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Abstract
Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including
gene or protein expression, epigenetic state, morphology, proliferation and proclivity for
differentiation. The origins of the observed heterogeneity and its roles in the maintenance of
pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent
questions will require the employment of single-cell analysis methods as traditional cell
biochemical and biomolecular assays yield mostly population-average data. In addition to time-
lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and
proteomic profiling are reviewed. The application of multiple displacement amplification, next
generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to
provide a wealth of information affording unprecedented levels of multiparametric
characterization of cell ensembles under defined conditions promoting pluripotency or
commitment. Establishing connections between single-cell analysis information and the observed
phenotypes will also require suitable mathematical models. Stem cell self-renewal and
differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and
niche-wide processes spanning multiple time scales. Here, we discuss different modeling
approaches and challenges arising from their application to stem cell populations. Integrating
single-cell analysis with computational methods will fill gaps in our knowledge about the
functions of heterogeneity in stem cell physiology. This combination will also aid the rational
design of efficient differentiation and reprogramming strategies as well as bioprocesses for the
production of clinically valuable stem cell derivatives.
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1. Introduction
Phenotypic diversity is an intrinsic feature observed in isogenic populations of prokaryotic
and eukaryotic cells. This diversity is also observed in stem cells including embryonic stem
cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs)
(Enver et al., 2009; Graf and Stadtfeld, 2008; Narsinh et al., 2011; Phinney, 2012; Young et
al., 2012). It is becoming increasingly clear that population variation contributes
substantially to the variability observed in stem cell responses to their microenvironment
and factors inducing their self-renewal or lineage commitment (Losick and Desplan, 2008).
Within individual stem cell lines, heterogeneity can arise from several sources including
stochastic fluctuations in gene regulatory networks (GRNs) (Arias and Hayward, 2006;
Kaern et al., 2005), the kinetics of protein synthesis and degradation, partitioning of cellular
material during division (Huh and Paulsson, 2011; Wu and Tzanakakis, 2012),
asynchronous or asymmetric cell proliferation, allelic regulation of gene expression
(Miyanari and Torres-Padilla, 2012), and spatial gradients of soluble cues and matrix factors
in the extracellular milieu (Park et al., 2009; Parmar et al., 2007; Suslov et al., 2002).

Although heterogeneity is commonly observed in stem/progenitor cell ensembles, its sources
and roles in stem cell biology and engineering have only recently attracted greater attention.
Such heterogeneity can be manifested at the population level with the existence of
phenotypically distinct cells (e.g. pluripotent and committed cells) and is termed ‘macro-
heterogeneity’ (Huang, 2009). In contrast, ‘micro-heterogeneity’ refers to variations, for
example, in gene or protein expression displayed by a particular subpopulation. Additional
concepts related to the variations within stem cell populations can be found in Table 1. The
discrimination of these two types of inhomogeneity is important because each has different
biological implications. Macro-heterogeneity is typically easier to observe and may suggest
a bistability/multistability feature of the system while micro-heterogeneity simply refers to
the dispersion in the distribution of a trait (e.g. mRNA or protein). Furthermore, the
mechanisms that cells employ to maintain macro-heterogeneity or transition between
multiple stable states remain to be elucidated.

It is becoming increasingly clear that studies on the diversity of stem/progenitor cell
populations will require methodologies with single-cell and even single-molecule
resolutions. Routine biochemical assays such as reverse transcription-polymerase chain
reaction (RT-PCR), and western blotting provide population-level information with property
averages (mainly gene or protein expression levels) masking micro-/macro-heterogeneity.
This makes imperative the development of novel methods for the high-throughput analysis
of single cells. In this review, we discuss the adaptation of existing methods as well as
emerging technologies for the genomic, transcriptomic and proteomic profiling of single
stem cells within populations.

The high content and complexity of information generated by single-cell analytical methods
necessitates synergistic efforts in parallel with mathematical and computational modeling.
Stem cell specification is an intricate process entailing multilevel interactions among
extensive GRNs, extracellular signals and intercellular cross-talk. Deeper understanding of
these interactions is often confounded by the multiple sources of ‘noise’ present in stem cell
processes. Equally important is the fact that those processes span multiple temporal and
physical scales. For example, DNA transcription and translation transpires in seconds to
minutes or faster whereas cell division occurs every 10-30 h. Diversity in cell populations is
also affected by subcellular actions (e.g. by transcription factor networks or signal
transduction), cell-cell and cell-substrate processes (e.g. paracrine effects, extracellular
matrix components), and population-wide regulation (e.g. interactions among phenotypically

Wu and Tzanakakis Page 2

Biotechnol Adv. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dissimilar subpopulations). Here, we review quantitative frameworks for the analysis of
stem cells. Models commonly fall within two categories: those describing (temporally
evolving) traits within an individual cell (or groups of identical cells), and those simulating
whole ensembles of cells (even with single cell resolution). The latter provide a vista of
heterogeneity at the level of the population. Approaches based on the landscape model of
cell states introduced by Waddington (1957)) are also presented.

2. Experimental methods for the analysis of stem cell population
heterogeneity

Traditional experimental methods such as western blotting and quantitative PCR (qPCR)
commonly employed for cell analysis yield end-point, population-average information. As
such their utility is limited for addressing questions about the origins and role of
heterogeneity on the evolving properties and fate specification of stem/progenitor cell
ensembles. Instead, real-time analysis at single-cell resolution is necessary to investigate
cell-to-cell variability (Table 2). Techniques routinely used for analyzing single cells include
mainly flow cytometry and fluorescence-activated cell sorting (FACS) (Chang et al., 2006,
2008; Hayashi et al., 2008; Kalmar et al., 2009), and fluorescence microscopy (Davidson et
al., 2012; Kalmar et al., 2009) including time-lapse microscopy (Eden et al., 2011; Smith et
al., 2010). Yet, recent advances reviewed below have brought forward powerful new
methods for high-throughput analysis of the genome, transcriptome and proteome of single
cells (Fig. 1). The obtained data allow for the visualization of cell properties not just as
mean values but as probability density distributions providing researchers with new insights
about stem cell heterogeneity and associated mechanisms.

Various methods in this review are available for single cell analysis depending on the
desired type of profiling (e.g. genomic) as shown in Fig. 1. The typical workflow entails the
culture of cells in monolayers (e.g. single cells or colonies) or three-dimensional (3D)
structures (e.g. aggregates), subsequent dispersion into single cells and selection followed by
acquisition of pertinent data. Cell isolation is accomplished by FACS, micromanipulation or
the use of microfluidic devices in addition to laser capture microdissection, which can be
used for the isolation of cells from tissues as well. Some methods such as live-cell time-
lapse microscopy, which provides real-time information for individual cells, require the
genetic modification of cells with reporter transgenes (Giudice and Trounson, 2008) under
particular promoters. Furthermore, cells are maintained in chambers or microfluidic devices
with controlled conditions (e.g. humidity, gas, pH, temperature) allowing continuous
microscopic observation. Besides the relatively high capital costs associated with these
setups, cells can only be maintained for short periods (typically a few hours) compared to
the duration of differentiation experiments (days). Computational image processing (e.g.
segmentation algorithms Chirieleison et al., 2011; Fero and Pogliano, 2010) increases the
throughput by reducing the time for analysis and eliminating user bias. However, other
methods may be more straightforward technically but at the expense of providing only static
rather than dynamic information. Flow cytometry and fluorescence microscopy of fixed
cells are implemented to obtain ‘snapshots’ of populations with single-cell resolution at
different time points. Flow cytometry analysis can be performed on live cells expressing a
transgene or incubated with a non-cytotoxic dye (e.g. carboxylfluorescein diacetate
succinimidyl ester (CFSE)), and on fixed cells after immunostaining. Live-cell flow
cytometry can be combined with FACS for narrowing down to subpopulations of interest for
the acquisition of data over time. Here, cell manipulations including repetitive sorting may
have adverse effects on stem cell viability and differentiation propensity. Moreover, both
flow cytometry and fluorescence microscopy require labeling cellular components with high
specificity. Therefore, label-free methods based on differential characteristics (e.g.
morphology, adhesion Singh et al., 2013) for the analysis of single cells are highly desirable.
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To that end, microfluidic platforms present an appealing technology for developing tools for
isolating and analyzing single cells under defined microenvironments (‘niches’) (Chung et
al., 2005; Zare and Kim, 2010; Zhong et al., 2008).

2.1. Single-cell analysis by time-lapse microscopy
Time-lapse microscopy has been utilized to monitor protein expression dynamics in live
single cells within populations (Fig. 2). Typically, cells are transfected or incubated with a
fluorescent reporter (e.g. GFP, CFSE) prior to their observation. Previously, time-resolved
microscopy was applied to bacteria and yeast carrying two reporters (e.g. YFP, CFP)
flanked by identical promoters to demonstrate stochasticity in gene expression (Fig. 3).
Elowitz et al. (2002) utilized this dual reporter assay to discern noise (Table 1) due to the
low copy number of transcripts and random promoter activation (intrinsic noise) from other
sources including asynchronicity among cells (extrinsic noise) in Escherichia coli bacterial
populations. Detailed mathematical analysis of the intrinsic and extrinsic noise concepts can
be found elsewhere (Swain et al., 2002).

The division kinetics and cell cycle distribution of rhesus monkey ESCs has also been
studied by time-lapse microscopy (Fluckiger et al., 2006). Cells were transduced with a
lentiviral vector carrying the gene for the enhanced GFP (eGFP) downstream of the human
elongation factor 1α (EF1α) promoter. The results showed a variable cycle duration among
32 individual cells ranging from 12 to 21 h with a median of ∼15 h. Combined with
population-level data, these findings led to the conclusion that primate ESCs possess a rapid
G1 phase progression with a limited or absent checkpoint control mechanism.

Bistability in the expression of Nanog in mESC populations was also observed by
microscopy (Kalmar et al., 2009). Mouse ESCs engineered to express GFP from the nanog
locus (Chambers et al., 2007) exhibited a bimodal Nanog (GFP) distribution. The low
Nanog (LN) expression state was characterized by a shorter residence time since LN mESCs
transitioned to a high Nanog (HN) expression state within several cell cycles while the
reverse switching was less frequent. Additionally, FACS-isolated cultured LN mESCs
exhibited a higher propensity for differentiation than HN cells.

High-resolution time-lapse visualization was also deployed in the tracing of single mouse
embryonic fibroblasts (mEFs) after being reprogrammed to iPSCs over two weeks (Smith et
al., 2010). Mouse fibroblasts with doxycycline-inducible expression of pou5f1 (Oct4), sox2,
klf4 and myc (c-myc) transgenes (Wernig et al., 2008) were transduced with lentiviruses
carrying fluorescent reporters (GFP, YFP, RFP, or CFP fused to β-actin) before initiation of
reprogramming. Reporter expression allowed tracking of single mEFs and their
corresponding progeny by image acquisition and processing using the Cell Profiler software
(Carpenter et al., 2006). Successfully reprogrammed cells underwent a rapid shift in their
proliferation rate. Besides the identification of proliferation and morphological attributes
preceding the emergence of pluripotency markers, the use of live-cell microscopy made it
possible to discern among proposed models of reprogramming (Hanna et al., 2009;
Yamanaka, 2009). For example, the normal distribution of colony compaction times from
microscopy data of cells during iPSC generation is consistent with a model in which a series
of (not stochastically timed) steps in a lineage leads progressively to a reprogrammed state.

Miyanari and Torres-Padilla (2012) recently reported an adaptation of the dual-reporter
system (Fig. 3) to mESCs for monitoring the allelic expression of nanog. The expression
pattern for Nanog was strikingly distinct from that of other ‘stemness’ genes (e.g. Pou5f1
(Oct4)) which are transcribed from both alleles. In early embryos and cultured mESCs,
nanog levels are heterogeneous with only 30% of mESCs demonstrating biallelic
expression. Imaging of blastocysts and cultured mESCs from transgenic mice carrying fast-
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degrading variants of two reporters (eGFP, mCherry) each embedded in a single nanog
allele, revealed unexpected allelic switching of nanog expression depending on the stage of
development or on the culture conditions. Besides RNA fluorescence in situ hybridization
(RNA FISH) and RT-qPCR, live cells were tracked microscopically over time. The data
indicated that the majority of cells (over 98%) switching between patterns of allelic Nanog
expression did so over multiples of the cell cycle time. Interestingly, enhanced biallelic
nanog expression and less heterogeneous distribution of the Nanog protein were observed
when mESCs were cultivated with inhibitors of MEK (also known as mitogen activated
protein kinase kinase (MAPKK)) and GSK3β (‘2i’ condition). Taken together, stochastic
Nanog expression at the chromosomal level is a source of NANOG expression heterogeneity
in stem cell populations. This was also shown recently based on mathematical modeling
(Wu and Tzanakakis, 2013).

Davidson et al. (2012) reported that activation of Wnt/β-catenin signaling varied among
hESCs of the same population exposed to particular stimuli (Wnt3a ligand, GSK3 inhibitor
CHIR99021, etc.). For this purpose, a β-catenin activated reporter (BAR) featuring a TCF/
LEF binding element repeat (12×) upstream of the Venus or luciferase gene was used to
create stable hESC lines. The construct also contained a selectable marker (DsRED)
constitutively expressed from a ubiquitin promoter. DsRED+ hESCs exhibited a distribution
of Venus signal indicative of the intrinsic varied activity of canonical Wnt signaling. The
authors confirmed that reporter heterogeneity was due to variations in levels of β-catenin
signaling and not because of transgene silencing. For this purpose, DsRED+ cells were
sorted by FACS and transcriptionally analyzed by RT-qPCR It is deduced that this cell-to-
cell variation in Wnt signaling contributes to the differential response to factors (including
Wnt-related molecules) promoting stem cell commitment and the resulting heterogeneous
progeny.

Fluorescence microscopy has also been utilized to study the heterogeneity of ESC and
progenitor cell populations with respect to their expression of other markers. Stewart et al.
tracked SSEA-3+ hESCs after sorting and reported a faster proliferation than that of their
SSEA-3− counterparts (Stewart et al., 2006). Moreover, the two subpopulations displayed
differences in the expression levels of stem cell transcription factors, clonogenic capacity,
morphology and cell cycle attributes.

A recently developed tool (Sakaue-Sawano et al., 2008), the fluorescent ubiquitination-
based cell cycle indicator (FUCCI), allows monitoring the transition of live cells through
different cell cycle phases. The assay principle is based on the variable expression of the
Cdc10-dependent transcript 1 (Cdt1) and geminin proteins during cell cycle. Cdt1
participates in the formation of a ‘prereplicative complex’ during the late M-to-G1 phases
recruiting DNA helicase for initiation of DNA replication. With replication commenced
during G1/S, Cdt1 is targeted by E3 ligases for ubiquitin/proteasome degradation. Geminin,
which is expressed during the S/G2/early M phases, binds Cdt1 preventing aberrant
reactivation of DNA replication. Degradation of geminin takes place during mitosis and
early G1 removing the inhibition on Cdt1, which licenses a new round of DNA replication.
Shortened versions of the Cdt1 (30-120 amino acid region mediating ubiquitination) and
geminin (amino acids 1-110) are fused to fast-folding variants of fluorescent reporters for
use in the FUCCI assay. Cells transfected or transduced with expression vectors of the DNA
encoding for these fused proteins exhibit changes in fluorescence indicating their phase in
the cell cycle. Stable expression of the FUCCI constructs is preferable due to the division-
induced dilution in copy number of non-integrated transgenes.

The FUCCI construct is used to tag cells at different cell cycle stages and track them during
culture with live cell imaging and/or sort them via flow cytometry. Information about the
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cell cycle stage is particularly important for stem cells as changes in the length of different
phases has been linked to the propensity of cells to self-renew or adopt particular fates. For
instance, the duration of the G1 phase lengthens from 8 h at the start of neurogenesis to 18 h
by day E16 in mouse embryos (Takahashi et al., 1995). Using the FUCCI technology,
mESCs were shown to have a very short G1 phase (Roccio et al., 2013). Based on this
observation, neural stem cells (NSCs) were induced to a pluripotent state at a higher
proportion by selecting FUCCI-NSCs which were about to enter the G1 phase at the early
stage of reprogramming. A software suite (FUCCIJ) was also developed, based on the
ImageJ software, for the automated analysis of cell cycle phases in single cells from time-
lapse fluorescence microscopy images.

Software-based analysis is becoming an integral part of dynamic fluorescent microscopy.
Desai et al. (2013) studied the osteogenic differentiation in adipose-derived stem cells
through fluorescence microscopy utilizing MATLAB and CellProfiler modules for image
segmentation. The cells were tagged non-destructively with molecular beacons targeting
mRNA sequences for alkaline phosphatase, type I collagen and osteocalcin. A temporal
gene expression profile was constructed from repeated measurements in differentiating cells
over 21 days. The differentiation response of adipose-derived stem cells cultured in
osteogenic medium became uniform after 2 weeks indicating that cell commitment becomes
temporally synchronized.

Observation of fixed cells or tissue sections by fluorescence microscopy is a common
method for analysis of single cells and populations presenting fewer challenges than time-
resolved microscopy of live specimens but does not permit the continuous monitoring of
cellular processes. Still, high-content information such as cell morphology and marker
expression levels can be obtained from fixed cells. Suh et al. (2007) generated Sox2-GFP
transgenic mice and observed two Sox2-expressing but morphologically distinct populations
in the subgranular zone in vivo. Further analysis showed that a subpopulation of Sox2+ cells
gives rise to neural stem cells to maintain the constant size of the neural stem cell pool in
vivo.

2.2. Single-cell analysis by flow cytometry/FACS
Flow cytometry provides DNA, RNA or protein (e.g. transcription factor, cell surface
receptor) content or enzymatic activity information at single-cell resolution commonly
through the use of appropriate fluorescent probes. Typical applications include the
quantitation of DNA content for cell cycle phase distribution and aneuploidy, tagging of
proliferating cells after incorporation of bromodeoxyuridine (BrdU) or 5-ethynyl-2′-
deoxyuridine (EdU) (Salic and Mitchison, 2008), determining differences in proliferation
kinetics with CFSE staining (Koche et al., 2011), measuring changes in intracellular calcium
flux, and identifying (e.g. side population) cells through efflux of fluorescent dyes. The
multiparametric profiling of cells achieved by flow cytometry may be more representative of
the developmental and functional states of stem cells and their progeny than transcriptome-
level information since changes in mRNA may not be directly translated to the protein level
(Lu et al., 2009). Moreover, at least 104–105 cells (104 cells/s) can be processed with most
current flow cytometry systems yielding results which are representative of the entire cell
population. Besides their analysis, desired subpopulations can be further maintained for
studies after being sorted by FACS. In most instances, this requires either live-cell staining
limited to cell-surface markers or the engineering of cell lines expressing fluorescent
reporters under appropriate regulation.

However, there are also challenges in the analysis of stem cell heterogeneity by flow
cytometry. First, instrument calibration, most often repetitive, is necessary for consistency
between experiments (Mittag and Tarnok, 2009; Zenger et al., 1998). Second, unlike the
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analysis of the expression in single cells by qPCR of 10–20 or more genes, routine flow
cytometry measurements are typically limited to 2–4 species based on the availability of
excitation sources and emission detectors. And although flow cytometry systems with up to
16 channels are available for resolving fluorescence for sample analysis and sorting,
compensation problems should be carefully addressed (Herzenberg et al., 2006). Lastly,
sample analysis by flow cytometry is commonly performed as an end-point assay at distinct
time points rather than in a continuous fashion limiting the use of the method for
investigating the dynamics of fast-rate processes.

Nonetheless, flow cytometric analysis has been pivotal in studying the heterogeneity of stem
cell populations based on the expression of several markers. For example, the profile of
expressed Sca-1 (also known as Ly6a) in mouse hematopoietic stem cells was shown to span
over three orders of magnitude via flow cytometry (Chang et al., 2008). Further isolation by
FACS and culture of Sca-1low and Sca-1high cells revealed that both fractions restore the
distribution of Sca-1 to its initial state pointing to the existence of mechanisms for robust
maintenance of population heterogeneity (Fig. 4). Upon differentiation, Sca-1low cells gave
rise to erythroid cells whereas Sca-1high cells yielded myeloid cells suggesting that Sca-1
heterogeneity is linked to variable proclivities for cell specification. Similarly, robust
heterogeneity has been demonstrated in ESCs expressing Nanog, SSEA-3 and Stella (Chang
et al., 2008; Hayashi et al., 2008; Kalmar et al., 2009). In fact, a bimodal distribution was
shown for Nanog in mESCs and hESCs by flow cytometry (Chambers et al., 2007; Fischer
et al., 2010).

2.3. Single-cell analysis beyond time-lapse fluorescence microscopy and flow cytometry/
FACS

In this section, recent advances are presented in methods for genomic, transcriptomic and
proteomic characterizations of single cells. These methods are based on the same principles
as the corresponding assays for multicellular specimens but have been modified to various
extents for adaptation to one-cell samples. The assay workflow entails the isolation of single
cells from tissues or tissue cultures, their lysis and component extraction, and performance
of the appropriate reaction(s) such as reverse transcription (RT), polymerase chain reaction
(PCR), etc. The relatively small amount of material obtained from a single cell becomes a
significant workflow bottleneck. This can be further compounded by sample dilution,
mixing and biased pre-amplification (e.g. of RNA). These challenges have led to advances
in molecular biology protocols with the development and use of enzymes with high-
processivity beyond that of traditional polymerases. Similarly, microfluidic technologies
have been adopted for on-chip culture, isolation and analysis of single cells.

2.3.1. Genomic analysis of single cells—A subset of various whole-genome analysis
(WGA) methods developed so far has been adapted to the genomic investigation of single
cells. In PCR-based WGA random primers are utilized for exponential amplification of the
DNA. Variations to the typical PCR scheme have been reported, including degenerate
oligonucleotide-primed PCR (Cheung and Nelson, 1996) and ligation-mediated PCR (Klein
et al., 1999), which increase the amplification efficiency and genome coverage. Nonetheless,
the coverage of PCR-based WGA can generally be limited due to the sequence-dependent
bias from exponential amplification with random primers. This issue has been largely
tackled with the deployment of multiple displacement amplification (MDA) in which
random primers are used in conjunction with isothermal amplification by the bacteriophage
φ29-derived strand-displacing DNA polymerase (Dean et al., 2001; Spits et al., 2006). MDA
has also been combined with microfluidic platforms (digital MDA) for the absolute
quantification of DNA. Using digital MDA, Quake and colleagues demonstrated that
background amplification arises from high molecular weight DNA contaminants (Blainey
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and Quake, 2011). More recently, a new WGA method termed multiple annealing and
looping-based amplification cycles (MALBAC) was described involving a quasi-linear pre-
amplification step to minimize the bias due to nonlinear amplification (Zong et al., 2012).
The method reproducibly yielded 85–93% genome coverage of single SW480 human cancer
cells while allowing for the identification of single-nucleotide variations (SNVs) over
successive clonal passaging of the cells. Employing MALBAC to reveal SNVs and other
genetic alterations in cultured hPSCs will be of great interest in gaining a deeper
understanding of the effects of expansion conditions on stem cells.

2.3.2. Single-cell transcriptome analysis—Stem cell population heterogeneity is
largely reflected in transcriptome differences among individual isogenic cells. Analysis of
the transcriptional profile of single cells aims to make connections between their genotype
and phenotype. Gene expression in single cells displays temporal fluctuations with
significant ramifications for cell fate decisions. In addition to the stochastic nature of the
transcription of a single gene from one or two allelic templates of genomic DNA,
heterogeneityingene expression among cells with identical genotype is imparted by the
differences in cell cycle, microenvironment, and epigenetic states. Thus, single-cell
transcriptional profiling is critical for gaining a deeper insight of heterogeneity and its role
in stem cell self-renewal and differentiation.

Transcriptome analysis of single cells has yielded new information regarding the
heterogeneity of self-renewing and differentiating stem cell populations. The heterogeneity
of hESCs expressing transcription factors such as Nanog, Oct4 and Sox2 was demonstrated
by carrying out single-cell RT-qPCR for 100 cells collected by glass capillaries (Stahlberg et
al., 2009). Up to 100-fold differences were observed in the expression of these genes among
different cells. Such variations are significant for ESC lineage specification given that even
smaller perturbations cause dramatic changes in the transcriptional regulatory net-works of
mESCs and hESCs (Boyeretal., 2005; Luetal., 2009; MacArthur et al., 2012). In fact, single-
cell transcript analysis revealed the co-expression of pluripotency and differentiation
markers at the onset of differentiation (Gibson et al., 2009). During their incubation with
activin A, BMP4 and serum, ∼20 differentiating hESCs were selected during a 7-day
experiment and analyzed for the expression of various genes with low density array cards.
Pluripotency (e.g. POU5F1, NANOG, SOX2) and differentiation (e.g. EOMES, T, FOXA2,
AFP) genes were not only expressed simultaneously but their profiles could be classified as
uniform, absent and sporadically detected. These expression patterns were linked to the
chromatin states of respective promoters. Lastly, single-cell qPCR has revealed increased
heterogeneity in several human iPSCs lines compared to hESC lines (Narsinh et al., 2011).
These studies exemplify the applicability of single-cell transcriptomics in expanding our
knowledge of processes for the maintenance of pluripotency, lineage commitment and
reprogramming and are expected to facilitate the development of more efficient
differentiation and reprogramming protocols.

Analysis of transcripts in single cells is mainly based on the conversion of RNA into
complementary DNA (cDNA) by RT and either exponential amplification by PCR (Brady et
al., 1990) or linear amplification by in vitro transcription (IVT) with a T7 RNA polymerase
(Eberwine et al., 1992). Generating cDNA from whole cell lysates by RT entails the use of
oligo(dT) primers whereas random primers tend to amplify the more abundant rRNA and
tRNA (mRNA accounts for only ∼1% of the 10 pg of total RNA per cell). Even with the use
of oligo(dT) primers the majority of amplified cDNA corresponds to (3′ end) RNA
fragments of up to 3 kb but it should be noted that approximately 35% of genes correspond
to longer mRNAs.
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Amplification by PCR is relatively fast and the protocols for single cell analysis have
undergone significant optimizations in recent years. Nonetheless, the increase of dimers and
other non-specific products particularly during the late cycles and the amplification bias
toward more plentiful moieties present challenges for PCR-based analysis of single cells.
These issues are largely addressed with IVT of cDNA which is characterized by linear
amplification and reduction of non-specific species. This method however is more laborious
than PCR, results in less than 1000-fold amplification and the amplified transcripts are
shorter compared to the template mRNAs (Livesey, 2003).

The combination of single-cell cDNA amplification methods (Kurimoto et al., 2007) with
next generation sequencing has largely overcome the issue of short amplicons (Tang et al.,
2009). RNA sequencing (RNA-Seq) protocols have proven effective in analyzing the
transcriptome of single ESCs (Tang et al., 2010). The expression of 10,815 genes was
detected by RNA-Seq compared to ∼6800 genes reported by single-ESC cDNA microarrays
(Kurimoto et al., 2006). Deep sequencing analysis of single-cell cDNA has a dynamic range
of over 5 logs but should be accompanied by sufficient computational power for data
processing with available bioinformatics software (Pepke et al., 2009). RNA-Seq has also
been combined with IVT for the transcriptional analysis of single cells (Hashimshony et al.,
2012). The protocol, dubbed CEL-Seq for Cell Expression by Linear amplification and
Sequencing, starts with the RT of mRNA from single cells. The RT reaction for each cell is
supplemented with a primer containing a unique barcode upstream of a polyT, a 5′ adaptor
and the T7 promoter. After synthesis of the second strand, the samples are pooled to yield
sufficient RNA amounts (above ∼400 pg) for subsequent IVT. The resulting RNA is
fragmented at a second adaptor ligated at the 3′ end and reverse-transcribed to DNA. The
fragments containing both adaptors and the barcodes (each corresponding to an individual
cell) are selected by PCR and the resulting library is analyzed by pair-end sequencing for the
identification of mRNA transcripts from individual cells. CEL-Seq is not only suitable for
multiplexing but also highly sensitive and reproducible as runs with single mESCs and
differentiating cells from Caenorhabditis elegans embryos have shown. Nonetheless,
miRNAs (or non-polyadenylated transcripts) cannot be detected and alternative splice forms
cannot be discerned due to the strong 3′ bias.

In addition to direct measurement of transcript levels, other methods allow for indirect
determination of mRNA in single cells. Such assays include the use of reporter molecules
such as luciferase (Castano et al., 1996; de Wet et al., 1987), β-galactosidase and
destabilized fluorescent proteins (Li et al., 1998) with computational microscopy. Reporter
gene expression may be driven by the same promoter as the gene of interest, for instance, by
knocking in the reporter gene in the same gene locus or through delivery to cells of an
expression vector featuring the relevant promoter with the reporter gene. The result is the
generation of transgene transcripts quantitatively representative of the target mRNA.
Reporter proteins have also been fused with RNA-interacting proteins for mRNA analysis in
single cells. One such protein has been derived from the bacterio-phage MS2 and binds a
specific RNA motif. The MS2 protein–RNA complexes can be visualized after fusion of the
MS2 with GFP (Chubb et al., 2006; Tyagi, 2009). However, this approach requires the
insertion of the cognate motif to the RNA of interest and the transfection (or homologous
recombination) of cells with the engineered cDNA. It is unclear if the engineered transcript
retains the characteristics of the native mRNA target. Moreover, GFP fluorescence is present
irrespective of whether the MS2-GFP is bound to the target RNA. This results in high
background necessitating the meticulous exclusion of the unbound MS2-GFP prior to
sample analysis.

RNA FISH has also been employed for transcriptome analysis in single cells (Levsky et al.,
2002) illustrating the stochasticity in gene expression (Raj et al., 2006; Wijgerde et al.,
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1995) which is an important determinant of the cell phenotype. Current RNA FISH
protocols require the use of multiple probes complementing each target mRNA molecule
(single molecule FISH) facilitating its detection by fluorescence microscopy. The method
has been adapted to multiplexing with the simultaneous use of multiple oligonucleotide
probes tagged with fluorophores (barcodes) for the detection of transcripts from several
genes in single cells. In fact, the measurement of 32 genes concurrently in single
Saccharomyces cerevisiae cells was reported recently (Lubeck and Cai, 2012). The
visualization of single mRNA molecules is enabled with the use of super-resolution
microscopy which allows the imaging of structures with 10–20 nm lateral resolution
compared to 200 nm for confocal laser scanning microscopy (Schermelleh et al., 2010).
Spatial barcoding relies on the tiling in a particular order of small oligonucleotides tagged
with various fluorophores on transcripts. This approach requires high resolution due to the
localized hybridization patterns and linearization of the coded molecule. Transcript
recognition and quantitation however may also be based solely on distinct color patterns
(spectral barcoding). In this way, probes with lower fluorescence intensity can be used as the
required resolution is lower than for spatial barcoding. Advantages of the spatial/spectral
barcoding over other transcriptional profiling methods include the preservation of spatial
information within and among cells, the exclusion of bias due to RNA extraction and cDNA
synthesis, and the rapid imaging of multiple samples and cells scaling up the throughput of
the method considerably. An important barrier in the implementation of the method is the
high cost of super-resolution microscopy systems and probe sets but this is expected to drop
with wide adoption of this tool by the research community. It should be noted that with
further development in 3D microscopy and the synthesis of far-infrared fluorophores the
technique can be scaled to identify over 18,000 genes simultaneously.

Absolute copy numbers can be obtained with single-molecule FISH in single cells (Raj et
al., 2008) without the need for spiking the sample with known amounts of distinct mRNA.
From a functionality viewpoint however, the concentration of mRNA rather than its absolute
copy number may be more important indicating a requirement for size determination of
individual cells (Baserga, 2007). Moreover, current state-of-the-art methods for
transcriptome analysis involve the lysis or fixation of cells limiting our ability to study gene
network dynamics (i.e. actively transcribed/translated mRNAs), for instance, over the course
of stem cell differentiation or cell reprogramming. Live-cell imaging with single-cell next
generation sequencing will dramatically aid efforts in this direction. Achieving a major
objective of single-cell analysis, i.e. linking cell genotype with phenotype and the
environment, will also entail the development of improved protocols for the simultaneous
analysis of the genome and transcriptome of single cells (Klein et al., 2002).

2.3.3. Analysis of single-cell proteome and metabolome—In addition to flow
cytometry/FACS, a recent development for single-cell proteomics is mass cytometry or
cytometry by flight-of-time (cyTOF) (Bendall et al., 2011). Cells prepared for cyTOF are
stained with metal-conjugated probes and individually atomized and ionized rendering this
an ‘end-point’ assay. The probes contain isotopes that are not commonly found in biological
specimens. These isotopes from each atomized cell are separated by mass yielding
characteristic time-of-flight signatures. Signal intensity is proportional to the number of
antibodies originally bound per cell. CyTOF was recently implemented for the concurrent
detection of 30 surface markers and 9 cytokines in human peripheral blood mononuclear
cells (PBMCs) (Bodenmiller et al., 2012). For this purpose, seven tags were used to analyze
14 phosphorylation sites in 14 PBMC types under 96 conditions. This study showed that
cyTOF displays higher multiplexing capacity than flow cytometry. Yet, there is still room
for improvements especially in the throughput (currently around 103 cells/s) of cyTOF and
the sample volumes required for proper analysis (Bendall et al., 2012). As of this writing,
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there were not many published reports of cyTOF analysis of stem cells but several such
investigations are underway and the findings are forthcoming.

Mainstream proteomic analysis of biological samples is carried out by mass spectrometry
(MS), which undergone several refinements resulting in increased resolution, specificity and
sensitivity. Unlike with antibody-based assays, prior knowledge of protein targets is not
necessary for MS analysis. To that end, large-scale studies have been reported to better
understand complex mechanisms of pluripotency by analyzing the ESC proteome (Nagano
et al., 2005; Schulz et al., 2007), including post-translation modifications and comparisons
with the iPSC proteome (Brill et al., 2009; Phanstiel et al., 2011). Application of MS
technology has also been reported in comparative studies between cell states and particularly
during differentiation (Phanstiel et al., 2008). Analysis of histone and other chromatin
modifications showed that self-renewing stem cells retain a more open and accessible
chromatin than differentiated cells. MS has also been used for identification of interactions
(e.g. after immunoprecipitation) of proteins such as Nanog (Wang et al., 2006), Oct4 (Pardo
et al., 2010) and Sox2 (Mallanna et al., 2010). Studies like these have brought forward key
proteomic components of networks involved in pluripotency and lineage commitment
expediting directed research.

From recent studies on the metabolic profiling of stem cells and their derivatives it becomes
increasingly clear that metabolism is a defining characteristic of the cell state. Particularly
for cultured cells, metabolomics may provide information about the consumption and
secretion rates of compounds in supernatants or media, and metabolite changes measured in
cell extracts and intact cells (Khoo and Al-Rubeai, 2007). Like in cellular proteome analysis,
metabolomic studies have relied mostly on the use of MS, which is more sensitive that other
available methods and requires lower initial capital investment and equipment maintenance
costs. Using MS, Yanes et al. reported a reduction in the abundance of unsaturated
metabolites (phospholipids) as ESCs undergo commitment to cardiac muscle cells and
neurons (Yanes et al., 2010) conjecturing that stem cells differentiate in response to
oxidative processes such as inflammation. Differences in polyunsaturated phosphati-
dylcholines and other metabolic compounds between mouse iPSCs and mESCs and between
iPSCs and the parent fibroblasts undergoing reprogramming (Meissen et al., 2012). In
addition, analysis of mESC extracts showed dependence of cell proliferation in vitro on
threonine catabolism (Wang et al., 2009a). Others have also proposed the preference for
glycolysis and anaplerosis of glucose at the cost of effective ATP production by complete
oxidative phosphorylation in hematopoietic stem cells (Simsek et al., 2010), hESCs and
during reprogramming of somatic cells to hiPSCs (Panopoulos et al., 2012) although
findings contradicting this proposal have also been described (Birket et al., 2011).

Nuclear magnetic resonance spectroscopy (NMRS), which is based on the identification of
chemical shifts of resonance frequencies of nuclear spins in an externally applied magnetic
field, is the most commonly used method after MS for metabolomics analysis. For example,
stem cells implanted in the circle of Willis of Parkinson patients, were monitored via NMRS
in a clinical magnetic resonance imaging (MRI) scanner (Brazzini et al., 2010). Moreover,
mobile lipids have been detected via proton magnetic resonance in ESCs and ESC- and
iPSC-derived neural stem cells (Loewenbruck et al., 2011). Choline-containing compounds
linked to cell proliferation have also been monitored via NMRS in self-renewing and
differentiating stem cells. A decrease in the ratio of phosphocholine to
glycerophosphocholine was noted during fate specification of mESCs and mouse embryonal
carcinoma cells (Romanska et al., 2009). Compared to MS, NMRS has lower sensitivity,
and relatively higher instrumentation cost but it does not require the destruction (e.g. cell
lysis) of samples and may be used in a quantitative high-throughput fashion.
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Optical spectroscopy combining traditional spectroscopy methods such as Raman (based on
inelastic scattering) or Fourier-transform infrared (relying on absorption) with microscopy
have also been used for stem cell metabolome analysis. This category of technologies has
the potential to tie spatial information (e.g. the position of cells within a tissue-like structure)
to metabolomics data without requiring labeling of cells yet its use so far has been mostly
for qualitative rather than quantitative investigations. To that end, mESCs and hESCs lower
their RNA-to-protein ratio during neural and cardiac differentiation in culture, respectively
(Chan et al., 2009; Ghita et al., 2012). Raman microspectroscopy (RMS) has also been
employed to determine the cell cycle phase, differentiation status and intracellular glycogen
content in populations of hESCs providing tangible evidence about the potential of RMS for
stem cell analysis (Konorov et al., 2011, 2013; Schulze et al., 2010).

These reports also indicate that we are closer to obtaining single-cell read-outs by RMS and
MS-based methods. Indeed, despite their broad use with multicellular samples, efforts to
adapt MS and related methods to the analysis of single cells are now bearing fruits. In a
recent study, peptides and metabolites at femtomole quantities from single cells were
quantified by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) MS
(Rubakhin and Sweedler, 2008). More recently, Ibanez et al. (2013) spotted single yeast
cells on transparent glass microarrays and analyzed them individually via MS to observe
changes in glycolysis particularly in the presence of chemical (glycolysis inhibitor 2-deoxy-
D-glucose) and genetic perturbations (deletion of the PFK2 gene coding for a phosphofructo-
kinase isoenzyme). Analysis of multiple single cells suggested that the wild-type yeast
population is metabolically heterogeneous comprising two main subpopulations with high or
low fructose-1,6-bisphosphate, respectively. The results were characterized by low coverage
with only 26 moieties observed (21 correctly identified) pointing to one of the challenges for
future metabolomic investigation of single cells, including stem cells. As these report
showed, single-cell analysis will benefit from the integration of MS with microfluidic
platforms affording analyte extraction with low dilution, rapid cell lysis, sharp separation
and sensitive detection.

Other methods capitalizing on recent advances in microfluidic technologies for single-cell
proteome profiling include the enzyme linked immunosorbent spot (ELISPOT) assay
(Moodie et al., 2010), the single-cell barcode chip (Ma et al., 2011), and the droplet-based
detection of molecules secreted by single cells (Konry et al., 2011).

3. Mathematical and computational modeling for stem cell population
heterogeneity

Stem cell fate decisions rely on regulatory circuits of transcription factors, signaling
pathways and extracellular molecules. One can argue that these networks control the
specification of stem cells deterministically. This can readily be concluded by the dose-
dependent response of stem cells to differentiation stimuli. The molecular processes
however underlying regulatory networks are characterized by random fluctuations imparting
stochasticity to the specification of stem cells. This was demonstrated early on by Till et al.
(1964) for the proliferation of spleen colony-forming cells (‘colony-forming units’ or
CFUs). The portion of CFUs varied greatly from colony to colony akin to a ‘birth’ (self-
renewal) and ‘death’ (differentiation) process demonstrating the stochasticity of cell fate
decisions. The combination of stochastic and deterministic controls confounds studies of the
behavior of stem cell populations based solely on experimental methods. Parallel
implementation of mathematical modeling can enhance our understanding of the molecular
partners participating in cell fate changes and relevant control mechanisms.
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Isogenic stem cell populations are heterogeneous with differential propensities to exit self-
renewal or commit along a particular lineage, diverse epigenetic states and varying levels of
markers such as NANOG, Stella, SSEA-3 and Oct4 (Chambers et al., 2007; Hayashi et al.,
2008; Stewart et al., 2006; Toyooka et al., 2008). Stochasticity in gene expression is a major
contributor of the observed population diversity affecting greatly the adoption of phenotypes
by individual cells. Reducing this heterogeneity is often without merit except maybe at the
initial stages of a study where experimental convenience and rapid evaluation using
traditional whole-sample methods such as qRT-PCR or western blot analysis are desirable.
The irreducible inhomogeneity makes modeling of stem cell systems challenging.

The stochastic nature of processes mediating self-renewal and differentiation imparts
randomness in stem cell ensembles also posing difficulties when quantitative descriptions
are sought. Although reducing randomness, for instance by employing a set of (typically
time-dependent) ordinary differential equations (ODEs), leads to more tractable
deterministic models and possible inference of some properties of the system, stochastic
fluctuations are still present. That is, even in large ensembles in which stochastic effects
may be less prominent, gene expression and the communication among cells and with the
rest of their environment remain noisy. Therefore, randomness also is an irreducible
attribute of stem cell populations and pertinent models.

Depending on the desirable granularity of the model, interactions among different
components are also a complicating factor. Such interactions can be considered at the
molecular level, for example, between transcription factors or other proteins and DNA (e.g.
via RNA-chromatin immunoprecipitation or RNA-ChIP), or among cells via signaling. The
latter is evident, for example, in co-cultures of stem cells with endothelial cells, pancreatic
anlage or Sertoli cells coaxing them to adopt a cardiomyocyte, endocrine islet cell or
neuronal cell fate, respectively (Leon-Quinto et al., 2004; Mummery et al., 2007; Yue et al.,
2006).

The mathematical and computational approaches employed for stem cell dynamics can be
broadly classified into three categories. The first encompasses models describing the
dynamics in an individual cell of one or more properties such as genes, transcripts, proteins,
and signaling intermediates. Typically, these models are based on a series of relations
among genes of interest (gene networks) or signal transducers (signaling cascades)
represented by biochemical reactions or sometimes as circuits. Models of population
dynamics fall within the second category focusing on stem/progenitor cell ensembles
transitioning among phenotypically, transcriptionally or epigenetically distinct states. Cells
within population models may be considered individually or in groups. The last type covers
‘thermodynamic’ models based mainly on the concept of an epigenetic landscape introduced
by Waddington (1957). Each state or attractor is represented by a valley in the landscape and
cells moving between states must overcome an ‘energy’ or quasi-potential (U) barrier. The
second and third model types share the concept of cell states but the former encompasses
kinetic models whereas time dependence is largely absent in the thermodynamic theorization
of stem cell states and transitions.

The distinct characteristics of each modality may be illustrated in a simple example of gene
expression bistability (Fig. 5). A single-cell gene expression model usually entails reactions
(interactions) relevant to the target gene or protein. A positive auto-regulation is assumed to
be the source of bistability in this system. Then, protein X fluctuations in a single cell are
dictated by chemical reaction kinetics and gene expression noise may cause the switch
between states. If predictions about heterogeneity of the population are desirable, repetitive
simulations corresponding to different cells will yield the distribution of protein X, an
approach that falls within the scope of cell ensemble models. Population-based models may
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also treat different subgroups in the population by assigning specific properties to each
subtype and describing interactions among them (transitions between attractors). Cellular
activities affecting population heterogeneity such as proliferation, phenotype switching and
apoptosis characterized by specific kinetics can be embedded in population-based models.
This not only allows for the prediction of the temporal evolution of particular properties but
also the estimation of the relative contributions of each process to the observed
inhomogeneity. Lastly, a landscape model can be implemented for protein (or other trait) X
under equilibrium among various states. The driving force behind the transition between
different attractors depends on the gradient of the potential U(x), which is a function of the
probability distribution of the steady states Pss. This framework informs whether a passage
between states is permissible and if so under what conditions but not about the time needed
for the transition to transpire.

3.1. Individual-cell models
Models for individual cells typically describe the evolution of gene or protein levels in
conjunction with the activity of gene networks or signal transduction pathways. Modeling of
GRNs has gained significant interest recently as pertinent genomic analysis methods are
becoming commonplace and the amounts of available gene expression data are increasing.
Dynamic fluctuations in the expression of genes/proteins are the net effect of biochemical
reactions such as transcription, translation and mRNA/protein degradation. Different
modalities include Bayesian (Friedman, 2004) and Boolean network models (Shmulevich et
al., 2002). Still, the temporal evolution of the amount (e.g. concentration) C(t) of protein or
mRNA in a cell can be simply described, for example, with Eq. (1) where r(C) represents the
rate of reactions linked to protein/mRNA. The equation can be written in a vector form to
include multiple species within a single cell depending on the size of the network under
consideration. Various expressions can be employed as rate functions taking into account the
production and degradation of moieties. These rates are usually modeled with first-order
(linear dependence on substrate), Michaelis-Menten (Wang et al., 2009b) and Hill type
kinetics (Kalmar et al., 2009). Moreover, the positive and/or negative feedback loops can be
introduced for GRNs as deemed appropriate (Mettetal et al., 2006; Thattai and van
Oudenaarden, 2001; Weinberger et al., 2005).

(1)

Chickarmane et al. (2006) developed a model describing a network of Oct4, Sox2, and
Nanog in ESCs. The model identified a bistable switch in the network, caused by several
positive feedback loops under the influence of signals (e.g. environmental cues). The study
examined various motifs of interaction among the three partners showing how ESCs can
achieve self-renewal intrinsically without extracellular signal support. This model was
further extended (Chickarmane and Peterson, 2008) to include modules for ESC lineage
commitment orchestrated by Cdx2, Gata6 and the germ cell nuclear factor (GCNF). An
excess of Cdx2 over Oct4 results in specification to the trophoectoderm lineage whereas a
surplus of Gata6 compared to Nanog leads to ESC differentiation to endodermal progeny.

Although ODE systems are suitable to describe how stem cell fate decisions are affected by
certain factors deterministically (e.g. in an all-or-none pattern), they fail to capture the
stochastic nature of these phenomena. This has prompted the use of stochastic differential
equations (SDEs) for the study of the heterogeneity in cell populations. SDEs combine
deterministic terms with a noise term as shown in Eq. (2). Here, ε(t) can be a white noise
function with zero mean and standard deviation σ as the noise magnitude. In this form,
SDEs have been used for modeling individual stem cells (Kalmar et al., 2009; Wang et al.,
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2009b), despite the fact that noise quantification is still experimentally challenging. Glauche
et al. (2010) constructed a theoretical SDE system to describe the bimodal distribution in
Nanog expression. The model, which considered the interaction between Nanog and Oct4,
was used to test whether the observed bimodal distribution of Nanog arises from expression
noise (‘fluctuation scenario’) or oscillations in the expression of Nanog (‘oscillation
scenario’).

Besides the simple SDE described above, other SDE forms have been used for modeling
biological systems including the Langevin equation (Gillespie, 2000) (Eq. (3)). In this case,
the function g(C) determines the scaling of the noise term dependent on the concentration,
unlike the constant-level noise in Eq. (2). A relevant type is the Fokker-Planck partial
differential equation (Hasty et al., 2000) (Eq. (4)) in which P(C,t) represents a density
function describing the probability that the random variable C will assume a particular value
at time t. This formalism has also been employed in the investigation of noise-induced
transitions during stem cell differentiation (Wang et al., 2010). On the right-hand side, the
first term represents deterministic drift and the second term is the diffusion term. Numerical
methods to solve SDEs are based on stochastic variable calculus and more information can
be found elsewhere including treatment of Fokker-Planck problems (Gillespie, 2000;
Kloeden and Platen, 1999; Risken and Frank, 1996).

(2)

(3)

(4)

Regardless of whether SDEs or ODEs are chosen for the evolution of properties in
individual cells, model construction requires several kinetic parameters. This presents a
substantial challenge because current experimental methodologies are not suitable for direct
determination of all parameter values. As a result, parametric quantities are typically
estimated or guessed necessitating relevant sensitivity analysis to ensure robustness of the
model. The same is true for the measurement of noise-related parameters (e.g. noise
magnitude) which has not been demonstrated explicitly to date for single stem cells. Finally,
single-cell models consider only intrinsic noise whereas the effects on heterogeneity arising
from population interactions (extrinsic noise) are absent.

3.2. Cell population-based models
Individual-cell models in some cases can be considered building blocks of cell ensemble
models. In these quantitative frameworks, a cell population is deconstructed into multiple
subpopulations (sometimes down to unicellular groups), each of which retains specific
kinetics of cellular activities such as proliferation and differentiation. The overall model
focuses on the macro-heterogeneity of the population and its effects on development,
differentiation and growth in response to relevant cues. Unlike single-cell models however,
population-based models apply over considerably longer physical (i.e. intracellular vs.
intercellular) scales. The same is true regarding the temporal span of these model modalities.
That is, changes at the population level (e.g. differentiation) become evident over multiple
cell cycles while gene expression in individual cells is dependent on biochemical reaction

Wu and Tzanakakis Page 15

Biotechnol Adv. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



kinetics with much shorter time frames. For example, a stem cell population growth model
was reported incorporating proliferative heterogeneity (Deasy et al., 2003) by considering
two subpopulations, i.e. mitotic cells and quiescent cells, exhibiting distinct differentiation
and loss/apoptosis kinetics.

A simple way to scale single-cell models to populations is via cell ensemble models
(originally applied to bacterial systems Domach and Shuler, 1984) and agent-based models
(e.g. for differentiation of stem cells in 3D aggregates White et al., 2013). Such models are
based on assemblies of single-cell equations describing attributes of interest (e.g. level of a
particular marker). Viswanathan et al. (2005) modeled the clonal evolution of 1000 mESCs
and their differentiated progeny by coupling model results to cell numbers and Oct4+ cell
fractions. Differentiation of individual cell was assessed in each cell cycle by comparing the
number of LIF signaling complexes to a self-renewal threshold, and the level of Oct4
expression to 50% of that of undifferentiated cells. Initial conditions for each cell were
randomly set so as to introduce heterogeneity. Moreover, LIF receptor numbers to newborn
cells were stochastically assigned after division. Stem cell fate decision depended on fast
molecular activities such as Oct4 expression and over several cell-cycle intervals. However,
LIF signaling was assumed to immediately achieve steady-state and remain constant until
the next decision-making point.

Cell ensemble models are straightforward to construct and computationally efficient but the
embedding of intracellular activities and detailed GRNs is still lacking. The inclusion of
processes such as differentiation, division and death occurring in hours or days, will enhance
not only the complexity of cell ensemble models but their prediction potential as well.

A universal dynamics model was described (Kussell and Leibler, 2005) for a clonal
population in an environment that fluctuates in time stochastically (Eq. (5)). The model
assumes a population composed of m different phenotypes and N(t) is the population vector
correspondingly containing m elements each representing the specific phenotype size. The
matrix k(E) depends on the set of environment conditions (E). The diagonal elements kii (i =
1,2,…,m) correspond to growth rates whereas the off-diagonal elements kij (i ≠ j) represent
the rates for switching between states i and j.

(5)

where

This scheme has been employed to investigate the heterogeneous expression of Sca-1
observed in mouse hematopoietic stem cells (HSCs) (Chang et al., 2008). The distribution of
HSCs into Sca-1high and Sca-1low fractions was demonstrated to be only a one-dimensional
projection of transcriptome-wide heterogeneity. Interactions of Sca-1low with Sca-1high cells
were modeled taking into account the proliferation and transition kinetics between the two
states. A bimodal distribution of HSCs based on Sca-1 expression was shown although the
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molecular programs participating in the generation and maintenance of the observed
heterogeneity in Sca-1 expression remain to be elucidated.

Similarly, Roeder and Loeffler (2002) developed a HSC differentiation model by
considering two HSC niches: one supporting HSC proliferation and another that is
permissive to HSC differentiation. Each cell in the model was described by theoretical
variables to specify its commitment potential while symmetric duplication was assumed.
Stochasticity originated from the transition between the two environments with transition
intensities dependent on the affinity and cell numbers in the system. Differentiation was
considered but not along a specific type. A lineage propensity variable was later included
(Glauche et al., 2007) with cells adopting a phenotype by randomly increasing one lineage
propensity out of all proclivities modeled. The comparative differentiation of paired
daughter cells, lineage contribution of single differentiating cells and lineage specification in
differentiating HSC cultures were simulated as case studies and compared to published
experimental data. Stem cell commitment along different lineages was purported to result
from the competition between priming and the dominance of one lineage under the
governance of environmental stimuli.

Population balance equation (PBE) models, which have been applied to microbial and
animal cell systems (Fredrickson et al., 1967; Mantzaris and Daoutidis, 2004; Ramkrishna et
al., 1968; Sherer et al., 2008; Nielsen et al., 1998), are an appealing modeling framework for
stem cell ensembles (Jing et al., 2011; Kehoe et al., 2010). A general cell PBE, which is
essentially a cell mass or number balance, can be written as:

(6)

where N(x̃, t)dx̃ represents the number of cells (per unit of culture volume) having a
physiological state representation between x̃ and x̃ + dx̃ at time t (Fig. 6). The physiological
state vector x̃ reflects the diversity of the stem cell population in terms of variables such as
cell mass, age, DNA, RNA protein, differentiation status, and expression level of particular
markers, and x̃max contains the maximum values of these variables.

The functions Γ(x̃, C̃), Θ(x̃, C̃) and D(x̃, C̃) correspond to the cell division, death and
differentiation intensities. The birth state distribution p(z̃, x̃, C̃) describes how the cellular
material is partitioned among daughter cells. The quantity r(x ̃, C̃) is the single-cell rates of
growth or production of the elements inx. For example, r (x̃, C̃) includes the growth rate of
single cells (e.g. see Eakman et al., 1966) if the physiological state vector contains the size
(mass or volume) of individual cells. Stem cell PBEs can be coupled to equations describing
the variations of the elements of ˜ in the culture or tissue (e.g. substrate addition/
consumption or growth factor supplementation).

The differentiation of stem/progenitor cell populations has been modeled with multiple
coupled PBEs, each corresponding to a particular cell subpopulation (Jing et al., 2011). A
mass-structured PBE-based model was constructed for the osteogenic differentiation of
mesenchymal stem cells (Pisu et al., 2007). The model comprised balance equations for
three density functions mapping the fractions of undifferentiated mesenchymal stem cells
(MSCs), chondrocytes and osteoblasts. These were coupled to expressions for the temporal
profiles of extracellular matrix components (glycosaminoglycans, collagen) and growth
factors involved in the differentiation (BMPs and TGF-β ligands). The model provided an
integrated view of MSC growth, division, differentiation and extracellular matrix production
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and could offer insights in prescribing experimental conditions for studying the role of
MSCs in pathologic conditions (e.g. infection, arthritis).

The PBE framework was also employed in the analysis of noise as a driving force for
differentiation (Hoffmann et al., 2008). In this study, the differentiation potential was
modeled after a state variable a and stochastic differentiation was included in the model.
Simulation results were compared to data from cultures of differentiating promyelotic
precursor cells concluding that state-specific noise modulation by external stimuli regulates
the population dynamics.

Recently, the heterogeneity in NANOG expression in hESCs was investigated through a
combination of experiments and stochastic PBE modeling (Wu and Tzanakakis, 2012). Both
stochastic partitioning of cellular material at hESC mitosis and gene expression noise were
taken into account as factors contributing to the distribution of NANOG among hESCs. The
model provided information for the changes in NANOG and size for each cell in the
population in line with flow cytometry data from cultured hESCs. Synchronization of the
population by nocodazole or colcemid treatment led to a 39% increase in the average
NANOG content. More importantly, stochastic partitioning accounted for 17% of the total
noise in the profile of NANOG in undifferentiated cells. It should be noted that a simple
single-gene model was implemented as part of the PBE framework in this report although
more complex GRNs can be incorporated. Yet, integrating GRNs present challenges mainly
because of the lack of methods for accurate quantitative, real-time measurements of GRN
activity.

Although PBE models are multiscale and afford multivariable description of self-renewing
or differentiating stem cell populations their application in this field has been limited in
large part due to the difficulties in the collection of pertinent experimental data and the
development/execution of suitable numerical methods. For instance, the selection of cell
mass as a physiological state vector variable (Pisu et al., 2007) is advantageous because the
first moment of the population density function is the biomass, which is straightforward to
measure. Moreover, the mass distribution in a cell population can be determined by flow
cytometry but to date, there is little published information on stem cell size (or mass)
distribution which can be used in conjunction with PBE modeling. Acquiring reliable mass-
based distributions of stem/progenitor cell populations can also be challenging due to the
propensity of cells for aggregation. Nonetheless, there are efforts to address this issue with
advances in flow cytometry and microfluidic technologies (Grover et al., 2011; Son et al.,
2012; Tzur et al., 2011). Similarly, state variables corresponding to the expression of
pluripotency and/or lineage markers requires highly specific antibodies and the engineering
of stem cell lines carrying reporter genes under the control of phenotype-specific promoters.
In this regard, the role of high-throughput methods for single-cell analysis reviewed above
will be pivotal in the generation of experimental measurements for PBE model development
and implementation.

As already mentioned, application of PBE frameworks hinges on the associated
computational requirements, which grow as the dimensionality of the state vector increases.
Pertinent numerical schemes are based on finite discretization methods (Mantzaris et al.,
2001a, 2001b), multi-level discretization (Pinto et al., 2007) and MC approaches (e.g.
Gillespie, 1976; Hatzis et al., 1995; Shah et al., 1976). Several notable improvements in
stochastic simulation algorithms and tools (Gillespie, 2001; Li et al., 2008; Salis and
Kaznessis, 2005) and the increasingly available computational power are expected to aid the
wider adoption of PBE-based models for the investigation and control of stem cell systems
including the development and optimization of bioprocesses for the production of stem cell
progeny for clinical use (Kehoe et al., 2010).
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3.3. Landscape-based models
The landscape model proposed by Waddington (1957) provides a simple illustration of the
differentiation process. Stem/progenitor cells are considered as rolling balls in a landscape
comprising hills and basins. Each basin represents an attractor state in which cells reside.
Borrowing a term from chemical reaction thermodynamics, a cell must overcome a
‘potential energy barrier’ for switching from one attractor to another (Fig. 7). In this view,
traveling between attractors is assumed to be irreversible. Stem cells however exhibit
distinct phenotypes and are able to maintain macro-heterogeneity. More importantly, the
recent advances in reprogramming challenge the irreversibility in the transition between
attractors suggesting that improvements are necessary to this model to account for the
plasticity of stem/progenitor cells. Self-renewing cells (‘A’) can reciprocate between
attractors A1 and A2 (blue line) representing distinct phenotypes (‘1’ and ‘2’). A stem cell
‘A’ may also differentiate into cell type ‘B’ (green line). Cells in A1 and A2 have
significantly different gene expression profiles and thus their potential for transitioning to
attractor B will also vary. In this example, cells in A2 would reach B more easily compared
to cells in A1 based on the energy level map (right panel). It should be noted however, that
this simple model does not account for the molecular underpinnings of stem cell
commitment. For example, the heterogeneous expression of particular genes leads to
variable responses by members of the stem cell population thereby influencing fate
decisions.

The Waddington landscape has been accompanied by computational models focusing
mainly on the calculation of potential energy changes for stem cells transitioning from one
attractor to another. For example, in a landscape model developed by Wang et al. (2011) the
potential U(x̃) (Eq. (7)) was correlated with the steady-state probability of the system Pss(x̃)
where x̃ is the vector of model variables. The driving force vector F(x ̃) (Eq. (8)) dictates the
transition of single cells from one attractor to another and consists of two terms: the gradient
of potential energy U(x̃) scaled by a diffusion coefficient D, and the curl flux force in which
Jss is the steady-state probability flux.

(7)

(8)

Therefore, both the gradient of U(x̃) and the curl force on the landscape are regulators of
developmental processes. Differentiation in the reverse direction (e.g. B → A1) is not
necessarily bound to the same biological path as the original commitment process (e.g. A1
→ A2 → B). The landscape itself may also be subjected to reshaping due to possible
changes in the components of the driving force (Wang et al., 2010). An increase of the
diffusion coefficient D, for instance, lowers the U(x̃) barrier between attractors facilitating
stem cell commitment. This outcome is suggested in differentiation experiments of myeloid
progenitor cells where PU.1/GATA1 and PU.1/GATA2 interactions matched this attribute
of the proposed landscape model (Huang et al., 2007).

A landscape framework was casted to describe the distribution of Nanog in mESCs (Luo et
al., 2013). The model focused on equilibrium state distributions under different culture
conditions and simulation results were coupled to flow cytometric data. The study concluded
that a landscape with three attractors (low Nanog-LN, middle Nanog-MN, high Nanog-HN)
fit the experimental observations with the least error, inferring three stable states for Nanog
levels. Moreover, the noise associated with each state and the width of each attractor were
computed along with shifts in these features brought about by the different culture

Wu and Tzanakakis Page 19

Biotechnol Adv. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conditions tested. Lastly, thermodynamic or attractor-based models have also been reported
for transcription factor activity (Chen et al., 2008) and as Boolean networks (Serra et al.,
2010).

4. Concluding remarks
Heterogeneity has been a commonly observed but overlooked attribute of stem/progenitor
cell populations. The emerging roles of cell-to-cell variability on the differentiation
trajectories, molecular and functional characteristics of stem cells and their progeny point to
the need for the development of methodologies permitting the multivariable profiling of
ensembles at single-cell resolution. To that end, rapid advances in methods for obtaining
genomic, transcriptomic, proteomic and metabolomic information from single cells bring us
closer to the identification of causal associations between observed genotypes and
phenotypes. This knowledge will be pivotal in the design of highly efficient protocols for
guiding the fate of stem cells in vitro or in vivo along specific lineages in therapeutically
relevant quantities.

Single-cell analyses deployed for studying the phenotypic diversity in stem/progenitor cell
populations is expected to generate large amounts of complex data necessitating the
development of appropriate mathematical and computational models. The construction of
such models should take into account the particular attributes of stem cells, including
interweaving stochastic and deterministic processes and the multiscale nature of self-
renewal and differentiation.

An important challenge has been the lack of clearly defined nomenclature associated with
stem cell population analysis and modeling. Heterogeneity, for example, has been loosely
used to describe variability in a wide range of (most often intimately related) characteristics
such as proliferation, gene and protein expression, genetic background (e.g. among iPSC
lines), epigenetic state and function. This loose use of the term ‘heterogeneity’ can be
confusing when compiling and comparing outcomes from studies of different sources of
stem cell population diversity. The terminology for gene expression noise may also be
confounding partly because the tools for measuring and controlling noise experimentally are
still under development. And while gene expression noise is typically termed intrinsic noise,
the definition of extrinsic noise is not clear. Extrinsic noise has usually been defined simply
as noise other than intrinsic noise. This statement leaves open the contribution from many
often unspecified elements such as the extracellular environment in 3D culture (Suslov et al.,
2002) and the cell-cycle dependent expression of genes (Orford and Scadden, 2008). Yet,
the importance of extrinsic noise cannot be overstated necessitating clearer definitions and
distinctions of different noise types. For instance, reconstitution of a stem/progenitor cell
population from a subpopulation with extreme expression level of a certain gene (Sca-1,
Nanog) takes ten to twenty cell cycles, a time scale long enough for significant influences
from extrinsic noise sources (Chang et al., 2008; Kalmar et al., 2009).

The abundance of data from the analysis of single cells at different levels (DNA, RNA,
proteins, metabolites) provides an unprecedented level of multivariable portraying of stem
cell populations and their progeny. When combined with appropriate modeling approaches,
such knowledge is expected to shine light on how heterogeneity modulates fate specification
under different conditions. The relative contribution of stochasticity to stem cell fate
decisions also remains quantitatively ambiguous given the precise response of stem cells to
pluripotency/differentiation signals in spite of gene expression fluctuations. And as already
mentioned, sources of noise and their effects, for example, on stem cell differentiation are
still largely unaccounted for. The integration of single-cell analysis methods with modeling
approaches will boost progress in our understanding of stem cell physiology. This will
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enable the rational design ofstrategies for efficient stem cell differentiation and somatic cell
reprogramming aiming at the engineering of therapeutics for regenerative medicine.
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Fig. 1.
Methods for single-cell analysis. After isolation of single cells, various techniques are
available for profiling the genome, proteome (and metabolome) or transcriptome of single
cells in a population.
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Fig. 2.
Static and dynamic methods for investigating stem cell population heterogeneity. The levels
of mRNA molecules and proteins fluctuate over time with significant variation among
individual cells. Data from single-cell analysis assays yield distributions of the measured
properties. However, only a subset of these assays (e.g. time-lapse microscopy) is suitable
for dynamic monitoring of cellular properties of interest.
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Fig. 3.
Measurement of gene expression noise with a dual-reporter system. (A) Two fluorescent
reporters such as CFP and YFP are expressed from identical promoters of the gene of
interest. Differences in the CFP and YFP signals from a single cell are attributed to gene
expression (intrinsic) noise whereas extrinsic noise is manifested as differences in the
fluorescence among cells in the population. Scatter plots of protein level obtained from a
cell population assuming the presence of (B) only extrinsic noise, or (C) gene expression
noise, or (D) both types of noise. Because the extrinsic noise affects protein levels globally,
the signatures from the two reporters are strongly correlated as quantified by the coefficient
of variation (CV). However, the effect of gene expression noise is random indicating no
correlation between the levels of the two reporters. Dispersion that is perpendicular to the
diagonal in the scatter plot is attributed to gene expression noise.
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Fig. 4.
Robustness of stem cell population heterogeneity exhibited in protein content measured via
flow cytometry/FACS. Protein X conforms (for the purpose of illustration) to a bimodal
distribution in the original population. However, cells with extreme (high or low) expression
levels of the protein can be sorted and the respective subpopulations tracked over time. Their
signature of protein X converges to the original bimodal distribution and heterogeneity.
Macro-heterogeneity refers to the existence of multiple distinct peaks whereas the
heterogeneity within a subpopulation or state is termed micro-heterogeneity (Huang, 2009).
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Fig. 5.
Individual-cell, population and landscape models. A gene with bistable expression profile is
considered. A biochemical reaction network is constructed to describe all the production of
protein X in a cell. In this model, a cell switches between the A1 and A2 states by virtue of
gene expression stochasticity. In the population model, each subtype of cells is assigned
specific kinetics for processes such as proliferation (e.g. kinetic parameters k11 and k22),
attractor switching (e.g. k12 and k21) and apoptosis in addition to the net rate of generating
protein X. A map of the potential energy U(x) is calculated in the landscape model given the
steady-state probability distribution (Pss(x)) of the protein. Stem cells require certain force to
drive the transition between different attractors.
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Fig. 6.
Illustration of single-variable cell PBE model. N(x,t) is the probability density function
corresponding to the fraction of cells with property x at time t. The contribution of processes
such as cellular growth, proliferation and death are also shown.
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Fig. 7.
Landscape view of stem cell differentiation. The phenotype of a stem cell (or its progeny) is
indicated by its position in the landscape while the height (z-axis) represents the “energy
level” of this phenotype. This may be better visualized by projecting the hills and valleys
onto a two-dimensional heat map. The color bar indicates the energy level. The attractors A
and B represent two different cell types and the subscripts of A1 and A2 represent
phenotypic diversity among the same cell type. Stem cells may switch between states
without differentiating (blue line) or undergo lineage commitment (green line).
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Table 1

Terms used in the analysis of stem cell population heterogeneity.

Gene expression heterogeneity Cell-to-cell variation in the expression level of a gene or genes in an isogenic cell population

Micro-heterogeneity The dispersion in the distribution of a trait (e.g. specific protein content) within a state (attractor)

Macro-heterogeneity The multimodal distribution of a trait

Cell-fate heterogeneity Varying lineage specification potential among cells exposed to the same environmental condition(s)

Gene expression noise Fluctuations in gene expression due to stochasticity in pertinent biochemical reactions, e.g. random promoter
activation, transcription bursts, and mRNA/protein degradation

Extrinsic noise Noise contributed from sources affecting cell properties globally, e.g. asynchronous proliferation and
asymmetric division
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Table 2

Comparison between population-level and single-cell analyses.

Single-cell analysis Population-level analysis

Resolution Single cell, subcellular Cell populations

Data pattern Distribution/scatter Average value, standard deviation (based on number of
experimental replicates)

Dimensionality Multiple (O(10–103)a) markers can be assessed at
genomic and mRNA levels, more limited (O(10))
at protein level

Multiple marker (up to O(104) or higher) assessment is
possible

Downstream data processing Significantly higher Lower

Required detection sensitivity Higher Lower

Instrumentation requirements High Relatively low

a
O(): order of magnitude.
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