agreement with previously reported values,
using a bioluminescent assay, for H. sapiens ApsA, among others 38,

Structural Basis for Substrate Recognition of CT771

Crystals of CT771 grown in the presence of Ap4A diffracted X-rays to 1.90 A resolution in
the space group C2 (Table 1). Upon modeling and refinement of eight polypeptides in the
asymmetric unit, two regions of strong contiguous electron density (visible when contoured
up to 5.0 o) were apparent within each putative active site (Fig. 4A). While the electron
density was clearly not large enough to accommodate an entire Ap4A molecule (Fig. 4B), an
AMP moiety was modeled near the loop region connecting a2 and a3 (Fig. 4C). This
phosphate will be designated the P1-phosphate in further discussions, in accordance with
Guranowski et al. 39, as it is proximal to the tighter binding adenosine group within ApsA.
Additionally, a large cluster of electron density was apparent near a1, where a single
phosphate, three magnesium ions, and a network of waters were modeled (Fig. 4D). As
wild-type CT771 was used in the crystallization experiments with Ap4A, it was not
unexpected for the substrate to undergo hydrolysis. Likewise, previous structural studies on
C. elegans Ap,A hydrolase 37 with the substrate analog AppCH,ppA yielded nearly the
same interpretable regions of electron density as described here (Fig. S3B). The authors
speculated that AppCH>,ppA had either been catalytically processed by the hydrolase during
crystallization or that flexible regions within the substrate (e.g. P2- and P3-phosphates and
the second adenosine group) subsequently lacked interpretable electron density. Given the
extreme similarities in bound active site ligands between those studies and ours, despite the
use of different substrate molecules, we speculate that both compounds have been processed
by the crystallized hydrolase in each structure, resulting in a bound AMP molecule and
metal-phosphate complex.

Analysis of the bound AMP molecule within each CT771/AMP-PO, subunit active site
revealed that it resides in a deep groove (~11 A as measured from the Tyr96 hydroxyl to the
N3 atom of the bound AMP molecule) created by the loop regions connecting f2-$3 and p5-
[36, as well as the p sheets themselves (Fig. 5). The adenine ring of AMP adopts the anti
conformation, where it is stabilized by a hydrogen bond interaction with the carboxylic acid
moiety of Glul31 (Fig. 4C). Additional protein contacts with the adenine ring involve an
extensive set of nt-7 stacking interactions created by the aromatic side chains Phe129 and
Tyr80. All three side chains are highly conserved across examined Ap4A hydrolases (red
circles, Fig. 2B), suggesting a common mechanism of substrate binding and orientation. The
ribose sugar hydroxyl groups of the bound AMP molecule adopt the C2’-endo and C3'-exo
conformations, and the P1-phosphate is oriented towards the catalytic a1 Nudix helix (Fig.
4C). While the ribose sugar moiety lacks any hydrogen bonding with CT771, the P1-
phosphate is stabilized by an extensive network of positively charged side chains (His38,
Lys43 and Lys92), along with Tyr80 (Fig. 4C, S1C). As with the adenosine moiety, all four
of these residues interacting with the P1-phosphate are highly conserved, with both Lysine
residues being invariant (red and blue circles, Fig. 2B). While bond catalysis occurs at the
P3-P4-phosphate interface 3% 49, proper orientation of Ap,4A clearly begins in this ~11 A-
deep groove.

Consistent with the previously reported Ap4A hydrolase binary complex from C. elegans 37,
the region of strong electron density near the catalytic al Nudix helix (Fig. 4A) was
modeled with a single phosphate anion bound to a network of magnesium ions and waters
(Fig. 4B,D). Bailey et al. proposed that this phosphate molecule occupied the P4-phosphate
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position of Ap,A, primarily due to its proximity to the Nudix helix and distance from the P1-
phosphate 37. Thus, all further discussions of this site will refer to it as the P4-phosphate.

Within the CT771/AMP-PQ, structure the P4-phosphate is maintained in a tightly bound
position through numerous solvent-ligand contacts and a single direct protein interaction
(His45). Solvent-ligand contacts are primarily mediated by three hexacoordinated Mg2*
ions, which themselves form tight metal coordination bonds (average bond length, 2.13 A)
with three Glutamate residues (Glu59, Glu63 and Glu111), 6 water molecules and the
aforementioned phosphate (Fig. 4D). A fourth Glutamate residue (Glu62) forms hydrogen
bonds with two of the active site waters involved in magnesium hexacoordination. Arg58
appears to stabilize the position of GIu59, which coordinates with two of the three Mg2*
ions. As these residues are found within the Nudix motif, it is unsurprising that they are all
highly conserved amongst ApsA hydrolases (red circles, Fig. 2B). Intriguingly, only three of
the oxygens within the P4-phosphate participate in extensive contacts, suggesting the fourth
oxygen would likely be linked to the second adenosyl moiety of Ap4A. Thus, as the CT771/
AMP-PO, structure was crystallized in the presence of a high concentration of magnesium
(200 mM MgCl,), the active site metals appear to properly maintain the P4-phosphate in a
highly specific orientation, priming the substrate for subsequent nucleophilic attack and
resulting catalysis at the P3-P4-phosphate bond. While substrates other than ApsA were not
tested for enzymatic activity in the current study, it has previously been reported that this
family of enzymes can hydrolyze adenosine polyphosphates with four, five or six
phosphates, but not three 3, indicating positioning of the P4-phosphate is critical to substrate
catalysis.

Despite efforts to co-crystallize ApsA with CT771, it appears that the substrate was
hydrolyzed prior to data collection, with the product AMP and a magnesium-bound
phosphate complex being retained in the final structure. Despite the absence of interpretable
electron density for P2- and P3-phosphates in the ligand-bound CT771 structure, comparison
with the sulfate anion bound in the apo-CT771 structure (described in Supporting
Information) suggests that both Lys43 and Lys92 could hydrogen bond with multiple
phosphate oxygen atoms of ApsA (Fig. 5). In agreement with the ATP-bound A. aeolicus
Ap,A hydrolase structure (Fig. S3A), the P2-phosphate of ApsA would likely not make
contacts with CT771. Finally, the second adenosy! binding site, if there is one, remains
unoccupied, as seen in all previously reported Ap4A hydrolase binary complexes 7 8: 37,
Analysis of both structures presented herein reveals that a minimal binding module of Npy is
required for CT771 and this family of enzymes 4°.

Substrate Induced Structural Changes within CT771

Structural comparison of the apo- and ligand-bound forms of CT771 presents insight into
substrate binding and conformational changes required for ligand catalysis. Structural
superposition of these two CT771 structures results in the alignment of 140/147 Ca atoms
with an RMSD of 1.41 A (Fig. 6). Notably, the catalytic a1 Nudix helix and surrounding
loops are almost identical (highlighted purple in Fig. 6) with only the side chain of Glu63
reorienting to coordinate a magnesium ion in the ligand-bound structure (Fig. 7). While the
aforementioned structures are highly similar from a secondary structure perspective, several
key loop regions have constricted inward towards the active site. Glu111 directly
coordinates two magnesium ions in the ligand-bound structure (shifting ~2.9 A from its apo-
position, (Fig. 7)), as the loop connecting p6 and B7 shifts ~3.0 A in order to accommodate
this interaction (region two in Fig. 6). Additionally within this region, the sidechain of His38
moves ~6.7 A as it rotates nearly 120° (Fig. 7), where it hydrogen bonds with the P1-
phosphate of the bound AMP molecule. Minor conformational changes within this region of
CT771 also disrupt an intrachain disulfide bond between Cys32 and Cy113 upon ligand
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binding (Fig. S5). An extra turn of a3 is formed (region 3 in Fig. 6, residues Pro130 —
Arg133) upon ligand binding, which places Phe129 in the appropriate position (shifting
~12.2 A from its apo-position) to participate in 7-m stacking interactions with the adenine
ring of AMP (Fig. 4C). The extra turn of a3 facilitates an ~9.3 A shift of Glu131 away from
the active site cleft (Fig. 7), where it hydrogen bonds with the N6 atom of AMP. The loop
connecting P5 and p6 shifts ~4.0 A (region 4 in Fig. 6), however, it does not contact any of
the bound ligands. Rather, this shift appears to facilitate bonding interactions involving
Tyr80 (shifting ~4.9 A from its apo-position) on 5 and Lys92 on 6, as these B-sheets
subtly bow towards the bound AMP molecule (Fig. 7). Finally, the loop region connecting
B1 and B2 has been significantly reordered in the ligand-bound structure (region 1 in Fig. 6);
however, this likely arises from protein-protein contacts in crystal packing and does not
appear to affect the CT771 active site.

Bioinformatic Analysis of CT771 and Orthologs within Chlamydia

CT771 is conserved across all sequenced members of Chlamydiaceae (sequence identities
ranging from 71-99%). However, BLAST analysis of Chlamydiales, members of which
include environmental Chlamydiae isolates, reveals the presence of genes orthologous to
CT771 (sequence identities ranging from 35-42%) that were not previously clustered with
other Chlamydiaceae members (aligned with CT771 in Fig. 2B). It thus appears that the
presence of ApsA hydrolase is required in the basic biology of Chlamydiae. As such we
recommend that the annotation of CT771, along with its current orthologs and the ones
identified herein, be updated to asymmetric diadenosine tetraphosphatase (nudH).

DISCUSSION

BLAST analysis with the Nudix motif identifies a single target (CT771) within the obligate
intracellular human pathogen Chlamydia trachomatis. This singular protein is conserved
throughout both pathogenic and environmental Chlamydiales (Fig. 2B), suggesting it might
play an important role in chlamydial biology. In order to better understand the function of
this protein, structural studies were undertaken on CT771 from C. trachomatis, in both apo-
and ligand-bound forms. Together, the structural and enzymatic characterization of CT771
suggests that this protein functions as an asymmetric diadenosine tetraphosphate (ApsA)
hydrolase, with the likely ability to cleave diadenosine polyphosphates (n=4). Insights into
substrate binding and catalysis have been obtained by efforts to co-crystallize CT771 with
Ap4A, with very similar active site electron density occupancy to the previously determined
C. elegans Ap,A binary complex 37. Intriguingly, the structure of CT771, only the second
Ap4A hydrolase determined from eubacteria, most closely resembles both bacterial and
mammalian ApsA hydrolases, further supporting that these two classes are more closely
linked than previously thought.

Both the apo- and ligand-bound CT771 crystal structures contained sulfate/phosphate anions
bound near the Nudix motif within the putative active site (Fig. 4, S2). Numerous highly
conserved side chains interact with these anions either directly or through coordinated metal
ions. Based upon similarities to binary complexes from C. elegans 37 and A. aeolicus ’
Ap,A hydrolases, these anions have been designated P1-, P3- and P4-phosphates; to our
knowledge, this is the first description of all 3 contacts within the same protein. While a
bound AMP molecule, which represents the first/primary nucleotide binding pocket, was
also found within the putative active site, the absence of any appreciable binding contacts
for the second adenosine group is consistent with the ability of this subclass of Nudix
hydrolases to cleave diadenosine polyphosphates that are linked by four to six phosphates.
Given the use of different substrates (AppCH2ppA and ApsA, respectively), the highly
similar ligands bound within the active sites of the C. elegans 37 and CT771 binary
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complexes are surprising. Despite the fact that Bailey et al. used a theoretically non-
hydrolysable ApsA analog, it appears both compounds were cleaved by the crystallized
hydrolases. Additionally, the previously discussed A. aeolicus binary complex 7 also utilized
Ap4A, which was also apparently hydrolyzed. However, a bound ATP molecule was
modeled by Jeyakanthan et al. in the equivalent position of the AMP molecule within both
the C. elegans 37 and CT771 binary complexes. We speculate that this difference in bound
ligand arises from the common use (and absence in the A. aeolicus binary complex) of high
concentrations of MgCl, in the crystallization conditions of both the CT771 and C. elegans
binary structures that facilitated the presence of a tightly bound Mg2*-phosphate complex.

Comparative analyses of the three phosphate binding sites (and the absence of protein
mediated contacts at the putative P2-phosphate site) from both the apo- and ligand-bound
CT771 structures presented herein are in agreement with previously determined binary
complexes; this supports the role of the Nudix motif in metal binding and proper substrate
positioning, prior to catalysis of the P3-P# phosphate bond. Previous studies have described
the asymmetric ApsA hydrolase reaction mechanism as an “in-line” nucleophilic attack,
which is mediated by a conserved glutamate functioning as a catalytic base, coordinating a
water molecule and up to 3 magnesium ions 8. Structural and mutagenic studies have
suggested that Glu63 (CT771 numbering) is the most likely candidate for the catalytic base;
however the absence of structural evidence with an intact substrate has precluded definitive
assignment of this residue. Within the CT771/AMP-POQ, structure, three glutamate residues
(59, 63 and 111) each coordinate with two of the three magnesium ions (Fig. 4D).
Furthermore, Glu63, Glul11, and the Lys43 carbonyl coordinate with a common
magnesium ion (identified as 1 in Fig. 4D) that is bound to a water molecule in an
appropriate position to function as a nucleophile within the phosphoryl-binding groove of
CT771 (denoted by a dashed arrow in Fig. 4D).

Enzymatic characterization of CT771 was facilitated by monitoring hydrolyzed ApsA via
released ATP and cognate luciferase activity. Unfortunately, this method precluded the
analysis of substrates other than Ap4A due to an absence of released ATP. However, both in
silico docking and crystallographic studies on CT771 support a preference for ApsA as a
true substrate. Furthermore, enzymatic analyses did confirm Ap4A hydrolase activity for
CT771 and reveal an intriguing inverse relationship between concentration and the preferred
divalent cation. While the majority of Ap4A hydrolases preferentially utilize Mg2* 41,
instances of maximal activity in the presence of Mn2* have been previously documented 42,
Furthermore, in the presence of Mn2* the K, value for ApsA was roughly two orders of
magnitude tighter than in the presence of Mg2* for CT771, yet increasing concentrations of
Mn?2* resulted in a decreased catalytic rate and efficiency (Table 4). The results presented by
Szurmak et al. are in agreement with those reported here, particularly with respect to
increasing catalytic rate in the presence of decreasing Mn2* and increasing Mg2* cations. It
is difficult to speculate what physiological role this difference in metal ion affinity would
serve within Chlamydia, but it could be a reflection of the intracellular environment where
the chlamydial developmental cycle occurs.

Chlamydia species are obligate intracellular pathogens that typically rely on the infected
host cell for the majority of their energetic needs. Thus, intracellular energy storage pools
must be closely monitored in order to prevent the accumulation of toxic byproducts, or
alarmones, which could potentially shutdown protein synthesis 43. One such alarmone is
Ap4A, which is typically generated when aminoacyl-tRNA synthetases charge their cognate
tRNA molecule 10. The chlamydial inclusion is not passively permeable to small molecules
>520 Da 4, indicating that ApsA (~800 Da) may not be freely diffusible and would need to
be processed within the inclusion, providing a clear role for CT771 throughout the
developmental cycle. Substrate multispecificity has been documented within a variety of
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Nudix hydrolase family members 2 and of particular note with respect to CT771, bacterial
Ap4A hydrolases have been demonstrated to efficiently remove the 5’ termini of mMRNA,
suggesting a role in translation regulation 4°. Clearly, further studies exploring alternative
substrate preferences and specificities are needed, but at this time it appears that CT771
functions as a housekeeping gene, preventing Ap4A levels from rising during periods of
high metabolic activity. In support of this role, quantifiable levels of CT771 protein are
detected in EBs 4, indicating the organism is primed to handle a rapid burst of nascent
transcription (~1-2 hpi) 47 and a potential build-up of Ap4A through tRNA charging during
translation, upon infecting and entering the host cell.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 2.60 A Crystal Structure of CT771 from Chlamydia trachomatis

Crystal structure of CT771 shown in cartoon ribbon format using common rainbow colors
(slowly changing from blue N-terminus to red C-terminus). Image is rotated 90° about the
vertical axis on the right and amino acids comprising the Nudix motif are highlighted in
purple (ball-and-stick), remainder of CT771 structure is colored gray.

Biochemistry. Author manuscript; available in PMC 2015 January 14.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Barta et al.

Page 15

B

cr771
P.acanthamoebae MTDSTQL
P.amoebophila
W. chondrophila
S.negevensis
ApdA C.elegans
ApdA A.aeolicus .
ApdA_H.sapiens

cr771
P.acanthamoebae
P.amoebophila

W.chondrophila
S.negevensis

ApdA C.elegans
ApdA_A.aeolicus
ApdA_H.sapiens

Figure 2. Sequence Conservation of CT771 and ApgA Hydrolase Members

A, structural superposition of CT771 (gray) and top 3 structural hits from DALI search
(Table I1) in ribbon format 36. Structures correspond to Ap4A hydrolases from the following
organisms: Homo sapiens (PDB ID: 3U53, orange); Caenorhabditis elegans (PDB ID:
1KTG, purple); Aquifex aeolicus (PDB ID: 317V, cyan). B, limited structure-based
alignment of CT771 and ApsA Hydrolase Members was generated using Clustalw20 and
rendered with ESPRIPT3L, Numbers above the sequences correspond to C. trachomatis
CT771. The secondary structure of CT771 is shown above the alignment. Residues are
colored according to conservation (cyan = identical and purple = similar) as judged by the
BLOSUM®62 matrix. Red circles below the sequences correspond to ligand interacting
CT771 amino acid side chains in the binary complex, while blue circles correspond to
sulfate-bound side chains in the apo-CT771 structure. Sequences used within the alignment
are comprised of ApsA hydrolases with significant structural similarity to CT771 and
BLAST-identified orthologs from environmental Chlamydiae. Accession numbers are
detailed in Materials and Methods.
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Figure 3. Affect of Divalent Cations on ApsA Hydrolysis by CT771

A, Plot of CT771 activity versus substrate (ApsA) concentration in the presence of
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increasing Mg?* concentration (@, 1.5mM; ., 3.0mM; and «, 5.0mM). B, Plot of CT771

activity versus substrate (Ap4A) concentration in the presence of increasing Mn2*

concentration (@, 1.5mM; ., 3.0mM; and 4, 5.0mM). Experimental details are defined in

Materials and Methods.
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Figure 4. Crystal Structure of CT771 Bound to Hydrolyzed Ap4A Product

A, Fo-Fc map (green mesh at 3.0 o contour) of the refined structure in the absence of
modeled ligands. Active site side chains within hydrogen bonding distance (2.5 — 3.5 A) of
bound ligands are depicted as cylinders (cyan) in all panels. CT771 backbone is depicted in
cartoon ribbon format (orange). B, 2F4-F. map (blue mesh at 1.0 o contour) of the refined
structure with one AMP and one PO4-Mg?2* complex modeled per subunit. Color scheme is
the same as panel A. C, Active site side chains within hydrogen bonding distance (2.5 - 3.5
A) of AMP (yellow). CT771 backbone is depicted in cartoon ribbon format (lime). D,
Active site side chains within hydrogen bonding (2.5 — 3.5 A) and metal coordination (1.7 —
2.2 A) distances of PO,-Mg2* complex. Magnesium ions and water molecules are
represented as spheres and colored purple and red, respectively. Dashed arrow identifies
proposed nucleophilic water. Magnesium ions are numbered according to Table S1. The
phosphate is colored orange. Color scheme is the same as panel C. Further information on
the interaction distances within panels C and D can be found in Table S1.
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Figure 5. Bound Sulfate Anion in apo-CT771 Structure Highlights P3-Phosphate Position
Structural superposition of apo- and ligand-bound CT771 (gray, only ligand-bound CT771
surface rendering is represented for clarity). CT771 side chains interacting with AMP
(yellow) and the PO4-Mg2* complex (cyan) or sulfate (purple) are depicted in ball-and-stick
format. Residues within appropriate hydrogen bonding distance (2.5 - 3.5 A) of the sulfate
anion are labeled and colored purple.
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Figure 6. Structural Comparison of CT771 in Bound and Free Forms

Structural superposition of CT771 in free (orange) and bound (green) forms depicted in
cartoon ribbon format. Catalytic Nudix motif is highlighted in purple within both structures.
Several regions containing structural differences are highlighted with dashed lines,
including: (1) the loop connecting B1 and 2, which likely arises from crystal packing in the
bound form; (2) the loop connecting 6 and B7 constricts ~3.0 A (as measured from the
Glul1l Ca for each structure) towards the active site; (3) an extra turn of a3 is formed in
the bound structure, resulting in the loop connecting a2 and a3 comprising different
residues; and (4) the loop connecting 5 and p6 shifts ~4.0 A (as measured from the Lys85
Ca for each structure) towards the active site.
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Figure 7. CT771 Side Chain Conformational Changes upon Ligand Binding

Structural superposition of CT771 in free (orange) and bound (green) forms depicted as
cylinders. Active site side chains within hydrogen bonding (2.5 — 3.5 A) and metal
coordination (1.7 — 2.2 A) distances of AMP (yellow) and PO4-Mg2* complex (ball-and-
sticks, purple spheres) are shown. The side chain of Glul11 in the free CT771 structure
(orange) was truncated as described in the Materials and Methods section. Arrows indicate
conformational changes greater than 2.0 A, as described in the Results section.
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Table 1
CT771-apo CT771-AMP-PO,
Data Collection
Unit-cell parameters (/3\) a=116.4, c=84.1 a=182.5, b=102.8,
c=65.4
£=94.0
Space group P6522 Cc2

Resolution (&)1
Wavelength (A)
Temperature (K)
Observed reflections
Unique reflections
<lfo(ly>L
Completeness (%)L
MultiplicityL
Rrerge (%6)1-2
Rieas (%) 1 4
Roim (%)L 4
CCy°
Refinement
Resolution (A)

Reflections (working/test)

Rfactor / Rfree (%)3

No. of atoms
(Protein/Ligand/Water)

Model Quality

R.m.s deviations
Bond lengths (A)
Bond angles (°)

Average B-factor (A2
All Atoms
Protein
Ligand

Solvent

Coordinate error (A), maximum

likelihood (A)
Ramachandran Plot
Most favored (%)
Additionally allowed (%)
Outliers (%)
PDB ID

64.57-2.60 (2.72-2.60)
1.0000

100

206,611

10,818

309 (2.2)

100 (100)

19.1 (20.4)

7.4 (151.6)

7.8 (159.0)
2.4 (47.9)

100.0 (76.7)

38.1-26
10,788/520
18.9/21.7

1162/11/9

0.013
1.139

71.7
71.8
n/a

69.3
0.28

93.8
55
07
41LQ

89.53-1.90 (1.93-1.90)

1.0000
100
317,054
96,781
157 (2.1)

99.0 (99.6)
3.4 (3.4)
4.0 (61.7)
4.7 (73.4)
25(39.3)

99.9 (74.3)

39.6-1.9
93,746/4,696
20.4/25.0

9024/256/327

0.015
0.874

56.8
57.2
52.7
51.3 1
0.27

2.3
3.6
0.1
4MPO
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1Values in parenthesis are for the highest resolution shell.

ZRmerge =YhkiYi [li(hkl) - <I(hkl)>| / ThkiTi 1i(hkl), where Ij(hkl) is the intensity measured for the ith reflection and <I(hkl)> is the average
intensity of all reflections with indices hkl.

3Rfact0r =Shkl [IFobs (hKl) | - [Fcalc (hKl) || / Shki |Fobs (hkl)|; Rfree is calculated in an identical manner using 5% of randomly selected
reflections that were not included in the refinement.

4Rmeas = redundancy-independent (multiplicity-weighted) Rmergezov 48 Rpim = precision-indicating (multiplicity-weighted) Rmerge49' 50,

CC1/2 is the correlation coefficient of the mean intensities between two random half-sets of data®1: 52,
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CT771 DALI Search Statistics

Table 2

Page 23

CT771 Structural Homology
Top 5 (unique) DAL scores
Protein name PDB code | Z-score? | RMSD | Carangeb | % idC
HsAp,A Hydrolase 3U53 18.5 2.2 134/144 31
CeAp,4A Hydrolase 1KTG 18.4 1.8 130/137 20
AaAp,A Hydrolase 317V 18.1 1.8 130/134 28
TtApgA Hydrolase 1vC8 17.3 2.2 125/126 26
B. pseudomallei MutT/Nudix family protein 1XSB 16.7 25 138/153 30

a.. .o ’ . R . -
Similarity score representing a function that evaluates the overall level of similarity between two structures. Z-scores higher than 8.0 indicate that

the two structures are most likely homologous36.

Denotes the number of residues from the query structure that superimpose within an explicit distance cutoff of an equivalent position in the

aligned structure.

c A .
Denotes the percent sequence identity across the region of structural homology.
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Table 3
AutoDock Vina Results
Ligand AG (kcal/mol) | Kg (M)
Diadenosine tetraphosphate (Ap;A) -6.3 36.2
Adenosine diphosphate Ribose -5.8 81.4
GDP-Mannose -5.6 113
8-deoxy-dGTP -4.5 672
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Kinetic Constants for ApsA Hydrolysis by CT771

Table 4

Km (uM) Keat 67 | keat!Km (M71s71)
1.5mM MnCl, | 7.28+0.65 | 1.60+1.75 2.2x10°
3.0mMMnCl, | 9.35+0.36 | 1.51+0.85 1.6 x 105
50mM MnCl, | 4.98+0.45 | 0.68 +0.90 1.4 x 10°
15mMMgCl, | 407+21 | 1.78+0.04 4.4 %103
3.0mMMgCl, | 326+42 | 224+0.11 6.9 x 103
50mM MgCl, | 333+27 | 3.25+0.10 9.8 x 103
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