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Introduction

Candida albicans and other Candida species, such as C. parap-
silosis, C. glabrata, C. tropicalis, C. dubliniensis, and C. krusei, are 
common commensal fungal species found in the gastrointestinal 
and reproductive tracts of healthy individuals.1 However, Candida 
species can also cause mucosal (superficial) and systemic infec-
tions.2 Systemic candidiasis is one of the most important nosoco-
mial infections in Europe and the US and is associated with high 
mortality (40%) rates among hospitalized patients, particularly 
those in intensive care units (ICU), people undergoing major sur-
gery and in immunocompromised individuals.2-6

Mucosal and systemic candidiasis is mainly studied in ani-
mal models.7-10 However, there are limitations to these models; 
C. albicans is not a natural colonizer of small mammals10 and 
there are ethical and cost implications.11,12 These disadvantages, 
as well as Society’s wish to reduce the numbers of animals used in 
research, have encouraged scientists to explore in vitro models to 
refine, reduce, or replace (3Rs) animals in research.13

For mucosal infections, in vitro models include mucosal 
explants,14 monolayer cell cultures,15-17 multiple layer cell cul-
tures, and reconstituted human epithelium.18-20 A good correla-
tion has been found between immune responses measured in in 
vitro models and fungal virulence assayed in animal models.20-23

Although numerous models have been developed to investi-
gate superficial candidiasis,24-27 in vitro models to study systemic 
infection are currently limited to interactions with immune cells 

or with blood vessel endothelial cells.28-33 Systemic infection is 
primarily studied in model hosts, such as invertebrate mini-
hosts,34-39 the chick chorioallantoic membrane model,40,41 and 
small mammals.42-46 However, the mouse intravenous (IV) chal-
lenge model remains the most commonly used model to investi-
gate C. albicans virulence.47-50 During infection the bloodstream 
and the majority of organs are cleared of the pathogen, but fun-
gal burdens increase in the kidneys and brain, accompanied by 
increasing levels of renal cytokines and chemokines.51,52 Increased 
renal cytokine levels correlate with lesion severity and eventual 
infection outcome,49,52 with high levels of pro-inflammatory 
cytokines eventually causing sepsis and death of infected animals.

The escape of fungi from the bloodstream during systemic 
candidiasis has been modeled in vitro using endothelial cells.28-30,53 
Endothelial cell damage and cytokine production was induced 
only by live, germinated fungal cells,53 and those C. albicans 
strains unable to damage endothelial cells were found to be less 
virulent in the mouse model of systemic candidiasis.29 However, 
as it is early cytokine and chemokine levels in the kidneys which 
correlate with C. albicans murine systemic infection outcome,52 
we hypothesized that the host innate immune response is initiated 
in the kidneys. Epithelial cells, including renal cortical epithelial 
cells, are known to be capable of initiating an innate immune 
response through proinflammatory cytokine production, e.g., 
IL-8, IL-6, and IL-1.22,54-61 We, therefore, chose to evaluate 
murine renal epithelial cells as the basis for the development of 
a new assay to allow in vitro assessment of C. albicans virulence.
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Candida albicans, an opportunistic fungal pathogen, can cause severe systemic infections in susceptible patient 
groups. systemic candidiasis is mainly studied in the mouse intravenous challenge model, where progressive infection 
correlates with increased early renal chemokine levels.

To develop a new in vitro assay to assess C. albicans virulence, which reflects the events occurring in the murine 
infection model, renal M-1 cortical collecting duct epithelial cells were evaluated as the early producers of cytokines 
in response to C. albicans. We show that renal epithelial cells respond only to live C. albicans cells capable of forming 
hyphae, producing chemokines Kc and MIP-2, with levels correlating with epithelial cell damage. By assaying epithelial 
cell responses to strains of known virulence in the murine intravenous challenge model we demonstrate that renal epi-
thelial cells can discriminate between virulent and attenuated strains. This simple, novel assay is a useful initial screen 
for altered virulence of C. albicans mutants or clinical isolates in vitro and provides an alternative to the mouse systemic 
infection model.
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Results

Candida albicans–renal cells interactions
Based upon previous work,52 it was hypothesized that the 

interaction between fungal and renal epithelial cells initiates the 
innate immune response in the kidneys during systemic C. albi-
cans infection. To examine how C. albicans physically interacts 
with a renal epithelial monolayer, murine M-1 cortical collec-
tion epithelial cells were co-incubated with C. albicans SC5314, 
a virulent strain in the mouse systemic infection model, at a co-
incubation ratio of 1:1 C. albicans:M-1 cells. Within 3 h hyphae 
were evident (Fig. 1A) and had penetrated the epithelial mono-
layer (Fig. 1D). By 6 h some elongated hyphae were observed 
(Fig. 1B), with further evidence of penetration into the epithelial 
monolayer (Fig. 1E), while masses of hyphae were seen at 24 h 
post-infection (Fig. 1C).

In order to further characterize the response of murine renal 
epithelial cells to C. albicans, chemokines and cytokines pro-
duced in response to C. albicans SC5314 were measured from 
6 to 96 h post-infection. The majority of cytokines assayed (IL-
6, TNF-α, IFN-γ, IL-12, IL-17, IL-10, and IL-1β)51,52,62 were 
undetectable over 96 h (data not shown), whereas KC and MIP-2 
(equivalent to human IL-8) chemokine levels increased (Fig. 2A 
and B). Both KC and MIP-2 levels were significantly higher than 
uninfected controls at 6 h, increasing further by 8 h. However, 
later in infection control KC and MIP-2 levels also increased but 
remained significantly lower than co-incubations at 24 h, and 
even at 48 h in the case of MIP-2 (Fig. 2B). By 48 h control 
KC levels were similar to the 1:1 co-incubation (Fig. 2A) and by 
96 h control MIP-2 had increased to levels similar to the 1:1 co-
incubation (Fig. 2B).

To assay whether C. albicans damaged renal cells during their 
interaction lactate dehydrogenase (LDH) release was measured 
(Fig. 2C). LDH levels reflected chemokine production by epi-
thelial cells, where significantly higher damage occurred in the 
co-incubations compared with uninfected epithelial cells at 6 h 
post-infection. Incubation of 10 times more C. albicans cells with 
renal cells resulted in enhanced epithelial cell damage at earlier 
time points, although there was little difference later in infection 
(Fig. 2C).

Based upon the greatest significant differences for all param-
eters between uninfected and infected cells (Fig. 2), and in 
attempts to reflect localized fungal:epithelial cell ratios in the 
kidney, an 8 h time point and a 1:1 co-incubation was chosen as 
the basis for an in vitro assay, with KC, MIP-2, and LDH levels 
assayed.

Renal cells respond only to live C. albicans capable of 
switching morphology

Previous studies with peripheral blood mononuclear cells 
(PBMC) have shown that heat-killed (HK) C. albicans yeast 
cells stimulate higher cytokine production than live cells.32,33,62 
Endothelial cells have been shown to respond only to live C. alb-
cians cells53 and oral epithelial cells produce significantly lower 
levels of cytokines in response to killed C. albicans cells.58 To 
investigate whether renal epithelial cell respond to killed cells, 
C. albicans yeast cells were killed either by heat-killing, by 

chemical killing, or by exposure to UV.63,64 Dead cells were then 
used in the assay and the responses compared with those induced 
by live cells. Using two different C. albicans strains known to be 
virulent in the mouse model, it was shown that only live cells 
induce significant KC and MIP-2 levels (Fig. 3A and B). Similar 
results were found when hyphal cells were assayed, with only live 
cells capable of inducing chemokine responses (Fig. 3A and B).

In our assay yeast cells rapidly form hyphae during co-incuba-
tion with renal epithelial cells. To investigate the importance of 
hyphal formation in the induction of innate immune responses 
by renal cells, morphological mutants were tested in our assay. 
The hgc1Δ and egf1Δ/cph1Δ (Table 1) null mutants, which are 
unable to form true hyphae, stimulated significantly lower KC 
and MIP-2 production (Fig. 4A and B), and caused less dam-
age to the epithelial cells (Fig. 4C). Controls for these mutants, 
i.e., DAY185 and CAF2, did not differ in either chemokine pro-
duction or epithelial cell damage relative to SC5314 (data not 
shown).

Renal epithelial cells discriminate between virulent and 
attenuated C. albicans isolates and mutants

To explore whether renal epithelial cells can differentiate 
between attenuated and virulent C. albicans strains, the assay was 
performed using C. albicans clinical isolates of known virulence 
in the mouse intravenous challenge model of systemic candidiasis 

Figure  1. scanning electron microscopy (seM) images of C. albicans-
renal epithelial cell co-incubation. M-1 renal epithelial cells and C. albi-
cans sc5314 at 1:1 (A–C) C. albicans:renal cell ratio were co-incubated 
and visualized by seM at 3 h (A), 6 h (B), and 24 h (C). hyphal cell adher-
ence to and penetration into renal cell monolayer is evident at 3 h and 
6 h (D and E). scale bars represent 20 μm (A–C), 1 μm (D), and 2 μm (E).
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(Table 1).52 Only virulent isolates induced significant levels of 
KC, with the exception of isolate AM2003-020, relative to unin-
fected controls (Fig. 5A). MIP-2 production showed a similar 
pattern but significant increases in chemokine levels were also 
found for two attenuated isolates, AM2003/0100 and AM2003-
0069 (Fig. 5B). Again, LDH release was highest for virulent 
strains, with little damage seen when known attenuated strains 
were tested (Fig. 5C).

C. albicans null mutant strains known to be affected in viru-
lence (Table 1)65-68 were also tested in the model, and were com-
pared with the control strain CAI4 + CIp1068 (Fig. 6). pmr1Δ 
+ CIp10, an attenuated strain in the mouse systemic model,65 
showed reduced KC levels (Fig. 6A), MIP-2 levels (Fig. 6B), and 
epithelial cell damage (Fig. 6C) when compared with the con-
trol. This defect was restored in the reintegrant strain. However, 
a strain of intermediate virulence, mnt1/mnt2 + CIp10 mutant,67 

stimulated similar levels of KC, MIP-2, and LDH 
release as the parental and reintegrant strains 
(Fig. 6).

Further clinical isolates of known virulence 
were tested in blinded assays during evaluation of 
the assay to prevent unconscious bias. Virulence 
of the isolates in the mouse model was revealed 
after the assays had been completed. Similar to 
previous assays with clinical isolates (Fig. 5), 
virulent C. albicans isolates stimulated high KC 
and MIP-2 production, with the exception of a 
single strain, AM2003/0191, while intermedi-
ate and attenuated isolates induced similar che-
mokine levels (Fig. 7A and B) and LDH release 
(Fig. 7C) as uninfected controls. Clinical isolate 
AM2003/0191 formed a mix of yeast and hyphae 
in co-culture, rather than true hyphae as seen for 
other virulent strains. The majority of attenu-
ated strains (Figs. 5 and 7), with the exception 
of 78/028 and AM2003/0074, formed long 
pseudohyphae in co-culture. However, the cor-
relation is not complete as strains b30708/5 and 
AM2003/0100 formed true hyphae in co-culture, 
but did not cause significant damage to the epi-
thelial cells or stimulate high levels of chemokines 
(data not shown).

Chemokine levels and epithelial cell damage
Generally, in our assay, trends for KC, MIP-

2, and LDH levels were similar, with low levels 
for attenuated strains and higher levels for viru-
lent strains. Correlation analyses of damage and 
chemokine production suggests that the two are 
related, with R2 = 0.778 for KC and LDH and 
R2 = 0.6918 for MIP-2 and LDH (Fig. 8). In order 
to establish whether chemokine levels merely 
reflect release of intracellular chemokine stores 
when epithelial cells are damaged chemokine 
levels from lysed epithelial cells after 8 h incuba-
tion were measured. Both KC and MIP-2 levels 
released from lysed cells were similar to those 

found for uninfected, intact M-1 epithelial cells, while chemo-
kine production was significantly higher for epithelial cells co-
incubated with C. albicans (Fig. 9A). Active production of both 
KC and MIP-2 was further confirmed by analysis of KC and 
MIP-2 gene expression during co-incubation with C. albicans, 
with KC levels increased from 1 h post-infection and MIP-2 sig-
nificantly increased from 4 h post-infection (Fig. 9B). This sug-
gests that chemokine production is an active process in response 
to damage caused by fungal cells.

Discussion

Animal models are most commonly used to investigate 
pathogenesis, infection progression and virulence of C. albi-
cans.42-45,47-52,65-71 However, these experiments require the use of 
many animals, particularly mice. The aim of the present study 

Figure 2. Renal epithelial chemokine production and damage increases during incuba-
tion with C. albicans. Kc (A) and MIP-2 (B) levels were measured over 96 h of co-incubation. 
chemokine levels and LDh release (C) were measured for control, 1:1 (C. albicans:renal cells) 
and 10:1 co-incubations. Results represent the means ± standard deviation of three sepa-
rate experiments using triplicate samples. significant differences relative to uninfected 
control were determined by aNOVa and the Tukey post-hoc test (*P ≤ 0.05, **P < 0.001).
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was to develop a new in vitro model to assay 
C. albicans virulence, allowing a reduction in 
the number of mice used in systemic candidiasis 
studies, thus addressing the 3Rs.13

Our results clearly demonstrate that renal epi-
thelial cells are capable of initiating an immune 
response to fungal pathogens, similar to other epi-
thelial cell types.18,54,58,60,72 Interactions between 
renal epithelial cells and fungal cells, using a 
cell culture monolayer, showed that C. albicans 
formed hyphae and penetrated into M-1 epithe-
lial cells at 3 h post-infection. C. albicans had 
previously been shown to adhere to the HEK293 
human kidney cell line, but chemokine and cyto-
kine responses were not investigated.73 Physical 
interaction between C. albicans and endothelial 
or oral and vaginal epithelial cells has previously 
been demonstrated to be required for initiation of 
a host response, with a switch to hyphal growth 
required.29,53,58,74 This ability to switch between 
yeast and hyphal forms is also required for full 
virulence of C. albicans in the mouse intravenous 
challenge model.34,75,76 However, results for endo-
thelial and epithelial cells differ significantly 
from in vitro assays with human peripheral blood 
mononuclear cells (PBMCs), where the highest 
cytokine levels induced are in response to heat-
killed, yeast form C. albicans.33,77,78

In our in vitro model early, active production 
of chemokines KC and MIP-2, important for 
the neutrophil recruitment,79 by renal epithelial 
cells was demonstrated in response to virulent 
C. albicans strains. These results reflect early events in the mouse 
model of systemic infection, where KC levels increase within the 
first 12 h of infection in the kidneys of mice infected with viru-
lent isolates52 and virulent strains generally induce higher early 
levels of renal KC than attenuated strains.43,52 Other cytokines, 
e.g., IL-6, TNF-α, and IL-1β, also begin to increase in the kid-
neys after this time,52 but were undetectable in our in vitro assay, 
suggesting that these cytokines may be produced by infiltrat-
ing immune cells. However, it is also possible that the cell line 
used may be defective in pro-inflammatory cytokine production. 
This is in contrast to oral and vaginal epithelial cells which have 
been demonstrated to secrete IL-8, IL-1β, IL-6, and TNF-α in 
response to C. albicans.74,80

In general only C. albicans strains which are virulent in the 
mouse systemic model induced significant KC and MIP-2 pro-
duction and caused damage to the renal epithelial cells. Damage 
to endothelial cells has been shown previously to induce pro-
duction of immune modulators, and hence initiate an immune 
response.81 However not every virulent isolate behaved in the 
same way in our assay. Virulent isolates AM2003/0191 (clade 2) 
and AM2003-020 (clade 4)82 did not elicit significantly increased 
KC and MIP-2 production by epithelial cells, and two attenuated 
isolates, AM2003/0069 (clade 2) and AM2003/0100 (clade 2),82 
stimulated significantly higher MIP-2 levels than uninfected 

controls. Although classed as a virulent isolate in the mouse 
model, AM2003-020 induces lower levels of KC in the kidneys 
of infected mice, relative to other virulent isolates,52 showing 
agreement with results obtained here. An imperfect correlation 
between murine virulence and endothelial cell damage has been 
observed previously, where some strains capable of causing endo-
thelial cell damage were attenuated in a mouse infection model.29 
Adaptation of the fungus in vivo may also play a role, as strain-
specific differences in adaptation to the host environment, which 
could not be reproduced in vitro, were recently demonstrated.83 
These alterations in in vivo adaptation could underlie results 
found for a minority of C. albicans strains where renal epithelial 
assay results did not correlate with virulence in the mouse model. 
However, one of the limitations of our model is that phagocy-
tosis and blood clearance of fungi is not accounted for, which 
would affect the numbers of fungal cells reaching the kidneys in 
the mouse model, and thus infection outcome. Hence, mutants 
affected in susceptibility to neutrophils, e.g., the sod5 mutant, 
may not be detected as attenuated, even though this mutant is 
attenuated in the mouse.84,85

Our new model using renal epithelial cells is a useful, simple, 
and rapid assay of C. albicans virulence, which can be used as 
a screen prior to proceeding to animal infection models, thus 
reducing the numbers of mice used in virulence assays. In the 

Figure 3. Renal epithelial cells respond only to live C. albicans cells. Kc (A) and MIP-2 (B) 
measured at 8 h for a 1:1 (C. albicans-epithelial cell) co-incubation with live or killed C. albi-
cans virulent strains, sc5314 or J990102. Live, heat killed (hK), UV killed (UV), formaldehyde 
(Form), and thimerosal (Thim) killed yeast and hyphal cells (A and B) were used. all values 
are expressed relative to sc5314 and results represent the means ± seM of three separate 
experiments using triplicate samples. significant differences relative to uninfected control 
were determined by aNOVa and the Tukey post-hoc test (*P < 0.05, **P < 0.001).



290 Virulence Volume 5 Issue 2

future it would be of interest to extend this model to human kid-
ney cell lines to determine whether C. albicans interacts in a simi-
lar way with human kidney cells.

Materials and Methods

Candida albicans culture and maintenance
C. albicans isolates and strains (Table 1) were routinely main-

tained on YPD agar at 4 °C (1% yeast extract, 2% mycological 
peptone, 2% glucose, 2% agar) or at –80 °C in glycerol for long-
term storage. For co-incubation experiments C. albicans cells 
were grown in YPD at 30 °C 200 rpm overnight. Hyphae were 
induced by washing YPD overnight cultures three times with 
PBS, and then inoculating cells into DMEM:Ham’s F12 with 
2 mM Glutamine (GIBCO) to a final concentration of ~5 × 106 
cells/ml. Cultures were incubated for 4 h at 37 °C in 5% CO

2
. 

Cells (~1 × 107 cells/ml) were washed three times with PBS before 
being used in assays.

Preparation of killed C. albicans cells
Killed C. albicans cells were prepared either by heat-killing, 

by chemical killing or by UV killing.63,64 Heat-killed (HK) cells 
were obtained by incubating cells (~1 × 108/ml) at 70 °C for 2 h 
in a water bath. Chemically-killed cells were prepared by treat-
ing cells (~1 × 108/ml) overnight with 100 mM thimerosal or 

1% formaldehyde, and then washing cells four times in PBS 
to remove residual chemicals. To UV kill cells, C. albicans 
(~1 × 108/ml) were exposed to 0.100 J/cm2 UV light 20 times on 
a UV-crosslinker (CL 508 S, Uvitec, Cambridge) with 254 nm 
UV emission tubes. All killed cells were stored at 4 °C before 
used for co-incubation.

For all killed cells, after re-suspension in PBS (~100 × 108 cells/
ml), a 10 µl sample was plated onto YPD agar and incubated for 
48 h at 30 °C to assay cell viability. The detection limit of the 
viability assay was 100 cells/ml. Viable cells were not detected in 
any of the cell suspensions used in these assays.

Renal epithelial cell cultures
The M-1 mouse kidney cortical collecting duct epithelial cell 

line (CRL-2038, ATCC) was used for co-incubation assays with 
C. albicans. Renal epithelial cells were grown in DMEM:Ham’s 
F12 with 2 mM glutamine (Gibco Life Technologies), 5 µM 
dexamethasone (Hspira UK Limited), 5% fetal bovine serum 
(FBS), and maintained in 5% CO

2
 at 37 °C. The growth 

medium was changed every second day. Only passage numbers 
35–49 were used for assays.

C. albicans–renal epithelial cell co-incubation assays
For co-incubation of renal epithelial cells with C. albicans, 

1 × 105 M-1 kidney cells were seeded into each well of a 24-well 
plate (Greiner Cellstar) and grown for 2 d to reach confluence. 

Table 1. C. albicans isolates and strains

Isolate/ mutant Virulence (mouse model) Description References

sc5314 Virulent clinical isolate 66

J951361 Virulent clinical isolate 52

J990102 Virulent clinical isolate 52

aM2003-020 Virulent clinical isolate 52

aM2003/0100 attenuated clinical isolate 52

hUN96 attenuated clinical isolate 52

aM2003/0069 attenuated clinical isolate 52

Fc28 attenuated clinical isolate 52

RV4688 attenuated clinical isolate 52

aM2003/0191 Virulent clinical isolate 52

s20122.073 Virulent clinical isolate 52

b30708/5 attenuated/intermediate clinical isolate 52

aM2005/0377 attenuated clinical isolate 52

aM2003/0074 attenuated clinical isolate 52

78/028 attenuated clinical isolate 52

caI4 + cIp10 (NYG152) Virulent Wild-type control strain 68

pmr1Δ + cIp10 (NGY355) attenuated N- and O-glycosylation mutant (pmr1 null) 65

pmr1Δ + PMR1–cIp10(NGY356) Virulent PMR1 reintegrant 65

mnt1/2Δ + cIp10 (NGY337) attenuated/intermediate O-glycosylation mutant (mnt1 and mnt2 null) 67

mnt1/2Δ + MNT1–cIp10 (NGY335) Virulent MNT1 reintegrant 67

hgc1Δ (WYZ12.1) attenuated G1 cyclin mutant (hgc1Δ) 76

egf1Δ/cph1Δ (hLc54) attenuated
Transcriptional regulator and transcription factor double mutant 

(egf1Δ/cph1Δ)
75

clinical isolates and mutant virulence as determined in the mouse intravenous (IV) challenge model.52,65-68,75,76,82
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The growth medium was changed and fungal cells added at a 
ratio of 1:1 or 10:1 (C. albicans:M-1 cells). Plates were incubated 
for 6–96 h in 5% CO

2
 at 37 °C. Culture supernatants were col-

lected at defined time points and stored at –20 °C for cytokine/
chemokine measurements or at 4 °C for epithelial cell damage 
(LDH) assays. To determine intracellular chemokine levels, renal 
cells were lysed with Triton X-100 (1% final concentration) for 
40 min and the supernatant stored at 4 °C. In some experiments 
C. albicans strains were provided to the experimenter in a blinded 
fashion, e.g., with a code rather than the strain name.

Cytokine and chemokine production
Cytokine production by epithelial cells during C. albicans co-

incubation was measured by Duoset ELISA development systems 
or Quantikine colorimetric sandwich ELISAs (R&D Systems) 
(IL-12, TNF-α, IL-1β, IL-10, IL-17, and IFN-γ, KC, and MIP-2) 
(R&D Systems), according to the manufacturer’s instructions.17

RNA extraction and real-time PCR
RNA was extracted from cells using the RNeasy Mini 

Kit (QIAGEN) following the manufacturer’s instruc-
tions. cDNA was prepared using Superscript II (Invitrogen) 
as per manufacturer’s instructions. The real-time PCR 
assay was utilized the Roche universal probe library. 
Primers used were manufactured by Invitrogen: KC for-
ward (5′-ACTCCAACAC AGCACCATGA-3′) and reverse 
(5′-TGGTCTGCAG GCACTGAC-3′) primers and MIP-2 for-
ward (5′-CCCTGGTTCA GAAAATCATC C-3′) and reverse 
(5′-CTTCCGTTGA GGGACAGC-3′) primers. PCR was per-
formed using the LC Dual Color Hydrolysis probe assay in a 
Roche Lightcycler 480. Roche universal probe 49 was used to 
detect amplification of KC and probe 63 for MIP-2, with the 
murine GAPDH Taqman assay (Applied Biosystems) included 
in the same RT-PCR reaction to detect GAPDH as a control, 
following the manufacturer’s instructions. Data was analyzed 

Figure  4. switching from yeast to hyphal form is required to induce 
chemokine production and LDh release from renal cells. Kc (A), MIP-2 
(B), and LDh (C) levels at 8 h post-infection with 1:1 C. albicans:renal cells 
co-incubation with yeast-locked mutants and sc5314. all values are 
expressed relative to sc5314. Results represent the means ± sD of three 
separate experiments using triplicate samples. significant differences 
relative to uninfected control were determined by aNOVa and the Tukey 
post-hoc test (*P < 0.05, **P ≤ 0.001).

Figure  5. Renal epithelial cells discriminate between virulent and 
attenuated C. albicans isolates. Kc (A), MIP-2 (B), and LDh (C) levels at 8 h 
post-infection for 1:1 C. albicans:renal cell co-incubation with different 
C. albicans isolates of known virulence in the mouse model.82 all values 
are expressed relative to sc5314. Results represent the means ± sD of 
three separate experiments using triplicate samples. significant differ-
ences relative to the uninfected control were determined by aNOVa 
and the Tukey post-hoc test (**P < 0.001, *P < 0.05). Virulent strains are 
shown as black columns, attenuated strains as gray and control as white 
columns.
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with the Lightcycler software by the Absolute Quantification 
Analysis using the Second Derivative maximum method.

Epithelial cell damage assay
Renal epithelial cell damage was assayed by lactate dehydroge-

nase (LDH) release into the culture supernatant.17 At each sam-
pling time, 1 ml of supernatant was collected and LDH release 
determined using the cytotoxicity detection kit (Roche Applied 
Science), according to the manufacturer’s instructions. LDH lev-
els were determined from an l-Lactate Dehydrogenase (Roche) 
8 point standard curve (highest value of 0.125 µg/ml). To deter-
mine maximum LDH release with 100% cell death at each time 
point, Triton X-100 (1% final concentration) was added to the 
renal cell monolayer and incubated for 40 min to lyse the cells.17 
Total cell lysis was confirmed by light microscopy. LDH release 

(%) for each time point was calculated relative to the 100% cell 
death value at the same time point.

Scanning electron microscopy
M-1 cells were grown on BD Falcon cell culture PET track-

etched membrane inserts (Becton Dickinson Labware). Inserts 
had an effective growth area of 0.3 cm2 and 0.4 µm pore size. 
Membranes were carefully dissected and fixed in 2% glutaralde-
hyde in 0.1 M phosphate buffer overnight. Samples were washed 
in 0.1 M phosphate buffer and then incubated in 1% osmium 
teroxide for 1 h. Membranes were washed in 0.1 M phosphate 

Figure 6. attenuated C. albicans mutant strains fail to induce high lev-
els of chemokine production by renal epithelial cells. Kc (A), MIP-2 (B), 
and LDh (C) levels at 8 h post-infection for a 1:1 C. albicans:renal cell co-
incubation with C. albicans null mutant strains with virulence defects in 
the mouse intravenous challenge model.65,67,68 all values are expressed 
relative to sc5314. Results represent the means ± sD of three separate 
experiments using triplicate samples. significant differences relative to 
uninfected control were determined by aNOVa and the Tukey post-hoc 
test (**P < 0.001, *P < 0.05). Virulent strains are shown as black columns, 
attenuated as gray, intermediate strain as light gray, and control as white 
columns.

Figure 7. Identification of virulent C. albicans strains in a blinded assay. 
six C. albicans clinical isolates were assayed in a blinded manner, with the 
experimentalist provided with the mouse virulence data after analysis 
of the results. Kc (A), MIP-2 (B), and LDh (C) levels were determined at 
8 h post-infection. all values are expressed relative to sc5314. Results 
represent the mean ± sD of three separate experiments using tripli-
cate samples. significant differences relative to the uninfected control 
were determined by aNOVa and the Tukey post-hoc test (**P < 0.001, 
*P < 0.05). Virulent strains (as determined in the mouse model) are 
shown as black columns, attenuated as gray, intermediate strain as light 
gray and control as white columns.
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